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Abstract. Two types of explanations have been receiving increased at-
tention in the literature when analyzing the decisions made by classi-
fiers. The first type explains why a decision was made and is known as
a sufficient reason for the decision, also an abductive explanation or a
PI-explanation. The second type explains why some other decision was
not made and is known as a necessary reason for the decision, also a
contrastive or counterfactual explanation. These explanations were de-
fined for classifiers with binary, discrete and, in some cases, continuous
features. We show that these explanations can be significantly improved
in the presence of non-binary features, leading to a new class of expla-
nations that relay more information about decisions and the underlying
classifiers. Necessary and sufficient reasons were also shown to be the
prime implicates and implicants of the complete reason for a decision,
which can be obtained using a quantification operator. We show that
our improved notions of necessary and sufficient reasons are also prime
implicates and implicants but for an improved notion of complete reason
obtained by a new quantification operator that we also define and study.
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1 Introduction

Explaining the decisions of classifiers has been receiving significant attention
in the Al literature recently. Some explanation methods operate directly on
classifiers, e.g., [43,42], while some other methods operate on symbolic encodings
of their input-output behavior, e.g., [8,25,36,39], which may be compiled into
tractable circuits [11,45,46,44,5,21]. When explaining the decisions of classifiers,
two particular notions have been receiving increased attention in the literature:
The sufficient and necessary reasons for a decision on an instance.

A sufficient reason for a decision [17] is a minimal subset of the instance which
is guaranteed to trigger the decision. It was first introduced under the name PI-
ezplanation in [45] and later called an abductive explanation [25].1 Consider the
classifier in Figure la and a patient, Susan, with the following characteristics:
AGE >55, BTYyPE=A and WEIGHT=0VER. Susan is judged as susceptible to disease
by this classifier, and a sufficient reason for this decision is { AGe >55, BrypE=A}.

1 We will use sufficient reasons and PI/abductive explanations interchangeably.
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Fig.1: Two classifiers of patients susceptible to a certain disease. The classifier
in (b) will be discussed later in the paper.

Hence, the classifier will judge Susan as susceptible to disease as long as she has
these two characteristics, regardless of how the feature WEIGHT is set.?

A necessary reason for a decision [18] is a minimal subset of the instance that
will flip the decision if changed appropriately. It was formalized earlier in [24]
under the name contrastive explanation which is discussed initially in [32,38].3
Consider again the patient Susan and the classifier in Figure la. A necessary rea-
son for the decision on Susan is {Ace >55}, which means that she would not be
judged as susceptible to disease if she were younger than 55. The other necessary
reason is { WEIGHT=0VER, BTYPE=A} so the decision on Susan can be flipped by
changing these two characteristics (and this cannot be achieved by changing only
one of them). Indeed, if Susan had WeicaT=NORM and BTyPE=AB, she will not
be judged as susceptible. However, since WEIGHT and BTYPE are discrete vari-
ables, there are multiple ways for changing them and some changes may not flip
the decision (e.g., WEIGHT=UNDER and BTYPE=B).

The notion of a complete reason behind a decision was introduced in [17]
and its prime implicants were shown to be the sufficient reasons for the decision.
Intuitively, the complete reason is a particular condition on the instance that
is both necessary and sufficient for the decision on that instance; see [16]. A
declarative semantics for complete reasons was given in [19] which showed how
to compute them using universal literal quantification. Furthermore, the prime
implicates of a complete reason where shown to be the necessary reasons for
the decision in [18]. Given these results, one would first use universal literal
quantification to obtain the complete reason for a decision and then compute its
prime implicates and implicants to obtain necessary and sufficient explanations.

2 See, e.g., [13,43,48] for some approaches that can be viewed as approximating suffi-
cient reasons and [26] for a study of the quality of some of these approximations.
We will use necessary reasons and contrastive explanations interchangeably in this
paper. Counterfactual explanations are related but have alternate definitions in the
literature. For example, as defined in [5], they correspond to length-minimal nec-
essary reasons; see [18]. But according to some other definitions, they include con-
trastive explanations (necessary reasons) as a special case; see Section 5.2 in [33]. See
also [1] for counterfactual explanations that are directed towards Bayesian network
classifiers and [2] for a relevant recent study and survey.

3
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Necessary and sufficient reasons are subsets of the instance being explained
so each reason corresponds to a set of variable settings (Feature=Value), like
WEIGHT=UNDER and BTYPE=B, which we shall call simple literals. Since nec-
essary and sufficient reasons correspond to sets of simple literals, we will refer
to them as simple or classical explanations. We will show next that these sim-
ple explanations can be significantly improved if the classifier has non-binary
features, leading to more general notions of necessary, sufficient and complete
reasons that provide more informative explanations of decisions.

Consider again the decision on Susan discussed above which had the sufficient
reason {AGE >55, BryPE=A}. Such an explanation can be viewed as a property
of the instance which guarantees the decision. The property has a specific form:
a conjunction of feature settings (i.e., instance characteristics) which leaves out
characteristics of the instance that are irrelevant to the decision (WEIGHT=0VER).
However, the following is a weaker property of the instance which will also trig-
ger the decision: {Ace >55, Brype €{A, B}}. This property tells us that not only
is WEIGHT=OVER irrelevant to the decision, but also that BTYPE=A is not par-
ticularly relevant since BTyPE could have been B and the decision would have
still been triggered. In other words, what is really relevant is that Brype €{A, B}
or, alternatively, Bryre ¢{AB, O}. Clearly, this kind of explanation reveals more
information about why the classifier made its decision. We will later formalize
and study a new class of explanations for this purpose, called general sufficient
reasons, which arise only when the classifier has non-binary features.

A necessary reason for a decision can also be understood as a property of the
instance, but one that will flip the decision if violated in a certain manner [18].
As mentioned earlier, {WEIGHT=0VER, BTYPE=A} is a necessary reason for the
decision on Susan. This reason corresponds to the property (WEIGHT=0VER or
BryrE=A). We can flip the decision by violating this property through changing
the values of WEIGHT and BTYPE in the instance. Since these variables are non-
binary, there are multiple changes (six total) that will violate the property. Some
violations will flip the decision, others will not (we are only guaranteed that at
least one violation will flip the decision). For example, WEIGHT=NORM, BTYPE=0
and WEICHT=UNDER, BTYPE=AB will both violate the property but only the
first one will flip the decision. However, the following weaker property is guar-
anteed to flip the decision regardless of how it is violated: (WEIGHT=0VER or
BrypE €{A, B, AB}). We can violate this property using two different settings
of WeIGHT and BTYPE, both of which will flip the decision. This property cor-
responds to the general necessary reason {WEIGHT=0OVER, BTYPE€{A, B, AB}},
a new notion that we introduce and study later. Similar to general sufficient
reasons, general necessary reasons provide more information about the behavior
of a classifier and arise only when the classifier has non-binary features.

We stress here that using simple explanations in the presence of non-binary
features is quite prevalent in the literature; see, e.g., [4,6,8,18,23,28,35]. Two
notable exceptions are [12,27] which we discuss in more detail later.*

4 Interestingly, the axiomatic study of explanations in [3] allows non-binary features,
yet Axiom 4 (feasibility) implies that explanations must be simple.
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Our study of general necessary and sufficient reasons follows a similar struc-
ture to recent developments on classical necessary and sufficient reasons. In par-
ticular, we define a new quantification operator like the one defined in [19] and
show how it can be used to compute the general reason of a decision, and that
its prime implicates and implicants contain the general necessary and sufficient
reasons. Complete reasons are known to be monotone formulas. We show that
general reasons are fizated formulas which include monotone ones. We introduce
the fixation property and discuss some of its (computational) implications.

This paper is structured as follows. We start in Section 2 by discussing the
syntax and semantics of formulas with discrete variables which are needed to
capture the input-output behavior of classifiers with non-binary features. We
then introduce the new quantification operator in Section 3 where we study its
properties and show how it can be used to formulate the new notion of general
reason. The study of general necessary and sufficient reasons is conducted in
Section 4 where we also relate them to their classical counterparts and argue
further for their utility. Section 5 provides closed-form general reasons for a
broad class of classifiers and Section 6 discusses the computation of general
necessary and sufficient reasons based on general reasons. We finally close with
some remarks in Section 7. Proofs of all results can be found in Appendix A.

2 Representing Classifiers using Class Formulas

We now discuss the syntax and semantics of discrete formulas, which we use to
represent the input-output behavior of classifiers. Such symbolic formulas can be
automatically compiled from certain classifiers, like Bayesian networks, random
forests and some types of neural networks; see [16] for a summary.

We assume a finite set of variables X' which represent classifier features. Each
variable X € X has a finite number of states x1,...,2x,, n > 1. A literal ¢ for
variable X, called X-literal, is a set of states such that § C ¢ C {z1,...,z,}. We
will often denote a literal such as {x1,x3, x4} by x134 which reads: the state of
variable X is either 1 or x5 or x4. A literal is simple iff it contains a single state.
Hence, z3 is a simple literal but x134 is not. Since a simple literal corresponds
to a state, these two notions are interchangeable.

A formula is either a constant T, L, literal £, negation @, conjunction « - 8
or disjunction a+ 8 where «, S are formulas. The set of variables appearing in a
formula A are denoted by vars(A). A term is a conjunction of literals for distinct
variables. A clause is a disjunction of literals for distinct variables. A DNF is a
disjunction of terms. A CNF is a conjunction of clauses. An NNF is a formula
without negations. These definitions imply that terms cannot be inconsistent,
clauses cannot be valid, and negations are not allowed in DNFs, CNFs, or NNFs.
Finally, we say a term/clause is simple iff it contains only simple literals.

A world maps each variable in X to one of its states and is typically denoted
by w. A world w is called a model of formula «, written w = «, iff « is satisfied
by w (that is, « is true at w). The constant T denotes a valid formula (satisfied
by every world) and the constant | denotes an unsatisfiable formula (has no
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models). Formula « implies formula 8, written « = 8, iff every model of « is
also a model of 8. A term 7y subsumes another term 75 iff 7o = 71. A clause o1
subsumes another clause o9 iff 01 = 0o. Formula « is weaker than formula § iff
B E « (hence f is stronger than «).

The conditioning of formula A on simple term 7 is denoted A|r and obtained
as follows. For each state x of variable X that appears in term 7, replace each
X-literal £ in A with T if z € £ and with L otherwise. Note that A|r does not
mention any variable that appears in term 7. A prime implicant for a formula
Ais a term « such that o = A, and there does not exist a distinct term S such
that o E B8 E A. A prime implicate for a formula A is a clause a such that
A |= a, and there does not exist a distinct clause 8 such that A = 8 E a.

An instance of a classifier will be represented by a simple term which contains
exactly one literal for each variable in X. A classifier with n classes will be
represented by a set of mutually exclusive and exhaustive formulas A, ..., A",
where the models of formula A’ capture the instances in the i*" class. That
is, instance Z is in the i*" class iff Z |= A’. We refer to each A’ as a class
formula, or simply a class, and say that instance Z is in class A® when Z = A‘.
Consider the decision diagram on the right which repre-
sents a classifier with three ternary features (X,Y, Z) and
three classes c¢1, ca, and c3. This classifier can be rep-
resented by the class formulas A' = x5 + 23 - y1 - 213,
A? = 23 - 2zp and A3 = x3 - Y93 - 213. This classifier has
27 instances, partitioned as follows: 20 instances in class
c1, 3 in class ¢o and 4 in class c3. For example, instance
T = x3 - ya - 22 belongs to class ¢z since 7 |= A2,

3 The General Reason for a Decision

An operator Va which eliminates the state x of a Boolean variable X from a
formula was introduced and studied in [19]. This operator, called universal literal
quantification, was also generalized in [19] to the states of discrete variables but
without further study. Later, [18] studied this discrete generalization, given next.

Definition 1. For variable X with states x1, ..., x,, the universal literal quan-
tification of state z; from formula A is defined as Vr;- A = Al;-[ ], (xi+Alz;).

The operator V is commutative so we can equivalently write Vz - (Vy - A),
Vy- (Vz- A), Va,y- A or V{z,y}- A. It is meaningful then to quantify an instance
T from its class formula A since Z is a set of states. As shown in [19], the
quantified formula VZ - A corresponds to the complete reason for the decision on
instance Z. Hence, the prime implicants of VZ - A are the sufficient reasons for
the decision [17] and its prime implicates are the necessary reasons [18].

We next define a new operator V that we call a selection operator for rea-
sons that will become apparent later. This operator will lead to the notion of
a general reason for a decision which subsumes the decision’s complete reason,
and provides the basis for defining general necessary and sufficient reasons.
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Definition 2. For variable X with states x1,...,x, and formula A, we define
VA to be Alx; - A.

The selection operator V is also commutative, like V.
Proposition 1. V- (Vy-A) =Vy- (Vz - A) for states x,y.

Since a term 7 corresponds to a set of states, the expression V7 - A is well-defined
just like V7 - A. We can now define our first major notion.

Definition 3. Let T be an instance in class A. The general reason for the de-
cision on instance I is defined as VI - A.

The complete reason VZ - A can be thought of as a property/abstraction of
instance Z that justifies (i.e., can trigger) the decision. In fact, it is equivalent
to the weakest NNF I" whose literals appear in the instance and that satisfies
T ET E AJ[19,18]. The next result shows that the general reason is a weaker
property and, hence, a further abstraction that triggers the decision.

Proposition 2. For instance T and formula A where T = A, we have I =
VI-AEVI-AEA TWFEAonlyifVI-A=VI-A=1)

The next result provides further semantics for the general reason and high-
lights the key difference with the complete reason.

Proposition 3. The general reason VI - A is equivalent to the weakest NNF I’
whose literals are implied by instance T and that satisfies T =T E A.

The complete and general reasons are abstractions of the instance that ex-
plain why it belongs to its class. The former can only reference simple literals
in the instance but the latter can reference any literal that is implied by the
instance. The complete reason can be recovered from the general reason and the
underlying instance. Moreover, the two types of reasons are equivalent when all
variables are binary since Va- A = V- A when z is the state of a binary variable.

We next provide a number of results that further our understanding of general
reasons, particularly their semantics and how to compute them. We start with
the following alternative definition of the operator V z;.

Proposition 4. For formula A and variable X with states 1, ..., 2y, Va;-A is
equivalent to (Alz;) [1;,,(¢;+(Alx;)), where {; is the literal {x1, ..., zo}\{z;}.

According to this definition, we can always express Vz; - A as an NNF in which
every X-literal includes state x; (recall that A|z; and Alz; do not mention vari-
able X). This property is used in the proofs and has a number of implications.?

® For example, we can use it to provide forgetting semantics for the dual operator
§:ci-A_: Va, - A Using Definition 2, we get Tz A = A+ Alz;. Using Proposiﬁion 4,
we get 3z A = Alzi+3,,(z; Alz;). We can now easily show that (1) A = Jzi-A
and (2) ﬁ:cl - A is equivalent to an NNF whose X-literals do not mention state x;.
That is, 3z; can be understood as forgetting the information about state z; from A.
Ihis is similar to the dual operator dz; - A = Vux; - A studied in [?_)1719] except that
Jz; erases less information from A since one can show that A | Jz; - A | Jz; - A.
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When A is a class formula, [19] showed that the application of V& to A can
be understood as selecting a specific set of instances from the corresponding
class. This was shown for states « of Boolean variables. We next generalize this
to discrete variables and provide a selection semantics for the new operator V.

Proposition 5. Let 7 be a simple term, A be a formula and w be a world. Then
wEVT-AiffwE Aandw' E A for any world ' obtained from w by changing
the states of some variables that are set differently in 7. Moreover, w =V 7- A iff
whE A and W E A for any world w' obtained from w by setting some variables
in w to their states in 7.

That is, V7 - A selects all instances in class A whose membership in the class
does not depend on characteristics that are inconsistent with 7. These instances
are also selected by V7 - A which further selects instances that remain in class
A when any of their characteristics are changed to agree with 7.

The complete reason is monotone which has key computational implications
as shown in [17,19,18]. The general reason satisfies a weaker property called
fization which has also key computational implications as we show in Section 6.

Definition 4. An NNF is locally fizated on instance L iff its literals are con-
sistent with Z. A formula is fizated on instance I iff it is equivalent to an NNF
that is locally fizated on T.

We also say in this case that the formula is Z-fixated. For example, if Z = z1-y;-22
then the formula x5 - y1 + 22 is (locally) Z-fixated but x12 - 21 is not. By the
selection semantic we discussed earlier, a formula A is Z-fixated only if for every
model w of A, changing the states of some variables in w to their states in Z
guarantees that the result remains a model of A. Moreover, if A is Z-fixated,
then Z = A but the opposite does not hold (e.g., A =xz1 +y; and Z = z7 - y2).
We now have the following corollary of Proposition 3.

Corollary 1. The general reason VI - A is I-fizated.

The next propositions show that the new operator V has similar computa-
tional properties to V which we use in Section 5 to compute general reasons.

Proposition 6. For state x and literal ¢ of variable X, Ve -4 =1 ifx et
(x=1); elseVa-£= 1. Moreover, Va - A=A if X does not appear in A.

Proposition 7. For formulas «, 8 and state x; of variable X, we have YV -
(a-B) = (Vi a) (Va; - B). Moreover, if variable X does not occur in both «
and 3, thenVa; - (o + ) = (Va; - a) + (Vi - B).

An NNF is V-decomposable if its disjuncts do not share variables. According to
these propositions, we can apply VZ to an V-decomposable NNF in linear time,
by simply applying VZ to each literal in the NNF (the result is V-decomposable).
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4 General Necessary and Sufficient Reasons

We next introduce generalizations of necessary and sufficient reasons and show
that they are prime implicates and implicants of the general reason for a deci-
sion. These new notions have more explanatory power and subsume their classi-
cal counterparts, particularly when explaining the behavior of a classifier beyond
a specific instance/decision. For example, when considering the classifier in Fig-
ure 1b, which is a variant of the one in Figure la, we will see that the two
classifiers will make identical decisions on some instances, leading to identical
simple necessary and sufficient reasons for these decisions but distinct general
necessary and sufficient reasons. Moreover, we will see that general necessary
and sufficient reasons are particularly critical when explaining the behavior of
classifiers with (discretized) numeric features.

4.1 General Sufficient Reasons (GSRs)

We start by defining the classical notion of a (simple) sufficient reason but using
a different formulation than [45] which was the first to introduce this notion
under the name of a Pl-explanation. Our formulation is meant to highlight a
symmetry with the proposed generalization.

Definition 5 (SR). A sufficient reason for the decision on instance Z in class
A is a weakest simple term T s.t. T =1 = A.

This definition implies that each literal in 7 is a variable setting (i.e., character-
istic) that appears in instance Z. That is, the (simple) literals of sufficient reason
T are a subset of the literals in instance Z. We now define our generalization.

Definition 6 (GSR). A general sufficient reason for the decision on instance
T in class A is a term T which satisfies (1) T is a weakest term s.t. T =1 A
and (2) no term 7' satisfies the previous condition if vars(t’) C vars(r).

This definition does not require the GSR 7 to be a simple term, but it requires
that it has a minimal set of variables. Without this minimality condition, a GSR
will be redundant in the sense of the upcoming Proposition 8. For a term 7 and
instance Z s.t. Z |= 7, we will use ZN 7 to denote the smallest subterm in Z that
implies 7. For example, if Z = x5 - y1 - 23 and 7 = 12 - Y13, then ZN7 = 25 - y1.

Proposition 8. Let T be an instance in class A and 7 be a weakest term s.t.
ITETEA If7 is a weakest term s.t. T = 7 = A and vars(t') C vars(r),
then TNt EINT E A. Also, TN 7 is a SR iff such a term 7' does not exist.

According to this proposition, the term 7 is redundant as an explanation in that
the subset of instance Z which it identifies as being a culprit for the decision
(ZN 1) is dominated by a smaller subset that is identified by the term 7 (ZN7’).

Consider the classifiers in Figures 1a and 1b and the patient Susan: AGE >55,
BTyPE=A and WEICHT=0VER. Both classifiers will make the same decision YES on
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Susan with the same SRs: (AGe >55-BTyPE=A) and (AGE >55- WEIGHT=OVER).
The GSRs are different for these two (equal) decisions. For the first classifier, they
are (AGE >55 - BrYPE €{A, B}) and (AGE >55 - WEIGHT=0VER). For the second,
they are (AGe>55 - BryPE€{A,0}) and (AGE>55 - WEIGHT €{OVER, NORM}).
GSRs encode all SRs and contain more information.®

Proposition 9. Let 7 be a simple term. Then T is a SR for the decision on
instance L iff =T N 71" for some GSR 7'.

Consider the instance Susan again, Z = (AGe >55)- (BTyPE=A)- (WEIGHT=OVER)
and the classifier in Figure 1b. As mentioned, the GSRs for the decision on Susan
are 71 = (AGE >55-BryPEE{A,O}) and 75 = (AGE >55- WEIGHT €{OVER, NORM })
so T = ZN1 = (AGE >55-BryPE=A) and 7o = Z"7} = (AGE >55-WEIGHT=O0VER),
which are the two SRs for the decision on Susan.

The use of general terms to explain the decision on an instance Z in class
A was first suggested in [12]. This work proposed the notion of a general PI-
explanation as a prime implicant of A that is consistent with instance Z. This
definition is equivalent to Condition (1) in our Definition 6 which has a second
condition relating to variable minimality. Hence, the definition proposed by [12]
does not satisfy the desirable properties stated in Propositions 8 and 9 which
require this minimality condition. The merits of using general terms were also
discussed when explaining decision trees in [27], which introduced the notion of
an abductive path explanation (APXp). In a nutshell, each path in a decision
tree corresponds to a general term 7 that implies the formula A of the path’s
class. Such a term is usually used to explain the decisions made on instances that
follow that path. As observed in [27], such a term can often be shortened, leading
to an APXp that still implies the class formula A and hence provides a better
explanation. An APXp is an implicant of the class formula A but not necessarily
a prime implicant (or a variable-minimal prime implicant). Moreover, an APXp is
a property of the specific decision tree (syntax) instead of its underlying classifier
(semantics). See Appendix B for further discussion of these limitations.”

4.2 General Necessary Reasons (GNRs)

We now turn to simple necessary reasons and their generalizations. A necessary
reason is a property of the instance that will flip the decision if violated in a cer-
tain way (by changing the instance). As mentioned earlier, the difference between
the classical necessary reason and the generalized one is that the latter comes
with stronger guarantees. Again, we start with a definition of classical necessary
reasons using a different phrasing than [24] which formalized them under the
name of contrastive explanations [32]. Our phrasing, based on [18], highlights a
symmetry with the generalization and requires the following notation.

6 Unlike SRs, two GSRs may mention the same set of variables. Consider the class
formula A = (x1 - y12) + (z12 - y1) and instance Z = z1 - y1. There are two GSRs for
the decision on Z, x1 - y12 and x12 - y1, and both mention the same variables X, Y.

" A dual notion, contrastive path explanation (CPXp), was also proposed in [27].
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For a clause o and instance Z s.t. Z |= o, we will use Z\\o to denote the
largest subterm of Z that does not imply o. For example, if Z = x5 - y; - z3 and
o = x12 + y13 then I\ o = z3. We will also write Z = o to mean that instance Z
implies every literal in clause o. For instance Z = xo -y - 23, we have ZFE=x12+ 413
but Z /= 212 + y23 even though 7 = z12 + yos.

Definition 7 (NR). A necessary reason for the decision on instance I in class
A is a strongest simple clause o s.t. T =0 and (Z\0o) -7 £ A (if we minimally
change the instance to violate o, it is no longer guaranteed to stay in class A).

A necessary reason guarantees that some minimal change to the instance
which violates the reason will flip the decision. But it does not guarantee that all
such changes will. A general necessary reason comes with a stronger guarantee.

Definition 8 (GNR). A general necessary reason for the decision on instance
T in class A is a strongest clause o s.t. TE=o0, (I\o) -7 | 4, and no clause o’
satisfies the previous conditions if vars(c’) C vars(o).

The key difference between Definitions 7 and 8 are the conditions (Z\o) -7 = A
and (Z\\0) -7 = A. The first condition guarantees that some violation of a NR
will flip the decision (by placing the modified instance outside class A) while the
second condition guarantees that all violations of a GNR will flip the decision.
The next proposition explains why we require GNRs to be variable-minimal.
Without this condition, the changes identified by a GNR to flip the decision may
not be minimal (we can flip the decision by changing a strict subset of variables).
For instance Z and clause o s.t. Z = o, we will use Z N o to denote the
disjunction of states that appear in both Z and o (hence, Z N o = o). For
example, if Z = x1 - y1 - 21 and 0 = T12 + Y23 + 21, then ZNo = z1 + 21.

Proposition 10. Let T be an instance in class A and let o be a strongest clause
s.t. TE=o and (Z\0) -7 = A. If 0’ is another strongest clause satisfying these
conditions and vars(c') C vars(c), then T\o' | I\o. Moreover, TNo is a NR
iff such a clause o’ does not exist.

That is, if violating o requires changing some characteristics C' of instance Z,
then ¢’ can be violated by changing a strict subset of these characteristics C.

Consider the classifiers in Figures 1a and 1b which make the same decision,
YES, on Susan (Ace >55, BrypE=A, WEIGHT=0VER). The NRs for these equal de-
cisions are the same: (Ace >55) and (WEIGHT=0VER+ BTYPE=A). The GNRs for
the classifier in Figure la are (AGe >55), (BTYPE €{A, B, AB}+ WEIGHT=0OVER})
and (BtypE €{A, B} + WEIGHT €{UNDER, OVER}). If the instance is changed to vi-
olate any of them, the decision will change. For example, if we set BTYPE to AB
and WEIGHT to NOrM, the third GNR will be violated and the decision on Susan
becomes No. For the classifier in Figure 1b, the GNRs for the decision are differ-
ent: (AGe >55) and (BTYPE €{A, O} + WEIGHT €{NORM, OVER}). However, both
sets of GNRs contain more information than the NRs since the minimal changes
they identify to flip the decision include those identified by the NRs.
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Proposition 11. Let o be a simple clause. Then o is a NR for the decision on
instance I iff o = TN o' for some GNR o’.

Consider the instance Susan again, Z = (AGe >55)- (BTyPE=A)-(WEIGHT=O0VER)
and the classifier in Figure 1b. As mentioned earlier, the GNRs for the decision on
Susan are 0} = (AGE >55) and o) = (BTYPE €{A, O} + WEIGHT €{NORM, OVER}).
Then 01 = ZNo} = (Ace >55) and 02 = ZN oy = (WEIGHT=O0VER + BTYPE=A),
which are the two NRs for the decision on Susan.

GSRs and GNRs are particularly significant when explaining the decisions
of classifiers with numeric features, a topic which we discuss in Appendix C.

We next present a fundamental result which allows us to compute GSRs and
GNRs using the general reason for a decision (we use this result in Section 6).

Definition 9. A prime implicant/implicate ¢ of formula A is variable-minimal
iff there is no prime implicant/implicate ¢ of A s.t. vars(c') C vars(c).

Proposition 12. Let 7 by an instance in class A. The GSRs/GNRs for the
decision on instance I are the variable-minimal prime implicants/implicates of
the general reason VI - A.

The disjunction of SRs is equivalent to the complete reason which is equiv-
alent to the conjunction of NRs. However, the disjunction of GSRs implies the
general reason but is not equivalent to it, and the conjunction of GNRs is im-
plied by the general reason but is not equivalent to it; see Appendix D. This
suggests that more information can potentially be extracted from the general
reason beyond the information provided by GSRs and GNRs.

5 The General Reasons of Decision Graphs

Decision graphs are DAGs which include decision trees [7,9], OBDDs [10], and
can have discrete or numeric features. They received significant attention in
the work on explainable Al since they can be compiled from other types of
classifiers such as Bayesian networks [46], random forests [12] and some types of
neural networks [44]. Hence, the ability to explain decision graphs has a direct
application to explaining the decisions of a broad class of classifiers. Moreover,
the decisions undertaken by decision graphs have closed-form complete reasons
as shown in [18]. We provide similar closed forms for the general reasons in this
section. We first review decision graphs to formally state our results.

Each leaf node in a decision graph is labeled with some class ¢. An internal

node T that tests variable X has outgoing edges X’—SI>T1, ce X’—S”>Tn, n > 2.
The children of node T are T1,...,T, and S1, ..., .S, is a partition of some states

of variable X . A decision graph will be represented by its root node. Hence, each
node in the graph represents a smaller decision graph. Variables can be tested
more than once on a path if they satisfy the weak test-once property discussed

» S ,
next [18,22]. Consider a path ..., T L>Tj, LT ﬂ>T;€, ... from the root
to a leaf (nodes T and T test X). If no nodes between T' and T’ on the path
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test variable X, then {R}; must be a partition of states S;. Moreover, if T is
the first node that tests X on the path, then {S;}; must be a partition of all
states for X. Discretized numeric variables are normally tested more than once
while satisfying the weak test-once property; see Appendix C for an illustration.

Proposition 13. Let T be a decision graph, T be an instance in class ¢, and
Z[X] be the state of variable X in instance I. Suppose A°[T] is the class formula
of T and class c. The general reason VI - A°[T) is given by the NNF circuit3

T if T is a leaf with class ¢
rery=< 41 if T is a leaf with class ¢ # ¢
[I;(e[T5] +€) if T has outgoing edges X5, T;

Here, € is the X -literal {z; | v; € S;} if I[X] € S;, else £ = L.

The following proposition identifies some properties of the above closed form,
which have key computational implications that we exploit in the next section.

Proposition 14. The NNF circuit in Proposition 13 is locally firated on in-
stance Z. Moreover, every disjunction in this circuit has the form £+ A where £

is an X -literal, and for every X -literal £ in A we have ¢! # ¢ and £ =0,

6 Computing Prime Implicants & Implicates

Computing the prime implicants/implicates of Boolean formulas was studied ex-
tensively for decades; see, e.g., [47,29,30]. The classical methods are based on
resolution when computing the prime implicates of CNF's, and consensus when
computing the prime implicants of DNFs; see, e.g., [20,15]. More modern ap-
proaches are based on passing encodings to SAT-solvers; see, e.g., [40,34,28]. In
contrast, the computation of prime implicants/implicates of discrete formulas
has received very little attention in the literature. One recent exception is [12]
which showed how an algorithm for computing prime implicants of Boolean for-
mulas can be used to compute simple prime implicants of discrete formulas given
an appropriate encoding. Computing prime implicants/implicates of NNFs also
received relatively little attention; see [41,18,14] for some exceptions. We next
provide methods for computing variable-minimal prime implicants/implicates of
some classes of discrete formulas that are relevant to GSRs and GNRs.

A set of terms S will be interpreted as a DNF ) __o 7 and a set of clauses S
will be interpreted as a CNF [[ .go. If S; and Sy are two sets of terms, then
S1 xSy ={r -1 |11 €51,72 € Sa}. For a set of terms/clauses S, ©(S5) denotes
the result of removing subsumed terms/clauses from S.

8 An NNF circuit is a DAG whose leaves are labeled with L, T, or literals; and whose
internal nodes are labelled with - or +.
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Algorithm 1 GSR(A) — without Line 10, this is Algorithm 2 PI(A)

Input: NNF circuit A which satisfies the properties in Proposition 14
1: if CACHE(A) # NIL then return CACHE(A)
else if A =T then return {T}
else if A = 1| then return (
else if A is a literal then return {A}
else if A =« - then
S+ ©(GSR(a) x GSR())
else if A = a+ [ then
S + ©(GSR(a) UGSR(B))
9: end if
10: S + (S, ivars(A))
11: CACHE(A) «+ S
12: return S

6.1 Computing General Sufficient Reasons

Our first result is Algorithm 1 which computes the variable-minimal prime impli-
cants of an NNF circuit that satisfies the properties in Proposition 14 and, hence,
is applicable to the general reasons of Proposition 13. If we remove Line 10 from
Algorithm 1, it becomes Algorithm 2 which computes all prime implicants in-
stead of only the variable-minimal ones. Algorithm 2 is the same algorithm used
to convert an NNF into a DNF (i.e., no consensus is invoked), yet the resulting
DNF is guaranteed to be in prime-implicant form. Algorithm 2 is justified by the
following two results, where the first result generalizes Proposition 40 in [37].
In the next propositions, pi(A) denotes the prime implicants of formula A.

Proposition 15. pi(a - 8) = O(pi(a) X pi(B)).

Proposition 16. For any disjunction a+ 3 that satisfies the property of Propo-
sition 14, pi(a + ) = ©(pi(a) U pi(B)).

We will next explain Line 10 of Algorithm 1, S «+ X(S,ivars(A)), which is
responsible for pruning prime implicants that are not variable-minimal (hence,
computing GSRs). Here, A is a node in the NNF circuit passed in the first call
to Algorithm 1, and ivars(A) denotes variables that appear only in the sub-
circuit rooted at node A. Moreover, X(S, V) is the set of terms obtained from
terms S by removing every term 7 € S that satisfies vars(r) D vars(r") and
V N (vars(t) \ vars(r’)) # 0 for some other term 7/ € S.? That is, term 7 will
be removed only if some variable X in wvars(r) \ vars(r’) appears only in the
sub-circuit rooted at node A (this ensures that term 7 will not participate in
constructing any variable-minimal prime implicant). This incremental pruning
technique is enabled by the local fixation property (Definition 4).

Proposition 17. Algorithm 1, GSR(A), returns the variable-minimal prime
implicants of NNF circuit A.

? The condition V N (vars(r) \ vars(r’)) # 0 is trivially satisfied when A is the root
of the NNF circuit since V will include all circuit variables in this case.
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6.2 Computing General Necessary Reasons

We can convert an NNF circuit into a CNF using a dual of Algorithm 2 but the
result will not be in prime-implicate form, even for ciruits that satisfy the prop-
erties Proposition 14.19 Hence, we next propose a generalization of the Boolean
resolution inference rule to discrete variables, which can be used to convert a
CNF into its prime-implicate form. Recall first that Boolean resolution derives
the clause o+ B from the clauses x + « and T+ 8 where X is a Boolean variable.

Definition 10. Let o« = ¢4 + o1, B = 3 + 0o be two clauses where {1 and fo
are X -literals s.t. 01 W= 4o and by = £1. If 0 = (€1 - €2) + 01 + 02 # T, then the

X -resolvent of clauses o and 8 is defined as the clause equivalent to o.

We exclude the cases ¢1 = ¢ and {5 = {1 to ensure that the resolvent is not
subsumed by clauses a and 3. If ¢ = T, it cannot be represented by clause since
a clause is a disjunction of literals over distinct variables so it cannot be trivial.

Proposition 18. Closing a (discrete) CNF under resolution and removing sub-
sumed clauses yields the CNF’s prime implicates.

The following proposition shows that we can incrementally prune clauses that
are not variable-minimal after each resolution step. This is significant computa-
tionally and is enabled by the property of local fixation (Definition 4) which is
satisfied by the general reasons in Proposition 13 and their CNFs.

Proposition 19. Let S be a set of clauses (i.e., CNF) that is locally fizated.
For any clauses o and o’ in S, if vars(c’) C vars(o), then the variable-minimal
prime implicates of S are the variable-minimal prime implicates of S\ {o}.

In summary, to compute GNRs, we first convert the general reason in Propo-
sition 13 into a CNF, then close the CNF under resolution while removing sub-
sumed clauses and ones that are not variable-minimal after each resolution step.

7 Conclusion

We considered the notions of sufficient, necessary and complete reasons which
have been playing a fundamental role in explainable Al recently. We provided
generalizations of these notions for classifiers with non-binary features (discrete
or discretized). We argued that these generalized notions have more explanatory
power and reveal more information about the underlying classifier. We further
provided results on the properties and computation of these new notions.
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A Proofs

Proposition 4
We prove Proposition 4 and 5 first, which do not depend on Propositions 1, 2, and 3.
Proof (of Proposition 4). The proof will use the following observations:

(A) wEz;-Aonlyif w = Alx;
B)w ;- (Alz;) only if w E A

(A) is justified as follows: w = A iff Ajw = T, and (A]z;)|w = Ajw since w = x4;
thus, (Alz;)|lw = T and w = Alz;. (B) is justified as follows: w = A|z; implies
(Alz;)|w =T and w = x; implies Ajw = (A|x;)|w; hence, Alw =T and w E A.

We next prove both directions of the equivalence while noting that ¢; in the
proposition statement is equivalent to T;.

Vo, AR (Alz;) - T1(T7+ (Alz;)). Suppose w = Va;-A. Then w = A-(Alx;)
by Definition 2. If w = x, for some k, then (1) w = (7 + Alx;) for all j # k
since = = 7T; and (2) w | (Tx + Alzg) since w = Alzrgy which follows
from w E A and w | z by (A). Hence, w = (T + Alzg) for all k and,
therefore, w |= [];_;(Tj+(4Alz;)) and w [= (Afz;)-[],.(77+(Al2;)). Hence,
V- A (Alzi) - 1@ + (Alzy)).

(Afi) - T2 (T5 + (Alzy)) |= Vi - A. Suppose w = (Alai) - T1;4; (T + (4lz;))-
If w = 24, then w | A since w | Alz; and given (B). If w £ a;, then w | xy,
for some k # i, and w = Alzy since w = (Tk + (Alzy)), which implies w = A
given (B). Hence, w = A in either case and also w = A - Alz; = Va; - A.
Therefore, (Alz;) - [[,.;(T7 + (Alz;)) E A~ Ala;.

Proposition 5

Proof (of Proposition 5). We first prove the semantics of V7 - A and then V7 - A
by induction on the length of simple term 7.

Semantics of V1 - A.

Base case: 7 = z;.

By definition of V¥, a world w = Va; - A iff w = (Alzi) - [[;4 (i + Aly).
If w = ;, then w = Va; - A iff w E A by observations (A) and (B) in the
proof of Proposition 4. If w & x;, then w = Va; - A iff w = Alz; for all j.
Hence, w = Vz; - Aiff w = A and (w = z; only if w = Alx; for all j). The
condition “w = A|z; for all j” is equivalent to “w’ = A for w’ obtained from
w by changing its state z; if x; # x;.” If w |= x;, the previous property holds
trivially as there is no such w’. Hence, w | Va;- A iff w E A and ' | A for
w’ obtained from w by changing its state x; to any other state if z; # ;.
The semantics of Vx; - A holds.
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Inductive step: 7 = z; - 7.

Suppose the proposition holds for V7' - A. We next show that it holds for
V7 - A. Let I' = V7' - A. By the base case, w = Vz; - I' iff (1) w = I' and
(2) ' | I' for w’ obtained from w by changing its state z; if x; # z;. By
the induction hypothesis, (1) can be replaced by “w = A and v’ E A for
w' obtained from w by changing the states of variables set differently in 7/.”
Moreover, (2) can be replaced by “w’ = A and w” = A for w’ obtained
from w by changing its state x; if z; # z; and for w” obtained from w’ by
changing the states of variables set differently in 7/.” Replacing (1), (2) as
suggested above gives: w E V7 - A iff w = A and 0’ = A for W’ obtained
from w by changing the states of variables set differently in 7. The semantics
of V7 - A holds.

Semantics of V1 - A.

Base case 7 = ;.

By definition of V, w =V, - A iff w = A (Alz;). We next prove: if w = A,
then w = Alz; is equivalent to “w’ = A for w’ obtained by setting X to x;
in w,” which proves the semantics of ¥ x; - A. Suppose w = A. We next show
both directions of the equivalence.

Suppose w = A|z; and let w’ be a world obtained by setting variable X to
x; in world w. Then w’ = A|x; given w = Alz; and since A|z; does not
mention variable X. Hence, w’ = A by observation (B) in the proof of
Proposition 4.

Suppose w’ = A for w’ obtained by setting X to x; in w. Then ' = Alz;
by observation (A) in the proof of Proposition 4. Moreover, w = Alx;
given w’ = A|z; and since A|x; does not mention variable X.

This proves the semantics of Vz; - A.
Inductive step: 7 = z; - 7.

Suppose the proposition holds for V7’ - A. We next show that it holds for
V7-A Let I' =V7' - A. By the base case, w = Va; - I''iff (1) w = I" and
(2) w' E T for v’ obtained from w by setting X to z;. By the induction
hypothesis, (1) can be replaced by “w E A and ' = A for w’ obtained
from w by setting some variables to their states in 7/.” Moreover, (2) can be
replaced by “w’ | A and w” |= A for w’ obtained from w by setting X to
z; and w” obtained from w’ by setting some variables to their states in 7/.”
Replacing (1), (2) as suggested above gives: V7 - A iff w = A and o’ | A
for w’ obtained from w by setting some variables to their states in 7, which
proves the semantics of V7 - A.
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Proposition 1

Proof (of Proposition 1). We have:

Vy - (Vo-A)=Vy-(A-Alz)

= (A-Afz)-((A- Al2)ly)
= (A-Alz) - (Aly - Alz,y)
=(A-Aly) - (Alz - Aly, z)
= (A-Aly) - ((A- Aly)|z)
=(Vy-2)-(Vy-A)lz)

Proposition 2

Proof (of Proposition 2). It suffices to prove that ¥Z - A = VZ - A = A since
T = VI - A [19]. By multiple applications of Definition 2, VZ - A is equivalent
to A- I for some formula I". Thus, VZ - A = A. Moreover, VZ - A =Y T - A by
Proposition 5 (already proven).

Proposition 3

Proof (of Proposition 3). By Proposition 4 (already proven), Vz; - A can be
written as an NNF over formulas that either do not mention variable X or
are X-literals implied by x;. Hence, VZ - A can always be written as an NNF
whose literals are implied by instance Z (by repeated application of the previous
observation). We also have Z = VZ - A = A by Proposition 2. Hence, it suffices
to show that if I" is an NNF such that (1) Z satisfies the literals of I" and
(2) T =T | A, then I' =VT-A. We next prove this by contradiction. Suppose
I' is an NNF that satisfies properties (1) and (2), and I' = VZ-A. Thenw = T’
and w £ VZ - A for some world w. Let w’ be a world obtained from w by
setting some variables in w to their states in Z. Then w’ = I' since Z satisfies all
literals of I" by (1), and Z |= I" by (2). We now have w = I = A by (2), and
W' = I' = A for all such worlds w’, which implies w |= VZ - A by Proposition 5
(already proven). This is a contradiction so I' VT - A.

Proposition 6

Proof (of Proposition 6). If x |= ¢, then V- £ = £-L|lz = - T = (. If z [~ {, then
Ve -l=L-Lla=¢-L = 1.1f X does not appear in A, then Vz- A=A Alz =
A-A=A.
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Proposition 7

Proof (of Proposition 7). For the distribution over conjuncts,

Vai-(a-f)=(a- ) (a-f)lz
— a8 alz; - Al
= (a-alzi) - (8- Bli)
=Nz;-a) (Ya; - B).

For the distribution over disjuncts, suppose variable X does not occur in . Then
Vz; - a = a by Proposition 6. Moreover,

Vai - (a+p) = (a+0) - (a+ )l
= (a+B) - (alz; + Blzi)
= (a+p) - (a+flz)
a+ (a-(Blzi) + (a-B) + (B (Blz:))
a+ (8- (Blr))
Vo, -a+Vaz-B.

The proof is symmetric when X does not occur in 3.

Proposition 9
We prove Proposition 9 first, which does not depend on Proposition 8.

Lemma 1. Let T be an instance, 7 be a simple term and 7" be a GSR for the
decision on Z. Then Tt =Z N7 iff T =7 = 7' and vars(t) = vars(r’).

Proof. Let T be an instance, 7 be a simple term and 7’ be a GSR for the decision
on Z. We next prove both directions of the equivalence.

T=IZN7 onlyifZ 7 7 and vars(t) = vars(r’).
Suppose 7 = Z N 7. Recall that Z N 7" denotes the smallest subterm in
7 that implies 7. Hence, Z = Z N7 | 7 and Z = 7 E 7. Moreover,
vars(Z N 7') = vars(r’") by definition of N so vars(r) = vars(r’).

IE7E 7 and vars(t) =vars(r’) only if r =Z N 7.
Suppose Z = 7 = 7" and vars(r) = vars(r’). Since Z = 7 |= 7’ and term T
is simple, then (1) 7 is a subterm in Z and (2) 7 implies 7. It then suffices to
show that no strict subset of 7 satisfies (1) and (2). Since vars(r) = vars(t’),
and vars(ZN1') = vars(r’) by definition of N, we get vars(t) = vars(ZNT').
Hence, no strict subset of 7 satisfies (1) and (2),so 7 =Z N 7.

Proof (of Proposition 9). Let T be an instance and 7 be a simple term. Given
Lemma 1, it suffices to show that 7is a SRiff Z = 7 = 7/ and vars(r) = vars(r’)
for some GSR 7/. Recall that Tisa SRiff (1) ZErEAand 2)7ET'E A
for simple term 7" only if 7 = 7”/. We next prove both directions of equivalence.
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Tisa SRonly if T = 7 = 7" and vars(r) = vars(r’) for some GSR 7.
Suppose 7 is a SR. Then Z =7 = A and 7 = 7”7 |= A for simple term 7"
only if 7 = 7". If 7 is a GSR, then 7 |= 7 |= 7 and vars(r) = vars(r) so the
result holds trivially. Suppose 7 is not a GSR. By definition of a GSR and
T E 7 E A, there must exist a GSR 7/ such that 7 7/ = A and 7 # 7.
Since 7 = 7/, vars(r') C vars(t). Moreoever, by Proposition 8, ZN 7' = A
and Z N7’ is a simple term. Therefore, vars(Z N 7') = vars(t') C vars(r).
Since vars(ZN71') C vars(r) and both ZN 7" and 7 are simple terms implied
by Z, we get 7 | Z N7 = A. Since 7 is a SR, we now have 7 = TN 7/, so
vars(t') = vars(t). Hence, T = 7 = 7 and vars(t) = vars(r’) for GSR 7.

T &7 E 7' and vars(r) = vars(r’) for some GSR 7’ only if 7 is a SR.
Suppose Z = 7 = 7/ and vars(t) = vars(r') for some GSR 7’. By definition
of a GSR, 7 = A and, hence, (1) Z = 7 E 7 E A. Suppose now that
TE T E Aand 7 # 7" for some simple term 7”. We will next show a
contradiction which implies (2) 7 = 77 | A only if 7 = 7 for any simple
term 7”. Let 7" be the weakest simple term satisfying our supposition. We
then have vars(r”) C wvars(r). Moreover, 7/ must be a SR. By the first
direction, there exists a GSR 7" where vars(7"") = vars(r") C vars(r) =
vars(r"). Hence 7’ is not variable-minimal (compared to 7"”") so it cannot be
a GSR, a contradiction. Hence, (2) holds. Given (1) and (2), 7 is a SR.

Proposition 8

Proof (of Proposition 8). Suppose Z is an instance in class A and 7 is a weakest
term s.t. 7 = 7 = A. We next prove both parts of the proposition.

Part 1. Suppose 7’ is a weakest term s.t. Z = 7' = A and vars(7') C vars(7).
We will next show ZN7EZNT E A. Since Z =7 and Z = 7/, then Z |= £ for
every literal £ in 7 or 7. Hence, ZN 7 is the subset J of Z such that vars(J) =
vars(t) and Z N7’ is the subset J’ of Z such that vars(J’) = vars(r’). Since
vars(t') Cvars(t), vars(J') C vars(J) and, hence, ZNT=J EJ =IN7.
Moreover, since ZN7 E7 and 7 E A, weget ZNTEZINT E A.

Part 2(a). Suppose 7' is a weakest term s.t. Z = 7/ | A and vars(r’) C
vars(t). By Part 1, Z=Z N7 EZNT |E A. Hence, ZN 7 is not a SR since
IN7 is weaker than ZN7, yet ZEZINT E A.

Part 2(b). Suppose there is no weakest term 7' st. Z E 7 E A and
vars(t’) C vars(r). Then 7 is a GSR. By Proposition 9, Z N 7 is a SR.

Proposition 11

We prove Proposition 11 first, which does not depend on Proposition 10.

Lemma 2. Let Z be an instance, o be a simple clause, and o’ be a GNR for the
decision on L. Then o =TI No' iff TE=o | o' and vars(c) = vars(a’).

Proof. Suppose T is an instance, o is a simple clause, and ¢’ is a GNR for the
decision on Z. We next prove both directions of the equivalence.
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o=ZINdo onlyif Z o =o' and vars(o) = vars(a’).
Suppose 0 = ZNo’. Recall that ZM ¢’ denotes the disjunction of states that
appear in both Z and o’. Therefore, we have ZE=Z N o' and ZN o' = o,
which implies Z = o = ¢’. Since ¢’ is a GNR, we have Z = ¢’. Therefore,
vars(Z No') = vars(a’), so vars(c) = vars(a’).

I E o E o' and vars(o) = vars(c’) only if e =Z N o’.
Suppose Z = o = o' and vars(c) = vars(o’). Since o is a simple clause
and Z = o, o is a disjunction of some states S in Z. By definition of N,
Z N o' is a disjunction of some states S’ in Z. Since o | ¢/, S C S’. Since
vars(o) = vars(a’), S = S’. Hence, c =ZNo’.

Proof (of Proposition 11). Let instance Z be in class A and o be a simple clause.
By Lemma 2, it suffices to show that o is a NR iff Z =0 | ¢* and vars(o) =
vars(c*) for some GNR o*. Recall that o is a NR for the decision on Z iff
(1) ZEo and (Z\o) -7 [~ A and (2) a simple clause ¢’ satisfies the previous
condition and ¢’ = o only if 0 = o’. We will reference (1) and (2) next as we
prove both directions of the equivalence in Proposition 11.

ois a NR only if Z = 0 |E o* and vars(o) = vars(c*) for some GNR o*.
Suppose o is a NR. We prove this direction by finding a GNR o¢* that
satisfies the properties above. Given (1) and (2), there is no simple clause ¢’
st. ZE=o', (Z\o') -0’ £ A, o' |= o and o’ # o (equivalent to vars(c’) C
vars(o)). Hence, there is no GNR ¢” such that vars(c”) C vars(o). Next,
since (Z\0) - & £ A, there is a world w such that w = (Z\0) -7 and w [~ A.
Our goal is to construct a clause o’ such that the only world that satisfies
(Z\o") -0’ is w. This gives us (Z\\¢')-0’ = A. Then, either ¢’ is a GNR, or o
is subsumed by some GNR. If we can find such a clause ¢/, we can also find
the sought GNR ¢* that finishes this direction of the proof. This is shown
next. Consider the clause ¢’ equivalent to w \ (w\\¢). Note that w = (Z\\0)
and w = 7 where Z = 0. Tt follows that ¢’ is equivalent to the negation of
a conjunction of literals in w whose variables are mentioned by o. Every X-
literal ¢ in ¢’ is entailed by an X-literal £ in o because £’ contains all states of
X but the one from w and w = . Thus, Z = ¢’. Then (Z\¢’)-0’ = (Z\ o) 0,
and the only model of (Z\\¢) - 0’ is w. Therefore, (Z\\0') - o’ = A. Note that
vars(o’) = vars(o), and we already showed that there is no GNR ¢” such
that vars(c”) C vars(o). Thus, either ¢’ is a GNR, in which case we let
o* =o', or ITEo* | o and vars(c*) = vars(c’) = vars(o) for some GNR
o*. Either way, o = o* follows from vars(o) = vars(c*), Z =0 and T |=o™*.

T E o = o' and vars(o) = vars(o’) for some GNR o’ only if o is a NR.
Suppose Z = o = ¢’ and vars(o) = vars(c’) for some GNR o’. We next
prove (1) and then prove (2). Since ¢’ is a GNR, (Z\\¢') -0/ = A. Moreover,
IN\o = I\ o’ since vars(c) = vars(c’), T =0 and T = o’. We also have
o' =7, given o |= o/, which implies (Z\\¢') -0’ = (Z\\0) - 7. Therefore, w =
(Z\o")-0’ E Aonlyifw | (Z\\0)-7 and w |= A, which implies (Z\\0)-7 }~= A.
Together with Z = o, this gives (1). We prove (2) by contradiction. Suppose
(2) does not hold. Then there exists a NR ¢’ such that ¢” |= 0 and ¢” # o,
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so vars(c”) C vars(o). By the first direction, there exists a GNR ¢ such
that vars(c”") = vars(o”) C vars(c) = vars(c’). This is a contradiction

since ¢’ is a GNR. Thus, (2) holds.

Proposition 10

Proof (of Proposition 10). Let Z be an instance in class A and o be a strongest
clause s.t. ZF=0 and (Z\\0) -7 = A. We next prove both parts of the proposition.

Part 1. Suppose ¢’ is a strongest clause s.t. Z = o’ and (Z\¢') - o/ = A
and vars(c’) C vars(o). We next show that Z\\o’ = Z\\o. Since Z = ¢ and
T E o/, every literal £ in o or o’ satisfies Z |= £. Therefore, Z\\o is the subset
J of Z such that vars(J) = vars(Z) \ vars(c) and Z N ¢’ is the subset J' of
7 such that vars(J') = vars(Z) \ vars(c’). Since vars(o’) C vars(o), we have
vars(J) Cvars(J') and, hence, Z\o' = J' = J = I\o.

Part 2(a). Suppose there is no strongest clause o’ s.t. Zf=0’ and (Z\0') -0’ |=
A and vars(o’) C vars(c). Then o is a GNR. By Proposition 11, Z( o is a NR.

Part 2(b). Suppose ¢’ is a strongest clause s.t. Z = ¢’ and (Z\\¢') -0’ = A
and vars(c’) C vars(o). Since Z =0, Z =o', and vars(c’) C vars(o), we have
INo' E=INoand Z\o' =ZI\(ZNo'). Since o’ =ZNo’ and (Z\o') -0’ |= A,
we have (Z\(Z N ¢’))-ZNo’ = A. Hence, Z N o is not a NR because Z N ¢’ is
stronger than ZN o, yet ZE=Z N o', and (Z\(ZN0o’))-ZNo’ £ A.

Proposition 12

Lemma 3. Let A be a formula with discrete variables and o1,...,0, be the
prime implicates of A. Then A is equivalent to [[;_, o;. That is, A is equivalent
to the conjunction of its prime implicates.

Proof. We prove both directions of the equivalence. A |= [, o; since A |= o,
for all i. We next prove that [[, o; = A by contradiction. Let w be a world s.t.
wE [, 0i but w £ A. Then w |= A and, hence, A = @. Since @ is a clause,
it must be subsumed by some prime implicate o;. Hence, w |= 0; |= @ which is
a contradiction.

Proof (of Proposition 12).

We first prove the part about GSRs, then the one for GNRs.

GSRs are the variable-minimal prime implicants of VZ - A. We prove
two directions next.

All variable-minimal prime implicants of VZ - A are GSRs.
Let 7 be a variable-minimal prime implicant of ¥Z - A. By Proposition 3, it
suffices to prove (1) 7 is a weakest term such that Z = 7 = A and (2) no
term 7/ satisfies the previous condition if vars(r’') C vars(r). We prove these
next.
(1) We have 7 =VZ - A |= A by Proposition 2 and given that 7 is a prime
implicant of VZ - A. We next prove Z |= 7 by contradiction.
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Suppose Z [~ 7. Then T = ¢ for some X-literal £ in 7. Let ¢/ = (U {Z[X]}
where Z[X] is the state of variable X in Z. Consider the term 7/ obtained from
7 by replacing literal £ by ¢/. Then the models of 7/ are the models of 7 plus
the worlds w’ obtained from a model w of 7 by setting the value of variable X
to Z[X]. If we can prove w’ |= VI - A, then it follows that 7/ is an implicant of
VZ-A, which gives us a contradiction since 7 is a prime implicant and 7 |= 7’
We have w’ = A by Proposition 5 and since w = 7 = VZ - A. Moreover, for
any world w” obtained from w’ by setting some variables to their states in
Z, w" can also be obtained from some model of 7 by setting some variables
to their states in Z. Hence, by Proposition 5, w” = A. Proposition 5 further
tells us that w’ = VZ - A. Thus, 7 = 7 = VZ-A and 7 # 7/, which is a
contradiction since 7/ is a prime implicant. Hence, Z = 7.
We now have Z = 7 = A. To prove (1), we need to prove that 7 is the weak-
est term satisfying the previous property. We prove this by contradiction.
Suppose Z =7 |= 7 = A and 77 # 7 for some term 7'. Let w be a world
such that w = 7" = A. Since 7 |= 7/, all literals in 7 are consistent with Z.
Therefore, w’' = 7 = A for any world w’ obtained from w by setting some
variables in w to their states in Z. By Proposition 5, w = VT - A, which
means all models of 7/ are models of VZ - A, so 7/ is an implicant of VI - A.
This is a contradiction since 7 is a prime implicant of ¥Z - A. Hence, 7 must
be a weakest term satisfying Z |= 7 = 4, so (1) holds.
When proving (1), we did not use the variable-minimality of 7. Hence, we
make the following observation which we use later in the proof: (A) every
prime implicant 7 of VZ - A satisfies Z |= 7 = A.
(2) We prove this by contradiction. Suppose there exists a weakest term 7/
satisfying Z = 7/ = A and vars(7') C vars(r). Since Z |= 7/, all literals in 7/
are consistent with Z. Therefore, for a world w = 7' = A, every w’ obtained
from w by setting some variables in w to their state in Z satisfies w’ = 7' | A.
By Proposition 5, 7/ is an implicant of VZ- A. Since vars(7') C vars(r), there
is a prime implicant 7 of VZ - A satisfying vars(r") C vars(r') C vars(r).
This is a contradiction since 7 is variable-minimal. Hence, (2) holds.

All GSRs are variable-minimal prime implicants of VZ - A.
Let 7 be a GSR. We will prove (1) 7 is a prime implicant of VZ - A and
(2) there is no prime implicant 7/ of VT - A satisfying vars(r’) C vars(r).
(1) Since 7 is a GSR, 7 is a weakest term such that Z = 7 = A. Therefore,
all literals in 7 are consistent with Z. Thus, for a world w | 7 |E A4, every
world w’ obtained from w by setting some variables in w to their states in Z
satisfies w’ = 7 |= A. By Proposition 5, w = VT - A, so 7 is an implicant of
VZI-A. To prove (1), we next show that 7 is prime by contradiction. Suppose
7 is not prime. Then there must be a prime implicant 7/ of VT - A satisfying
T =7 EVI-Aand 7 # 7. By observation (A) in the first direction, 7/
satisfies Z = 7/ = A. This is a contradiction since 7 is a GSR but not the
weakest given 7 |= 7 = 7' = A. Hence, 7 is prime, so (1) holds.
(2) We prove this by contradiction. Assume (2) does not hold. Then there
are some prime implicants 7/ of VZ - A satisfying vars(t’) C vars(r). Let 7"
be a variable-minimal prime implicant among all such prime implicants 7’.
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By the first direction, 7”7 is a GSR, which implies 7 is not a GSR because 7
is not variable minimal. This is a contradiction, so (2) holds.

GNRs are the variable-minimal prime implicates of ¥Z-A. We prove
both directions next.

All variable-minimal prime implicates of VZ - A are GNRs.
Let o be a variable-minimal prime implicate of VI - A. Our goal is to prove
(1) o is a strongest clause satisfying Z F= o and (Z\0) -7 = A and (2) no
clause o’ satisfies the previous condition if vars(c’) C vars(o).
(1) We first prove Z = 0. Assume the opposite: there is an X-literal £ in o
such that Z (£ £. Let ¢’ be a clause obtained from ¢ by removing ¢. If we
show VI - A = ¢/, we get a contradiction because o is a prime implicate of
VZ-A and ¢’ = o. This would prove T F=o.
We show VI - A |= ¢’ by showing VZ - A [~ o is impossible. VZ - A }~ o
only if w EVZ-A = o and w £ o for some world w (recall, o is a prime
implicate of VZ - A). Such a world w satisfies w |= ¢ (since ¢ is the only
distinction from ¢ and ¢’) and, hence, w |= ¢’. If such a world w exists, let
w’ be a world obtained from such a w by setting variable X to its state in Z.
Note that ¢’ does not mention variable X, so w’ = 0/. We have w’ = A by
Proposition 5 since w = VZ - A. Moreover, for any world w” obtained from
w’ by setting some variables to their states in Z, w” can also be obtained
from w by setting some variables to their state in Z. Hence, by Proposition 5,
Ww"” = A for all such w”, which means ' = VZ - A. Finally, ' [~ o since
W' = o’ and w’ j~ £. This is a contradiction since VZ - A = ¢. Hence, no such
world w exists, which shows VZ - A }£ ¢’ is impossible. Thus, VI - A = o,
which gives us another contradiction. Hence, Z = o.
We did not use the fact that o is variable-minimal when proving Z = o.
Therefore, we have the following observation which we use later in the proof:
(B) T |= o holds for any prime implicate o of VT - A.
We next prove (Z\\0) -7 = A. Since T =0, vars(Z\o) = vars(Z) \ vars(o).
Let w be a world such that w = (Z\o) - 7. We next prove w = A by
contradiction. Assume w = A. Then for every world w’ obtained from w
by setting some variables to their states in Z, if w’ # w, then o’ | o
because Z =0 and w = (Z\\0). By observation (B) above, all literals in every
prime implicate of VZ - A are consistent with Z. Then, consider any w’ # w,
which immediately implies w’ = 0. w’ must satisfy all prime implicate of
VI - A. Otherwise, since the subset of w’ that disagrees with Z mentions
fewer variables than o, o cannot be a variable-minimal prime implicate. By
Lemma 3, since w’ satisfies all prime implicate of VZ - A, w’ = VZ - A for all
such w’ # w. Since w’ = A and w = A, by Proposition 5, w = VZ - A, which
means w |= o. This is a contradiction, since w = 7. Hence, w = A, which
implies (Z\\0) - 7 = A.
We now prove that o is a strongest clause satisfying Z}=0 and (Z\\0)-7 = A4,
which finishes the proof of (1). We prove this by contradiction. Assume there
is a clause o’ such that Z =o', (Z\o') -0/ = A, ¢’ | o, and o' # 0.
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If we prove ¢’ is an implicate of VI - A, we get a contradiction. Consider
w VI A If we prove w |= o/, then VZ - A |= o’ follows. Assume w £ o,
ie., w | o/. Let w be a world obtained from w by setting all variables
mentioned by w but not by ¢’ in w to their states in Z. Then, v’ = o’
since the variables mentioned by ¢’ are unchanged. Moreover, ' = (Z\¢')
since Z =0/, so ' = (Z\¢') - o/ = A. However, by Proposition 5, w’ = A
because w = VZ - A. This is a contradiction, so w |= o', which shows o is
an implicate. Hence, (1) holds.

In the previous paragraph, we proved a property which we use later in the
proof: (C) Every clause o’ satisfying Z = ¢/ and (Z\¢') - o/ A is an
implicate of VT - A.

(2) We prove this by contradiction. Assume there is a strongest clause o’
that satisfies Z = o/, (Z\0') - o’ |= A, and vars(o’) C vars(c). By property
(C) above, ¢’ is an implicate of VT - A. Since vars(a’) C vars(c), o cannot
be variable-minimal, which is a contradiction. Thus, (2) holds.

All GNRs are variable-minimal prime implicates of VZ - A.

Let o be a GNR. We next prove (1) o is a strongest clause satisfying VZ-A |=
o and (2) there is no clause o’ such that vars(o’) C vars(o) and o’ satisfies
the previous condition, i.e., ¢’ is a prime implicate of V7 - A.

(1) We first prove that VZ-A |= o, then prove o is the strongest such clause.
Consider w = VT - A. If we prove w |= o, then VZ - A |= o follows. Assume
w £ o, ie.,w E 7. Let w’ be a world obtained from w by setting all variables
mentioned by w but not by ¢ in w to their states in Z. Then, w’ = 7 since
the variables mentioned by o are unchanged. Moreover, w’ = (Z\\o) since
TFo0,s0w |=(I\0)-7 = A since o is a GNR. However, by Proposition 5,
w' = A because w = VZ-A. This is a contradiction, so w |= o, which implies
VI -AEo.

We next prove o is the strongest clause satisfying VZ - A & o, which fin-
ishes the proof of (1). Assume o is not the strongest, which means there
is a clause o’ satisfying VZ - A = o/ = o. Let ¢’ be the weakest such
clause, i.e., ¢’ is a prime implicate of VZ - A. If ¢’ is not variable-minimal,
or if vars(o’) C vars(c), then there must exist a variable-minimal prime
implicate of VZ - A that mentions no more variables than ¢’. By the first di-
rection, this variable-minimal prime implicate is a GNR, which means there
is a GNR that mentions fewer variables than o. Therefore, ¢ cannot be
a GNR, which is a contradiction. Hence, ¢ must be variable-minimal and
vars(c') 2 vars(c). Since o’ | o, we have vars(c’) = vars(o). By the first
direction, since ¢’ is a variable-minimal prime implicate of VZ - A, ¢’ is a
GNR. This is contradiction since o is a GNR and ¢’ |= o, so (1) holds.

(2) We prove this by contradiction. Assume there are some clauses o’ that
are prime implicates of VZ- A and vars(o’) C vars(c). Let 0" be a variable-
minimal prime implicate among those prime implicates. By the first direc-

tion, ¢’ is a GNR that mentions fewer variables than ¢. This is a contradic-
tion since o is a GNR. Hence, (2) holds.
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Proposition 13

The proof of Proposition 13 uses the next two lemmas which we state and prove
first.

Lemma 4. Let o be an NNF and £ by an X-literal. If ¢ |= ' for every X -literal
¢ that occurs in « then

Vo, - (a+€) =Va;-a+Va; L
Proof. We consider two cases.

Case z; = ¢.
Then Va; - (a+0) = (a+0) - (a|z; + lz;) = (a+0) - (a|zi+ T) =a+ £ =
a+Va; - £. We next show Va; -a = a. If £ |= ¢ then x; = . Hence,
a = alx; since alz; is obtained by replacing every X-literal ¢ in o« with
T. We now have a |= « - alz; and, hence, a = « - alz; = Va; - a. Thus,
Vo, - (a+l) =Va;-a+Va; - L.

Case z; [~ ¢.
Since Va;-£ = £-f|z; = £- L = 1, it suffices to show Vz;- (a+£) = Vx;-a. We
have Vz;-(a+£) = (a+£)-(a|lz; +{|z;) = (a+€)-(a|zi+ 1) = (a+£) -a|z; =
(a-alz;)+ (£-alz;) =V -a+ (£-alz;). We next show that £-alz; = Va; -«
which finishes the proof. We have a|z; = «o|z; for all z; |= £ since £ |= ¢’ for
every X-literal ' in ov. Hence, C-afw; = 30, o(zj-ofws) =32, (x5 alz;) =

ij|:e(xj -a) = £ - a which implies ¢ - a|z; | a-alr; =V, - a.

Lemma 5. The formula of class ¢ in decision graph T is equivalent to an NNF
AC[T] defined as follows:

T if T has class c
AT =< L if T has a class ¢’ # ¢
[[;(A°[T3]+¢)  if T has edges X5, T;

where ¢ is the X -literal {z;|z; € S;}.
Proof. This result is proven in [18].

Proof (of Proposition 13). We will show how to compute the general reason
VI - A°[T] by using the definition of class formula A°[T] as given by Lemma 5.
By Proposition 7, V distributes over the and-nodes of A¢[T]. Every disjunction
in this NNF has the form A°[T};]+¢ where ¢ = {x;|z; ¢ S;}is an X-literal. Every
X-literal in the NNF A°[T}] has the form ¢ = {z;|z; ¢ S}.}, where S}, C S, by
the weak test-once property. Hence, ¢ = '. Thus, by Lemma 4, ¥ distributes over
the or-nodes of A¢[T]. Hence, we can compute VZ - A°[T] by simply applying V¥ Z
to the literals of A°[T]. If we do this using Proposition 6, we get the closed-from
of VI - A¢[T] as shown in Proposition 13.
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Proposition 14

Proof (of Proposition 14). The given formula for the general reason has no nega-
tions so it is an NNF. Every X-literal in this NNF has the form ¢ = {x;|z; € S;}
where Z[X] ¢ S;. Hence, Z[X] |= ¢ which implies Z |= ¢. Thus, every literal in
the NNF is consistent with instance Z.

Every disjunction in this NNF has the form I'°[T};]+¢ where ¢ = {z;|z; € S;}
is an X-literal. Every X-literal in the NNF I"¢[T}] has the form ¢ = {z;|x; ¢ S} },
where S, C S; by the weak test-once property. Hence, ¢ |= ¢ and ¢ # ¢'.

Proposition 15
Proof (of Proposition 15). We prove the two directions.

7 € pi(a - B) ounly if 7 € S(pi(a) x pi(B)). Suppose 7 € pi(« - f); that is,

TEa - fand 7 E 7' | a- B for term 7/ only if 7 = 7'. It suffices to show
(1) 7 € pi(er) x pi(B) and (2) 7 |= 7" € pi(«) x pi(B) only if 7 = 7.
Let 7o be the weakest term such that 7 |= 7, |= o and define 73 analogously.
We next show that 7, € pi(a), 78 € pi(8) and 7 = 7, - 73 which implies (1).
Suppose 7, € pi(a): 7o E 7., = a and 7, # 7/ for some term 7.,. This
contradicts the definition of 7, so 7, € pi(«). We can similarly show 75 €
pi(B). Finally, if 7 # 74 - 75, then 7 & pi(a - ) since 7 = 7o - 73 E a - 6,
a contradiction, so 7 = 7, - 73. Hence, (1) holds. Suppose now (2) does not
hold: 7 |= 7’ € pi(a) x pi(B) and 7 # 7' for some term 7'. Let 7/, € pi(«)
and 75 € pi(8) such that 7" = 7/, -75. Then 7 = 7' = 7/, - 75 = o - § and
T # 7' which is a contradiction with 7 € pi(a - 8). Hence, (2) holds and we
have 7 € ©(pi(a) x pi(B)).

7 € O(pi(a) x pi(B)) only if 7 € pi(a - B). Suppose 7 € S(pi(a) x pi(B)):

7 € pi(e) x pi(B) and 7 = 7’ € pi(a) x pi(B) only if 7 = 7. We show
()7Ea-Band (2) 7 E7 = a- B for term 7 only if 7 = 7.
Let 7 = 7, - 73 where 7, € pi(e) and 73 € pi(8). Then 7 = a - 8 which
establishes (1). Suppose (2) does not hold: 7 = 7" = a- § and 7 # 7’ for
some term 7. Let 7/ be the weakest term satisfying the previous property.
Then 7/ € pi(a - §). Let 7/, be the weakest term such that 7/ = 7/, = «
and define 75 analogously. Then 7, € pi(a), 75 € pi(8) and 7" = 7, - 74 as
shown in the first direction. Hence, 7 = 7/ € pi(a) x pi(8). Since 7 # 7/, we
get a contradiction with 7 € &(pi(a) x pi(8)). Hence, (2) holds and we have
T € pi(a- B).

Proposition 16

Proof (of Proposition 16). For literal ¢, pi(¢) = {¢}. Hence, what we need to
show is pi(¢ 4+ B) = ©({£} U pi(5)). We next prove both directions.

T € pi(£ + B) only if 7 € ©({¢} Upi(B)). Suppose 7 € pi({ + B): 7 = £+ 8 and
T E 7' = {+p for term 7/ only if 7 = 7. We need to show (1) 7 € {¢}Upi(B)
and (2) 7 =7 € {{} Upi(B) only if 7 = 7.
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Our goal is to first prove either 7 = ¢ or 7 |= 3, and then prove 7 € {{} U
pi(8). To prove either 7 |= £ or 7 | 8, showing 7 (£~ ¢ only if 7 |= 8 suffices.
Suppose 7 £ £. Assume there exists a world w such that w =7 E £+ 3
but w £ B. If we find a contradiction, then all models of 7 are models of
B, i.e. 7 = B, which is exactly what we want. Since 7 £ ¢, either 7 does
not mention the variable of £ or 7 = ¢ for £ = ¢ and ¢/ # {. Both cases
suggest there exists a world w’ obtained from w by setting the state of the
variable of ¢ to some state not in £ such that ' = 7, W’ }£ 8 by the second
property in Proposition 14, and w’ }£ £. That is, o’ | 7 but w’ £ f and
w' L, so T £ £+ B. This is a contradiction. Thus, w = 7 only if w | 3,
so 7 = . Therefore, T |£ ¢ only if 7 = 8. Equivalently, 7 = £ or 7 = 8. We
can now prove (1) by considering two cases: 7 = £ and 7 £ £. If 7 |= £, then
T =L |= £+ 5 where £ is a term, so 7 = ¢, which means 7 € {¢{} Upi(B). If
Tl then T = . Forany term 7/ | B, if r =7/, then T =7 E f E {+ 0,
which implies 7 = 7/. Thus, 7 € pi(8). Hence, (1) must hold.

Suppose (2) does not hold: 7 = 7" € {¢} Upi(B) for a term 7/ # 7. Then
7' L+ B since 7' € {£} Upi(B). We now have 7 = 7' = £+ 3 and 7 # 7,
which is a contradiction with 7 € pi(¢ + (). Hence, (2) must hold.

7 € 6({f} Upi(B)) only if T € pi(£ + B). Suppose 7 € S({f} Upi(B)): T €

{£}Upi(B), and 7 |= 7" € {£}Upi(B) only if 7 = 7/. We next show (1) 7 = ¢+
and (2) T =7 E {4+ B for term 7' only if T = 7.
If 7 € {{}, then 7 = £. If 7 € pi(B), then 7 = B. Thus, 7 = £ + § follows
from 7 € {¢} U pi(B), which establishes (1). Suppose (2) does not hold:
TET E{+ P and 7 # 7/ for some term 7'. Let 7' be the weakest term
satisfying the previous property. Then 7" € pi(£ + ). By the first direction,
7 e lUpi(B8), so T = 7 € LUpi(B) and T # 7/, which is a contradiction.
Hence, (2) holds and we have 7 € pi(¢ + ).

Proposition 17

Lemma 6. Let v be a node in the NNF passed to Algorithm 1, GSR(.). The
terms in GSR(7y) are implicants of .

Proof. The proof is by induction on the structure of the NNF passed to Algo-
rithm 1.

Base case: «y is a literal or constant. This case is immediate.

Inductive step: v = 3. By the induction assumption, GSR(«) are implicants
of @ and GSR(S) are implicants of 5. For any 71 € GSR(«) and 75 € GSR(S), we
have 7 - 75 = - s0 S = GSR(a) x GSR() are implicants of «- 5. Algorithm 1
returns a subset of S so the result holds.

Inductive step: v = o + £ where £ is a literal. By the induction assumption,
GSR(«) are implicants of o and GSR(¢) is the implicant of ¢. Then GSR(«) U
GSR(¢) are implicants of « + ¢, since every implicant of « or ¢ implies « + £.
Algorithm 1 returns a subset of S so the result holds.

Proof (of Proposition 17).
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Let A be the NNF passed in the first call GSR(A) to Algorithm 1. We next

prove two directions.

First direction: If 7 is a variable-minimal prime implicant of A, then 7 €
GSR/(A). We prove this by contradiction.

We first note that Algorithm 1, GSR(A), without Line 10 (variable minimiza-
tion) corresponds to Algorithm 2, PI(A), which computes the prime implicants
of A. Hence, we will say Algorithm 2 to mean Algorithm 1 without Line 10.

Suppose now that 7 is a variable-minimal prime implicant of A and 7 ¢
GSR(A). Since 7 is a prime implicant of A, it must be equivalent to the con-
junction of some terms S* constructed by Algorithm 2, where at least one of
these terms is dropped on Lines 6, 8 or 10 of Algorithm 1. By Lemma 6, for
each node 7 of the NNF A, GSR(v) are implicants of . Therefore, no prime
implicant of v can be subsumed by any distinct term in GSR(y). Thus, one of
the terms 7* in S* must have been removed by variable minimization on Line 10
of Algorithm 1; that is, not by the subsumption checks on Lines 6 or 8 of the
algorithm. Let A* be the NNF node where the term 7* is dropped by Algo-
rithm 1. Then, there is a term 7+ generated by Algorithm 1 at node A* such
that vars(r1) C vars(r*) and ivars(A*) N (vars(t*) \ vars(tT)) # 0. It follows
that term 7 is equivalent to the conjunction of term 7* and some other terms
S° constructed by Algorithm 2 at nodes outside NNF A*. Consider term 7 that
is equivalent to the conjunction of 77 and the terms in S°. Since the NNF A is
locally fixated, the set of variables mentioned by 7’ is equal to the union of the
set of variables mentioned by the terms S° U {77}. The same applies to term
7 and terms S° U {7*}. Since ivars(A*) N (vars(t*) \ vars(t1)) # 0, we have
vars(t’) C vars(r). Note that 7/ is an implicant of A. Thus, 7’ is either a prime
implicant of A or is subsumed by some distinct prime implicant of A. Hence, 7
cannot be a variable-minimal prime implicant of A, which is a contradiction.

Second direction: If 7 € GSR(A), then 7 is a variable-minimal prime impli-
cant of A. Suppose 7 € GSR(A). It suffices to show (1) 7 = A, (2) there is
no prime implicant 7/ of A such that vars(r’) C vars(r), and (3) there is no
distinct prime implicant 7 of A such that 7 | 7'.

Lemma 6 implies (1) immediately. We now show (2). By the first direction,
GSR(A) contains all variable-minimal prime implicants of A. Thus, to prove
(2), it suffices to prove that there does not exist a term 7" € GSR(A) such that
vars(t') C vars(t). By the definition of ivars(.), ivars(A) = vars(A) when
A is the NNF passed to the first call to Algorithm 1. Thus, K(S, ivars(A))
on Line 10 of the algorithm removes all terms from S that are not variable-
minimal in this case. Therefore, (2) holds. We next prove (3) by contradiction.
Assume there is a distinct prime implicant 7" of A such that 7 = 7 (i.e., 7/
subsumes 7). Since, by the first direction, GSR(A) contains all variable-minimal
prime implicants of A, 7/ cannot be a variable-minimal prime implicant of A;
otherwise 7/ will be in GSR(A) so 7 will not be in GSR(A) as it will be removed
by the subsumption checks on Line 6 or Line 8, which is a contradiction. By (2),
no variable-minimal prime implicant of A has a strict subset of the variables in
7. Therefore, vars(r') € vars(t); otherwise 7/ must be a variable-minimal prime
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implicant of A. Note that 7" subsumes 7 only if vars(r’) C vars(r). Therefore,
7/ cannot subsume 7, which is a contradiction. Hence, (3) holds.

Proposition 18

We first prove a dual of Proposition 18 using several lemmas. The dual is for
the consensus operation which can be used to compute the prime implicants of
a DNF. The proof uses the same structure as the proof of Theorem 3.5 in [15]
which treats the Boolean case of consensus.

Definition 11. Let {1 - 1 and f2 - y2 be terms where £1 and {o are X -literals
such that £y F= o and €y V= 0. Then v = ({1 + £2) - 11 - Y2 is an X -consensus of
the terms if v # L.

We use {{1-v1,02-72} 4 X to denote the consensus of terms ¢1 -v; and £5 -7
on variable X. We also use Consensus(A) to denote the result of closing DNF
A under consensus and then removing all subsumed terms. Our proofs will also
use the following definition for consensus over multiple terms (can be emulated
by Definition 11 over two terms if we skip subsumed consensus).

Definition 12. Let ¢y -v1,...,4, - yn be terms where {1,. .., L, are X-literals.
Then v = (311 4;) - [1i—; v is an X -consensus of the terms if v # L.

Lemma 7. We have (€1 +42)-v1-v2 = €171+ l2-v2. Moreover, Consensus(A)
18 equivalent to A.

Proof. f w = (€1 4 £2) - v1 - v, then w = €1 - 71 - 2 or w = fa - 41 - Y2. In either
case, w ': 61 Y1 —|—€2 *Y2. Hence, (61 + 62) Y12 ': él Y1 + 62 *Y2. This means
that we can add to a DNF A the consensus of any of its terms without changing
the models of A. Hence, Consensus(A) = A.

Lemma 8. Let 7 be a simple term that mentions all variables in DNF A. If
T = A, then 7 = 7' for some term 7’ in A (that is, T is subsumed by some term

in A).

Proof. Since T is simple and mentions all variables of A, then 7/|7 = T or
7| = L for every term 7/ in A. Since 7 E A, Alr =T so 7|7 = T for at least
one term 7' in A. This term must satisfy 7 = 7/ and, hence, 7 is subsumed by
7.

Lemma 8 does not hold if term 7 is not simple. Counterexample: 7 = x123 and
A = x12 + T23.

Lemma 9. A prime implicant of DNF A can mention only variables mentioned
by Consensus(A).

Proof. Tf Consensus(A) does not mention variable X, then A does not depend
on X since Consensus(A) is equivalent to A by Lemma 7. Hence, any implicant
of A will remain an implicant of A if we drop any X-literal from it. Hence, a
prime implicant of X cannot mention variable X.
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Lemma 10. Consensus(A) is the set of prime implicants for DNF A.

Proof. We first show that every prime implicant of A is in Consensus(A), and
then show the second direction: every term in Consensus(A) is a prime implicant
of A.

To show the first direction, suppose 7y is a prime implicant of A and 7y ¢
Consensus(A). We next show a contradiction. Let S be the set of terms 7 such
that:

1. 7 only mentions variables present in Consensus(A).
2. T ': T0-
3. 7 is not subsumed by any term in Consensus(A).

By Lemma 9, 79 can only mention variables in Consensus(A). Thus, S must
be non-empty because 79 € S. Let 7,,, be the term in S that mentions the largest
number of variables (i.e. with the maximal length).

Case: 7, mentions all variables of Consensus(A).
Apply the following procedure which may change the value of 7, but will
keep the set S intact:
While 7, € S:
— Write 7, as @12, - 7}, for some variable X, term 7/, and n > 1.
This can be done since 7, is not a simple term by definition of S
and Lemma 8.
—Fori=1,...,n: fa; -7/ €8, set 7, to z; - 7/, and exit for-loop
(variables of 7, are invariant).
— Exit while-loop if the for-loop did not set 7,,.

When the procedure terminates, 7, will be such that 7,,, € S but for some
variable X, x; - 7/, & S for all ¢ in 1,...,n. The procedure will always
terminate because, by Lemma 8, simple terms that mention all variables
cannot be in S. Since 7,, € S upon termination, we have 7, E 7. And
since z; - 7}, = Tm for all ¢ in 1,...,n, we have x; - 7/, |= 70 for all 7 in
1,...,n. Since x; - 7, € S, x; - 7, must be subsumed by some respective
term in Consensus(A) for each i. Since 7, = 1., - 7}, is not subsumed
by these respective terms, each x; - 7/, must be subsumed by some term
«; € Consensus(A) that mentions state x;.

Let 8; be «; but without its X-literal. Since z; - 7/, = «a; for all i, we have
7/ | B; for all i. Hence, 7/, = [[;—, 8- This means that the consensus of
ai,...,ap on variable X exists since «; - ... - «, are consistent. Since 7/, |=
[1;-, B, we have x1._,, - 7, = @1..m - [[;—,; Bi- And since each o; mentions
z;, we have z1_, - [[\ B = {aa,...,0;} € X. Therefore, 7, = 1., -
[[,-18i E{a1,...,;} €4 X since 7, = 21,5, - 7,,. Hence, 7, is subsumed
by the consensus of ag,...,a; on variable X. Since «; € Consensus(A) for
all i, their consensus must be subsumed by some term in Consensus(A).
Therefore, 7, is subsumed by some term in Consensus(A). This contradicts
Tm € S.
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Case: 7,, does not mention all variables of Consensus(A).

Suppose T, does not mention variable X which appears in Consensus(A).
Consider the terms x1 - Ty, ..., Tk - Tn Where xq,..., 2, are the states of
variable X . Since 7, is a term in S of maximal length, terms 1 -7, . . ., T T
cannot be in set S. Because x; - 7, satisfies the first two requirements of
set S for all i between 1 and k, z; - 7, must be subsumed by some term
vi € Consensus(4). Since 7, is not subsumed by ~v; for any i, v; must
mention state x;. Similarly, taking the consensus of 71,...,7% is allowed
because T, = Hle(%h?z) Note that {v1,...,7} € X does not mention
variable X. Since ; - 7, = 7 for all ¢, we have 7., E {71,..., 7%} €« X.
Since ~; are all in Consensus(A), {v1,...,7} <€ X must be subsumed by
some term in Consensus(A). This implies that 7, is subsumed by some term
in Consensus(A), which contradicts the assumption that 7, is in S.

Our assumption that 7y is a prime implicant of A but 79 ¢ Consensus(A) leads
to a contradiction in both cases above. Thus, Consensus(A) includes all prime
implicants of A.

We next show the second direction: every term in Consensus(A) is a prime
implicant of A. Every term in Consensus(A) is an implicant of A by Lemma 7.
Moreover, by definition of Consensus(A), no term in Consensus(A) can subsume
another term in Consensus(A). Hence, given the first direction, every term in
Consensus(A) is a prime implicants of A.

Lemma 11. The prime implicates of A are the negations of the prime implicates

of A.

Proof. This follows since 7 = A iff A |= 7, and since 7 is equivalent to a term
iff 7 is equivalent to a clause.

Lemma 12. For terms {1-11 and o 1o where {1, €5 are X -literals, the negation
of the_consensus of 0111 and £y - 19 on X is equivalent to the resolvent of {1 +71
and fo +75 on X.

Proof. The consensus of /1 - 71 and f3 - 7 is (ﬁli l3) - 11 - T2. The resolvent of
{1+71 and {5 +7T5 is (fl -fz)-i-ﬁ-i-T_z. Finally, (fl -62)4'7__14'7__2 = (fl + fz) S T1 - To.

Proof (of Proposition 18). Let A be a CNF. By Lemma 10, closing the DNF
A under consensus and removing subsumed terms yields the prime implicants
of A. By Lemma 12, the negations of consensus generated while closing DNF
A under consensus correspond to resolvents generated while closing CNF A
under resolution. By Lemma 11, the prime implicates of A are the negations
of the prime implicants of A. Hence, closing A under resolution generates all
the negations of the prime implicants of A, which are the prime implicates of
A. Therefore, closing A under resolution and removing subsumed clauses yields

exactly the prime implicates of A.
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Proposition 19

The proof of this proposition uses two lemmas which effectively say that when
applying resolution to a locally fixated CNF, the variables of resolvents grow
monotonically. That is, if a clause o* was derived using a clause o, then the
variables of o* are a superset of the variables of o.

Lemma 13. Let a = {1+ 01, B = l2+ 09 be two clauses which are locally fixated
on some instance . If {1 and {3 are X -literals, and if o is the X -resolvent of
clauses o and f3, then vars(c) = vars(a) Uvars(B).

Proof. Recall that a clause is a disjunction of literals over distinct variables.
Suppose that ¢; and ¢5 are X-literals. If ¢ is the X-resolvent of clauses « and
B, then o is the clause equivalent to (¢1 - ¢3) + 01 + 02 and o # T. Since «
and [ are locally fixated on Z, all literals in o and S are consistent with Z,
so 01 -0y # 1L and X € wars(o). Since o # T, then o1 + 03 # T so the
variables of the clause equivalent to o1 + o2 are vars(oy) U vars(oz). Hence,
vars(o) = vars(a) Uvars(B).

We will say that clause o* is a descendant resolvent of clause o if 0* = o or
if o* was obtained by a sequence of resolutions that involved clause o.

Lemma 14. Let S be a set of clauses which are locally fixated on some instance
Z, and let S* be the result of closing S under resolution. If o* € S* is a descen-
dant resolvent of some o € S, then vars(c) C vars(c*).

Proof. This lemma follows directly from Lemma 13.

Proof (of Proposition 19). We prove both directions.

First direction: If o* is a variable-minimal prime implicate of S, then ¢* is a
variable-minimal prime implicate of S\ {c}. Let o* be a variable-minimal prime
implicate of S. Our goal is to show that (1) o* is a prime implicate of S\ {o}
and (2) there does not exist another prime implicate o™ of S\ {¢} such that
vars(c™) C vars(c*).

To prove (1), it suffices to show that (1a) o* is an implicate of S\ {c} and
(1b) o* is not subsumed by any other implicate of S\ {c}. To prove (1a), we
first recall that vars(o) D vars(o’) for some clause o’ € S by the conditions of
Proposition 19. Since ¢* is a prime implicate of S, it must be derivable from
S using resolution by Proposition 18. Suppose there is a resolution proof of o*
that involves clause 0. We will now show a contradiction, therefore establishing
o* as an implicate of S\ {o}. First, o* is descendant resolvent of ¢ in this case
so vars(c*) D vars(c) by Lemma 14. This implies that vars(c*) 2 vars(c) D
vars(c’) for some clause o’ € S. If ¢’ is a prime implicate of S, then o* cannot
be a variable-minimal prime implicate of S since vars(c*) D vars(o’). If o’ is
not a prime implicate of .S, then it must be subsumed by some prime implicate
of S which must mention a subset of the variables in ¢’ so ¢* cannot be a
variable-minimal prime implicate of S. In either case, we have a contradiction.
Hence, o* can be derived from S using resolution without involving clause o.
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This means that ¢* is an implicate of S\ {o} so (1a) holds. We next show (1b) by
contradiction. Suppose ¢* is subsumed by some other implicate o** of S\ {c}.
Then ¢* cannot be a prime implicate of S as it is subsumed by ¢** which must
also be an implicate of S. This is a contradiction so ¢* is not subsumed by any
other implicate of S\ {o} and (1b) holds. Hence, (1) holds.

We now prove (2) by contradiction. Suppose 7 is a prime implicate of S\{c}
such that vars(oc™) C vars(c*). Since ot is an implicates of S\ {o}, it is also
an implicate of S. Hence, either 0T is a prime implicate of S or a clause that
subsumes o (mentions a subset of o1’s variables) is a prime implicate of S.
Either way, o0* cannot be a variable-minimal prime implicate of S, which is a
contradiction, so (2) holds.

Second direction: If o* is a variable-minimal prime implicate of S\ {c}, then
o* is a variable-minimal prime implicate of S. Let ¢* be a variable-minimal
prime implicate of S\ {o}. Our goal is to show that (1) o* is a prime implicate
of S and (2) there does not exist another prime implicate o of S such that
vars(ot) C vars(c*).

To prove (1), it suffices to show that (1a) o* is an implicate of S and (1b) o*
is not subsumed by any other prime implicate of S. Since ¢* is an implicate
of S\ {0}, it must be an implicate of S so (la) holds immediately. We next
show (1b). Since ¢* is a prime implicate of S\ {o}, it cannot be subsumed by
any other prime implicate of S \ {o}. Suppose ¢** is a prime implicate of S
but not a prime implicate of S\ {c}. Then ¢** can be derived from S using
a resolution proof that involves o. Hence, c** is a descendent resolvent of o
so vars(c**) D vars(o) by Lemma 14. Moreover, vars(o) D vars(c’) for some
clause ¢’ € S by the conditions of Proposition 19. Since ¢** subsumes o* only if
vars(c**) C vars(c*) and since vars(o’) C vars(c**), then o** cannot subsume
o*; otherwise, vars(c’) C vars(c*), which implies there is a prime implicate of
S\ {o} that subsumes ¢’ and that mentions only a strict subset of the variables
in 0*, so 0* cannot be a variable-minimal prime implicate of S\ {o} which is a
contradiction. As such, o* cannot be subsumed by any other prime implicate of
S so (1b) and (1) hold.

We next prove (2) by contradiction. Suppose there is a prime implicate o™
of S such that vars(c™) C vars(c*). Then, o can be derived from S using
resolution by Proposition 18. We consider two cases. First case: the resolution
proof does not involve clause o. Then o is an implicant of S\ {o}. Since some
clause that subsumes o must be a prime implicate of S\ {¢} and must mention
only a subset of the variables in ¥, o* cannot be a variable-minimal prime
implicate of S\ {o} which is a contradiction. Second case: the resolution proof
involves clause o. In this case, o1 is a descendant resolvent of o so vars(c™) 2
vars(o) by Lemma 14. This further implies vars(c™) D vars(c’) for some clause
o’ € S by the conditions of Proposition 19, and also vars(c*) D vars(c™) D
vars(c’). Since o’ € S\{o}, some prime implicate of S\ {o} must subsume ¢’ and
must mention only a subset of its variables. Therefore, c* cannot be a variable-
minimal prime implicate of S\ {¢}, a contradiction. We get a contradiction in
both cases, so (2) holds.
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B Path Explanations

Consider the decision tree in Figure 2 which classifies the instance (z1=1, zo=
1,z3=1,24=1) as Y using the red path. This path corresponds to the term
(x1 € {1,2}, 22 € {1,2},23 € {1}, 24 € {1}) which implies the formula Ay for
class Y. This term is normally viewed as an explanation for the decisions on
instances that follow this path. However, the shorter term (z; € {1,2},22 €
{1,2},z3 € {1}) also implies the class formula Ay and can therefore be viewed
as a better explanation since feature x4 is irrelevant to such decisions. This
phenomena was observed in [27] which introduced the notion of an abductive
path explanation (APXp): a minimal subset of the literals on a path that implies
the corresponding class formula. The APXp is a syntactic notion as it depends
on the specific decision tree. That is, two different decision trees that represent
the same classifier may lead to different APXps. This is in contrast to the notion
of a GSR that we propose which is a semantic notion that depends only on the
underlying classifier (i.e., its class formulas). That is, two distinct decision trees
that represent the same classifier always lead to the same GSRs for any instance.

Fig.2: A decision tree with two classes: Y and N. Variables x1, x5 are ternary.
Variables 3, x4 are binary.

For the decision tree in Figure 2, the decision on instance (x1=1,z2=1, 3=
1,24=1) has a GSR, (z1 € {1},z2 € {1,2}), which does not correspond to any
APXp of any path in the decision tree. Moreover, this GSR generates the SR
(x1=1, z2=1) as ensured by our Proposition 9.

0 —J1 o0 ><1

Fig.3: A decision tree with two classes: Y and N. All variables are binary.
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25,27), [27, 30), [30, o0) [0,25)

Fig.4: Numeric features (left) and their discretization (right).

For another example, consider Figure 3 in which all variables are binary so one
does not need to go beyond simple explanations that are subsets of instances. The
instance (z=0, y=0, 2=0) is classified as Y using the red path. This decision has
two SRs, (z=0,y=0) and (y=0, z=0). The APXp for the red path is (z=0, y=0).
The APXps for the other paths are (z=0,y=1), (z=1,2=0), (z=1, 2=1). None
correspond to the SR, (y=0, 2=0). This shows that APXps cannot even generate
all simple explanations (i.e., subsets of the instance). In contrast, Proposition 9
guarantees that every SR will be generated by some GSR. A similar argument
applies to the notion of contrastive path explanation (CPXp) proposed in [27].
See also Example 6 in [27] for a related discussion of limitations.

C Numeric Features

GSRs and GNRs are particularly significant when explaining the decisions of
classifiers with numeric features, such as decision trees and random forests. Con-
sider the decision tree in Figure 4(left). One can discretize its numeric features to
yield the decision tree in Figure 4(right) as is commonly practiced. For example,
AckE is discretized into three intervals: [0,18),[18,40) and [40,00) so it can be
treated as a ternary discrete variable. Similarly, BMI is discretized into four in-
tervals: [0,25), [25,27),[27, 30), [30, 00). The numeric and discrete decision trees
are equivalent as they make the same decision on every instance. This follows
since two distinct instances will be classified equally by the numeric decision tree
if the point values of their features fall into the same intervals.

The decision on instance (AceE=42- BMI=28) is vis. To explain this decision,
one usually works with the discrete decision tree which views this as the discrete
instance (Age=[40,00) - BMI=[27,30)), which can be notated equivalently as
(Ace >40)-(27 <BMI <30). There is only one SR for the decision on this instance,
which is (AGe >40)- (27 <BMI <30); that is, the instance itself. But there are two
GSRs: (Ace >18-BMI >27) and (AcE >40-BMI >25) which are significantly more
informative. SRs are quite limited in this case as they can only reference simple
literals that appear in the instance: Ace=[40, 00) and BMI=[27,30). GSRs can
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reference any literal implied by the instance, such as Ace €{[18,40), [40,0)},
which allows them to provide more informative explanations.

The NRs for the above decision are Ace >40 and 27 <BMI <30. All we can
learn from the second one, as an example, is that it is possible to flip the decision
by changing BMI to some value ¢[27,30). If we change BMI to 32, keeping
AcEe the same, this NR is violated but the decision is not changed (we are
only guaranteed that some change that violates the NR, will flip the decision).
In contrast, the GNRs are AGe>18 and BMI >25 which come with stronger
guarantees as mentioned earlier. For example, the second GNR, BMI >25, tells
us that changing BMI to <25, while keeping AcE the same, is guaranteed to flip
the decision which is significantly more informative.

D More on General Reasons, GSRs and GNRs

Suppose I is a general reason; 71, ..., T, are the GSRs (variable-minimal prime
implicants of I'), and o1, ...,0,, are the GNRs (variable-minimal prime impli-
cates of I'). Then it is possible that I" # > | 7, I' # [[\~, o; and/or Y, 7; #
H;il 0. To illustrate this, consider the class formula A =1 - y1 + 12 - Y12 - 21
and instance Z = x1 - y1 - 1. The general reason is VZ - A = A. The only GSR is
x1 - y1 and the GNRs are x12 and y12. We have, A # z1 - y1; A # x12 - y12; and
1 - Y1 # Z12 - y12. This is different from the case for simple explanations where
the disjunction of SRs, the conjunction of NRs, and the complete reason are
all equivalent. Therefore, neither GSRs nor GNRs capture all the information
contained in the general reason, which suggest that general reasons may have
futher applications beyond GSRs and GNRs.

We now turn to another key observation. Suppose I is a general reason for
instance Z and let o be one of its prime implicates (o is not necessarily variable-
minimal and, hence, may not be a GNR). We can minimally change instance Z
to violate o yet without necessarily flipping the decision on Z. This can never
happen though if ¢ is variable-minimal (by Definition 8 and Proposition 12).

Consider the following example with ternary variables X,Y, Z, instance Z =

x1 - y1 - 71 and its class formula A = A,, where

Ap = (z1-y2-23) +(@1-ys-22) + (x1-y3-23) +
(T2 -y1-22) + (z3-y1-22) + (23 -y1-23) +
(T2 -y2-21) +(x2-y3-21) + (w3 -y2-21).

The general reason VZ - A for the decision on instance Z is

(L +y13 + 212) - (L + 912 + 213) - (L + Y12 + 212)-
(13 + L+ 213) - (w12 + L+ z13) - (212 + L + 212)-
(w13 +y13+ L) (@13 +yi2+ L) (12 +yi3 +L).

which simplifies to

VI-A= (y12 + 21) - (Y1 + z12) - (T12 + 21) - (1 + 213) - (@13 + Y1) - (1 + Y13).



40 C. Jiet al

Note that o = 1 + y1 + 21 is a prime implicate of ¥ I- A which can be obtained
by resolving y1 + 212 with 1 + 213 on variable Z. However, any instance Z’ that
does not satisfy o is a model of A. This follows since Z' |= & = T23 - Ya3 - 223
and all models of A = A,, contain z1, y; or z;. Therefore, violating the prime
implicate o of the general reason does not flip the decision. Note further that this
prime implicate o is not variable-minimal (i.e., not a GNR) since o/ = y12 + 21
is also a prime implicate of the general reason and vars(o’) C vars(o).
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