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Abstract. Various techniques have been used in recent years for verify-
ing quantum computers, that is, for determining whether a quantum
computer/system satisfies a given formal specification of correctness.
Barrier certificates are a recent novel concept developed for verifying
properties of dynamical systems. In this article, we investigate the usage
of barrier certificates as a means for verifying behaviours of quantum
systems. To do this, we extend the notion of barrier certificates from
real to complex variables. We then develop a computational technique
based on linear programming to automatically generate polynomial bar-
rier certificates with complex variables taking real values. Finally, we
apply our technique to several simple quantum systems to demonstrate
their usage.
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1 Introduction

Quantum computers are powerful devices that allow certain problems to be
solved faster than classical computers. The research area focusing on the formal
verification of quantum devices and software has witnessed the extension of veri-
fication techniques from classical systems [6,19] to the quantum realm. Classical
techniques that have been used include theorem provers [11,15], Binary Decision
Diagrams [4, 26], SMT solvers [5, 22] and other tools [12,23].

Quantum systems evolve according to the Schrödinger equation from some initial
state. However, the initial state may not be known completely in advance. One
can prepare a quantum system by making observations on the quantum objects,
leaving the quantum system in a basis state, but this omits the global phase
which is not necessarily known after measurement. Further, the system could
be disturbed through some external influence before it begins evolving. This can
slightly change the quantum state from the basis state to a state in superposition
or possibly an entangled state.

By taking into account these uncertain factors, a set of possible initial states
from which the system evolves can be constructed. From this initial set, we can
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see if the system evolves according to some specified behaviour such as reaching
or avoiding a particular set of states. As an example, consider a single qubit
system that evolves according to a Hamiltonian Ĥ implementing the controlled-
NOT operation. Through measurement and factoring in for noise, we know the
system starts close to |10⟩. The controlled-NOT operation keeps the first qubit
value the same and so we want to verify that, as the system evolves via Ĥ, the
quantum state does not evolve close to |00⟩ or |01⟩.
The main purpose of this work is to study the application of a technique called
barrier certificates, used for verifying properties of classical dynamical systems,
to check properties of quantum systems similar to the one mentioned above. The
concept of barrier certificates has been developed and used in Control Theory
to study the safety of dynamical systems from a given set of initial states on
real domains [18]. This technique can ensure that given a set of initial states
from which the system can start and a set of unsafe states, the system will not
enter the unsafe set. This is achieved through separating the unsafe set from the
initial set by finding a barrier.

Barrier certificates can be defined for both deterministic and stochastic systems
in discrete and continuous time [2, 14]. The concept has also been used for ver-
ification and synthesis against complicated logical requirements beyond safety
and reachability [13]. The conditions under which a function is a barrier certifi-
cate can be automatically and efficiently checked using SMT solvers [3]. Such
functions can also be found automatically using learning techniques even for
non-trivial dynamical systems [17].

Dynamical systems are naturally defined on real domains (Rn). To handle dy-
namical systems in complex domains (Cn), one would need to decompose the
system into its real and imaginary parts and use the techniques available for
real systems. This has two disadvantages, the first being that this doubles the
number of variables being used for the analysis. The second disadvantage is that
the analysis may be easier to perform directly with complex variables than their
real components. As quantum systems use complex values, it is desirable to have
a technique to perform the reachability analysis using complex variables.

In this paper, we explore the problem of safety verification in quantum systems
by extending barrier certificates from real to complex domains. Our extension is
inspired by a technique developed by Fang and Sun [9], who studied the stability
of complex dynamical systems using Lyapunov functions (where the goal is to
check if a system eventually stops moving). Further, we provide an algorithm to
generate barrier certificates for quantum systems and use it to generate barriers
for several examples.

2 Background

2.1 Safety Analysis

We begin by introducing the problem of safety for dynamical systems with real
state variables x ∈ Rn. More details can be found in [18]. A continuous dynamical
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system is described by

ẋ =
dx

dt
= f(x), f : Rn → Rn,

where the evolution of the system is restricted to X ⊆ Rn and f is usually Lips-
chitz continuous to ensure existence and uniqueness of the differential equation
solution. The set X0 ⊆ X is the set of initial states and the unsafe set Xu ⊆ X
is the set of values that the dynamics x(t) should avoid. These sets lead to the
idea of safety for real continuous dynamical systems:

Definition 1 (Safety). A system, ẋ = f(x), evolving over X ⊆ Rn is consid-
ered safe if the system cannot reach the unsafe set, Xu ⊆ X, from the initial set,
X0 ⊆ X. That is for all t ∈ R+ and x(0) ∈ X0, then x(t) /∈ Xu.

The safety problem is to determine if a given system is safe or not. Numerous
techniques have been developed to solve this problem [10]. Barrier certificates are
discussed in Section 2.2. Here, we describe two other common techniques.

Abstract Interpretation One way to perform reachability analysis of a system is
to give an abstraction [7,8] of the system’s evolution. Given an initial abstraction
that over-approximates the evolution of the system, the abstraction is improved
based on false bugs. False bugs are generated when the current abstraction enters
the unsafe space but the actual system does not. This method has been inves-
tigated for quantum programs in [25], where the authors can verify programs
using up to 300 qubits.

Backward and Forward Reachability A second approach is to start from the
unsafe region and reverse the evolution of the system from there. A system is
considered unsafe if the reversed evolution enters the initial region. This is back-
ward reachability. Conversely, forward reachability starts from the initial region
and is considered safe if the reachable region does not enter the unsafe region.
Both backward and forward reachability are discussed in [16,20,21].

2.2 Barrier Certificates

Barrier certificates [18] are another technique used for safety analysis. This tech-
nique attempts to divide the reachable region from the unsafe region by putting
constraints on the initial and unsafe set, and on how the system evolves. The
benefit of barrier certificates over other techniques is that one does not need
to compute the system’s dynamics at all to guarantee safety, unlike in abstract
interpretation and backward (or forward) reachability.

A barrier certificate is a differentiable function, B : Rn → R, that determines
safety through the properties that B has. Generally, a barrier certificate needs
to meet the following conditions:

B(x) ≤ 0,∀x ∈ X0 (1)

B(x) > 0,∀x ∈ Xu (2)

x(0) ∈ X0 =⇒ B(x(t)) ≤ 0,∀t ∈ R+. (3)
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Essentially, these conditions split the evolution space into a (over-approximate)
reachable region and an unsafe region, encapsulated by Conditions (1) and (2)
respectively. These regions are separated by a “barrier”, which is the contour
along B(x) = 0.

Condition (3) prevents the system evolving into the unreachable region and needs
to be satisfied for the system to be safe. However, Condition (3) can be replaced
with stronger conditions that are easier to check. For example, the definition of
one simple type of barrier certificate is given.

Definition 2 (Convex Barrier Certificate). For a system ẋ = f(x), X ⊆
Rn, X0 ⊆ X and Xu ⊆ X, a function B : Rn → R that obeys the following
conditions:

B(x) ≤ 0,∀x ∈ X0

B(x) > 0,∀x ∈ Xu

dB

dx
f(x) ≤ 0,∀x ∈ X, (4)

is a convex barrier certificate.

Note that in Condition (4): dB
dx

dx
dt = dB

dt . This condition can be viewed as a
constraint on the evolution of the barrier as the system evolves over time.

Now, if a system has a barrier certificate, then the system is safe. We show the
safety theorem for convex barrier certificates.

Theorem 1. If a system, ẋ = f(x), has a convex barrier certificate, B : Rn →
R, then the system is safe [18].

Proofs of Theorem 1 are standard and can be found in, e.g., [18]. The intuition
behind the proof is that since the system starts in the negative region and the
barrier can never increase, then the barrier can never enter the positive region.
Since the unsafe set is within the positive region of the barrier, this set can
therefore never be reached. Thus, the system cannot evolve into the unsafe set
and so the system is safe. Figure 1 shows an example of a dynamical system
with a barrier based on the convex condition.

Remark 1. The term “convex” is used for these barriers as the set of barrier
certificates satisfying the conditions in Definition 2 is convex. In other words, if
B1 and B2 are barrier certificates for a system, the function λB1 + (1− λ)B2 is
also a barrier certificate for any λ ∈ [0, 1]. See [18] or the proof of Proposition 1
in Appendix B for (similar) details.

There are a variety of different barrier certificates to choose from with different
benefits, e.g., the convex condition given is simple but may not work for com-
plicated or nonlinear systems. In comparison, the non-convex condition given
in [18] changes Condition (4) such that dB

dx f(x) ≤ 0;∀x ∈ X,B(x) = 0 (instead
of ∀x ∈ X). This is a weaker condition allowing for more functions to be a suit-
able barrier certificate. However, a different computational method is required
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Fig. 1: Example adapted from Section V-A in [18]. The initial region is the
green circle centred at (1.5, 0) and the system evolves according to the dy-
namical system given by differential equations ẋ = [x2,−x1 +

1
3x

3
1 − x2]. The

unsafe region is the red circle centred at (−1,−1) and is separated from the
initial region by a barrier, the dashed purple line defined by B(x) = 0 where
B(x) = −13 + 7x2

1 + 16x2
2 − 6x2

1x
2
2 − 7

6x
4
1 − 3x1x

3
2 + 12x1x2 − 12

3 x3
1x2.

because the set of such barrier certificates is non-convex. Each barrier certificate
requires a different proof that if the system has a satisfying barrier certificate,
then the system is safe. It should be noted that Theorem 1 only has a one way
implication, a system does not necessarily have a barrier certificate even if it
is safe. In [24], the authors showed the converse holds for systems defined on a
compact manifold and using convex barrier certificates.

3 Complex-valued Barrier Certificates

Now we wish to extend the use of barrier certificates into a complex space (Cn).
We use i =

√
−1 as the imaginary unit in the rest of the paper. The complex

dynamical systems considered are of the form

ż =
dz

dt
= f(z), f : Cn → Cn,

which evolves in Z ⊆ Cn. The initial and unsafe sets are defined in the usual
way except now we have Z0 ⊆ Z and Zu ⊆ Z, respectively. The notion of safety
for this system is similar to Definition 1.

Definition 3 (Safety). A complex system, ż = f(z), with Z ⊆ Cn, Z0 ⊆ Z
and Zu ⊆ Z, is considered safe if for any z(0) ∈ Z0, then ∀t ∈ R+, z(t) /∈ Zu.
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Whilst it is easy to extend the safety problem and required definitions into the
complex plane, extending the notion of barrier certificates requires particular
attention. Conditions (1), (2) and (3) are changed respectively to

B(z) ≤ 0,∀z ∈ Z0; (5)

B(z) > 0,∀z ∈ Zu; (6)

z(0) ∈ Z0 =⇒ B(z(t)) ≤ 0,∀t ∈ R+. (7)

Many barrier certificates use differential equations to achieve Condition (7),
which restricts the class of functions that can be used. This is because differen-
tiable complex functions must satisfy the Cauchy-Riemann equations.

For our purposes, we consider a holomorphic function, g(z) : Cn → C, to be a

function whose partial derivatives, ∂g(z)
∂zj

, are holomorphic on C, i.e., they satisfy

the Cauchy-Riemann equations (for several variables). That is for zj = xj + iyj
and g(z) = g(x, y) = u(x, y) + iv(x, y), then

∂u

∂xj
=

∂v

∂yj

∂u

∂yj
= − ∂v

∂xj
.

Using an adapted technique developed by Fang and Sun [9] allows us to reason
about barrier certificates in the complex plane. We begin by introducing a family
of complex functions that are key to our technique.

Definition 4 (Conjugate-flattening function). A function, b : Cn × Cn →
Cn, is conjugate-flattening if ∀z ∈ Cn, b(z, z) ∈ R.

Definition 5 (Complex-valued barrier function). A function, B : Cn → R,
is a complex-valued barrier function if B(z) = b(z, z) where b : Cn × Cn → Cn

is a conjugate-flattening, holomorphic function.

Suppose now that we have a system that evolves over time, z(t). To use the
complex-valued barrier function, B(z(t)), for barrier certificates we require the
differential of B with respect to t. Calculating this differential reveals that

dB(z(t))

dt
=

db(z(t), z(t))

dt
=

db(z, u)

dz

∣∣∣∣
u=z

dz

dt
+

db(z, u)

du

∣∣∣∣
u=z

dz

dt

=
db(z, u)

dz

∣∣∣∣
u=z

f(z) +
db(z, u)

du

∣∣∣∣
u=z

f(z),

(8)

where db(z,u)
dz =

[
∂b(z,u)
∂z1

, ∂b(z,u)
∂z2

, . . . , ∂b(z,u)
∂zn

]
is the gradient of b(z, u) with re-

spect to z and the gradient is defined with respect to u in a similar way. Given
Equation (8), barrier certificates that include a differential condition can be ex-
tended into the complex domain quite naturally. For example, the convex barrier
certificate is extended to the complex domain.

Definition 6 (Complex-valued Convex Barrier Certificate). For a sys-
tem ż = f(z), Z ⊆ Cn, Z0 ⊆ Z and Zu ⊆ Z; a complex-valued barrier function
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B : Cn → R, B(z) = b(z, z), that obeys the following conditions,

b(z, z) ≤ 0,∀z ∈ Z0 (9)

b(z, z) > 0,∀z ∈ Zu (10)

db(z, u)

dz

∣∣∣∣
u=z

f(z) +
db(z, u)

du

∣∣∣∣
u=z

f(z) ≤ 0,∀z ∈ Z, (11)

is a complex-valued convex barrier certificate.

With this definition, we can ensure the safety of complex dynamical systems:

Theorem 2. If a complex system, ż = f(z), has a complex-valued convex barrier
certificate, B : Cn → R, then the system is safe.

Proposition 1. The set of complex-valued barrier certificates satisfying the con-
ditions of Definition 2 is convex.

The proofs of these results are given in Appendix A and B respectively.

4 Generating Satisfiable Barrier Certificates for Quantum
Systems

We now describe how to compute a complex-valued barrier function. Through-
out, let ż = f(z), Z ⊆ Cn, Z0 ⊆ Z and Zu ⊆ Z be defined as before. We
introduce a general family of functions that will be used as “templates” for
complex barrier certificates.

Definition 7. A k-degree polynomial function is a complex function, b : Cn →
C, such that

b(z1, . . . , zn) =
∑

α∈An,k

aαz
α (12)

where An,k := {α = (α1, . . . , αn) ⊆ Nn :
∑n

j=1 αj ≤ k}, aα ∈ C, and zα =∏n
j=1 z

αj

j .

The family of k-degree polynomials are polynomial functions where no individual
term of the polynomial can have a degree higher than k. Note that k-degree
polynomial functions are holomorphic. Further, some k-degree polynomials are
conjugate-flattening. For example, the 2-degree polynomial b(z1, u1) = z1u1 is

conjugate-flattening since zz = |z|2, whereas the 1-degree polynomial b(z1, u1) =
z1 is not. Thus, a subset of this family of functions are suitable to be used for
barrier certificates as complex-valued barrier functions.

The partial derivative of the polynomials in Equation (12) is required for ensuring
the function meets Condition (11). The partial derivative of the function is

∂b

∂zj
=

∑
α∈An,k

aααjz
−1
j zα. (13)
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We write

B(a, z) := b(a, z, z) :=
∑

(α,β)∈A2n,k

α=(α1,...,αn)
β=(αn+1,...α2n)

aα,βz
αzβ,

where a = (aα,β) ∈ R|A2n,k| is a vector of real coefficients to be found and
zβ =

∏n
j=1 zj

αn+j .

The following (polynomial) inequalities find the coefficient vector:

find aT

subject to B(a, z) ≤ 0,∀z ∈ Z0

B(a, z) > 0,∀z ∈ Zu

dB(a, z)

dt
≤ 0,∀z ∈ Z

B(a, z) ∈ R
− 1 ≤ aα,β ≤ 1.

(14)

The coefficients, aα,β ∈ R, are restricted to the range
[
−1, 1

]
since any barrier

certificate B(a, z), can be normalised by dividing B by the coefficient of greatest
weight, m = max |aα,β|. The resulting function 1

mB(a, z) is still a barrier certifi-
cate. A barrier certificate generated from these polynomial inequalities can then
freely be scaled up by multiplying it by a constant.

4.1 An Algorithmic Solution

One approach of solving the inequalities in (14) is to convert the system to real
numbers and solve using sum of squares (SOS) optimisation [18]; another method
is to use SMT solvers to find a satisfiable set of coefficients; or it is possible to
use neural network based approaches to find possible barriers [1,17]. We consider

as a special case, an approach where dB(a,z)
dt = 0 rather than dB(a,z)

dt ≤ 0, which
allows the problem to be turned into a linear program. This restriction allows
us to consider a subset of barrier certificates that still ensures the safety of the
system. This is motivated by the fact that simple quantum systems of interest
exhibit periodic behaviour; that is for all t ∈ R+, z(t) = z(t + T ) for some T .
The barrier must also exhibit periodic behaviour,4 and this can be achieved by

setting dB(a,z)
dt = 0. Whilst there are other properties that ensure a function

is periodic, these would involve non-polynomial terms such as trigonometric
functions. Further, linear programs tend to be solved faster than SOS methods.
This is because SOS programs are solved through semidefinite programming
techniques, which are extensions of linear programs and therefore harder to
solve.

4 The barrier being periodic can be seen by interpreting the barrier as a function over
time: B(t) = B(z(t)) = B(z(t+ T )) = B(t+ T ),∀t ∈ R+
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We begin by transforming the differential constraint, dB(a,z)
dt = 0. To obey the

third condition for the complex-valued convex barrier certificate, we can sub-
stitute terms in Equation (8) with the partial derivatives from Equation (13).
Essentially one will end up with an equation of the form

(Aa)⊤ζ = 0,

where ζ is a vector of all possible polynomial terms of zj , zj with degree less

than k,5 and A is a matrix of constant values. By setting Aa = 0⃗ the constraint
is satisfied. Therefore, each row of the resultant vector, (Aa)j = 0, is added as
a constraint to a linear program.

To transform the real constraint (B(a, z) ∈ R) note that if x ∈ C, then x ∈ R if
and only if x = x. Therefore, B(a, z)−B(a, z) = 0 and we have

B(a, z)−B(a, z) =
∑

(αj)∈A2n,k

α={α1,...,αn}
β={αn+1,...α2n}

aα,βz
αzβ −

∑
(αj)∈A2n,k

α′={α1,...,αn}
β′={αn+1,...α2n}

aα′,β′zβ
′
zα

′

=
∑

(αj)∈A2n,k

α={α1,...,αn}
β={αn+1,...α2n}

(aα,β − aβ,α)z
αzβ.

The whole polynomial is equal to 0 if all coefficients are 0. Thus, taking the
coefficients and noting that aj are real gives the transformed constraints aα,β =
aβ,α for α = (αj)

n
j=1,β = (αj)

2n
j=n+1, (αj) ∈ A2n,k. These constraints to the

coefficients are then also added to the linear program.

The final constraints we need to transform are the constraints on the initial
and unsafe set: B(a, z) ≤ 0 for z ∈ Z0 and B(a, z) > 0 for z ∈ Zu, respectively.
We begin by noting that B(a, z) = c + b(a, z, z) where b(a, z, z) is a k-degree
polynomial (with coefficients a) and c ∈ R is a constant. When considering the
differential and real constraint steps, c is not involved in these equations since
c does not appear in the differential term and c is cancelled out in the real
constraint (c− c = c− c = 0).

Considering the initial and unsafe constraints, we require that

∀z ∈ Z0, c+ b(a, z, z) ≤ 0, and

∀z ∈ Zu, c+ b(a, z, z) > 0.

Therefore, c is bounded by

max
z∈Zu

−b(a, z, z) < c ≤ min
z∈Z0

−b(a, z, z).

Finding c = minz∈Z0
−b(a, z, z) and then checking maxz∈Zu

−b(a, z, z) < c will
ensure the initial and unsafe constraints are met for the barrier. The final com-
putation is given in Algorithm 1.

5 e.g., for k = 2 acceptable terms include zaj , zjzl, zjzl, zj
a, zjzl for 0 ≤ a ≤ 2.
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Algorithm 1 Computing the barrier certificate using linear programming

1: Solve the linear program

find aT

subject to Aa = 0⃗

aα,β = aβ,α for α = {αj}nj=1,β = {αj}2nj=n+1,

− 1 ≤ aj ≤ 1. and {αj}2nj=1 ∈ A2n,k

2: c← minz∈Z0 −b(a, z, z)
3: if c > maxz∈Zu −b(a, z, z) then return B(a, z) = c+ b(a, z, z)
4: else fail

Note that the algorithm can fail since the function b may divide the state space
in such a way that a section of Z0 may lie on the same contour as a section of Zu.
This means that either the function b is unsuitable or the system is inherently
unsafe.

5 Application to Quantum Systems

We consider quantum systems that evolve within Hilbert spaces Hn = C2n for
n ∈ N. We use the computational basis states |j⟩ ∈ Hn, for 0 ≤ j < 2n, as an
orthonormal basis within the space, where (|j⟩)l = δjl.

6 General quantum states,
|ϕ⟩ ∈ Hn, can then be written in the form

|ϕ⟩ =
2n−1∑
j=0

zj |j⟩ ,

where zj ∈ C and
∑2n−1

j=0 |zj |2 = 1.7 Quantum states reside within the unit circle

of C2n . For simplicity, we consider quantum systems that evolve according to
the Schrödinger equation

d |ϕ⟩
dt

= −iĤ |ϕ⟩ ,

where Ĥ is a Hamiltonian, a complex matrix such that Ĥ = Ĥ† = Ĥ⊤; and |ϕ⟩
is a quantum state.8 In the rest of this section, we make use of Algorithm 1 in
order to find suitable barrier certificates for operations that are commonly used
in quantum computers.

6 δjl is the Kronecker delta, which is 1 if j = l and 0 otherwise.
7 For readers familiar with the Dirac notation, zj = ⟨j|ϕ⟩ and zj = ⟨ϕ|j⟩.
8 We set the Planck constant ℏ = 1 in the Schrödinger equation.
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5.1 Hadamard Operation Example

The evolution of the Hadamard operation, H = 1√
2

(
1 1
1 −1

)
, is given by ĤH =(

1 1
1 −1

)
and |ϕ⟩ is one qubit, z0 |0⟩+ z1 |1⟩. We have z(t) =

(
z0(t)
z1(t)

)
and

ż = −iĤHz = −i

(
z0 + z1
z0 − z1

)
.

The system evolves over the surface of the unit sphere, Z = {(z0, z1) ∈ C2 :

|z0|2 + |z1|2 = 1}. The initial set is defined as Z0 = {(z0, z1) ∈ Z : |z0|2 ≥ 0.9}
and the unsafe set as Zu = {(z0, z1) ∈ Z : |z0|2 ≤ 0.1}. Note that the definitions

of Z0 and Zu are restricted by Z, therefore |z1|2 ≤ 0.1 and |z1|2 ≥ 0.9 for Z0

and Zu respectively. A barrier function computed by our Algorithm 1 is

B(z) =
11

5
− 3z0z0 − z0z1 − z0z1 − z1z1.

By rearranging and using properties of the complex conjugate, we find that

B(z) = 2(
1

10
− |z0|2 +

1

2
− Re{z0z1}).

The derivation is given in Appendix C. The first term of the barrier ( 1
10 − |z0|2)

acts as a restriction on how close to |0⟩ as |ϕ⟩ evolves, whereas the second term
( 12 − Re{z0z1}) is a restriction on the phase of the quantum state. Next, we
double check that B is indeed a barrier certificate.

Proposition 2. The system evolving according to Equation (5.1), initial set Z0

and unsafe set Zu is safe.

The proposition is proved in Appendix D. A visualisation on a Bloch sphere rep-
resentation of the example system and its associate barrier are given in Figure 2.

5.2 Phase Operation Example

The evolution of the phase operation S =

(
1 0
0 i

)
is given by the Hamiltonian

ĤS =

(
1 0
0 −1

)
for a single qubit z0 |0⟩+z1 |1⟩. Thus, the evolution of the system

for z(t) =

(
z0(t)
z1(t)

)
is

ż = −i

(
z0
−z1

)
. (15)

Again, Z represents the unit sphere as described previously. Two pairs of safe
and unsafe regions are given. The first pair Z1 = (Z1

0 , Z
1
u) is given by

Z1
0 = {(z0, z1) ∈ Z : |z0|2 ≥ 0.9}, Z1

u = {(z0, z1) ∈ Z : |z1|2 > 0.11};
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(a) Isometric view of system (b) Top down view of system

Fig. 2: System evolution on a Bloch sphere. The initial state of the system is√
0.9 |0⟩ + i

√
0.1 |1⟩ (the black dot) and evolves according to the black line (in

an anti-clockwise rotation with a period of t = π). The green surface around the
north pole (|0⟩) is the initial region, Z0, and the red surface around the south
pole (|1⟩) is the unsafe region, Zu. The blue surface is the plane of the barrier
function when B(z) = 0, with x < −z being the unsafe region.

and the second pair Z2 = (Z2
0 , Z

2
u) is given by

Z2
0 = {(z0, z1) ∈ Z : |z1|2 ≥ 0.9}, Z2

u = {(z0, z1) ∈ Z : |z0|2 > 0.11}.

The pair Z1 starts with a system that is close to the |0⟩ state and ensures that the
system cannot evolve towards the |1⟩ state. The pair Z2 has similar behaviour
with respective states |1⟩ and |0⟩. The system for each pair of constraints is
considered safe by the following barriers computed by Algorithm 1:

B1(z) = 0.9− z0z0, B2(z) = 0.9− z1z1,

where B1 is the barrier for Z1 and B2 is the barrier for Z2.9 The system with
different pairs of regions can be seen on Bloch spheres in Figure 3. Again, both
functions B1 and B2 are valid barrier certificates.

Proposition 3. The system given by Equation 15 with the set of initial states
Z1
0 and the unsafe set Z1

u is safe.

Proposition 4. The system given by Equation 15 with the set of initial states
Z2
0 and the unsafe set Z2

u is safe.

The proofs are omitted as they are similar to the proof given in Proposition 2.
These barriers give bounds on how the system evolves, i.e., the system must

9 These barriers can similarly be written using the Dirac notation.



Verification of Quantum Systems using Barrier Certificates 13

(a) Evolution with initial and unsafe
states Z1. The barrier at B1(z) = 0
is a flat plane that borders Z1

0 .

(b) Evolution with initial and unsafe
states Z2. Similarly, B2(z) = 0 is a flat
plane that borders Z2

0 .

Fig. 3: State evolution of (15) demonstrated on a Bloch sphere.

only change the phase of the system and not the amplitude. This can be applied
in general by combining barriers to show how a (disturbed) system is restricted
in its evolution.

5.3 Controlled-NOT Operation Example

The final example we consider is the controlled-NOT (CNOT) operation acting
on two qubits; a control qubit, |ϕc⟩, and a target qubit, |ϕt⟩, with the full quan-
tum state being |ϕcϕt⟩. The CNOT operation performs the NOT operation on a
target qubit (|0⟩ → |1⟩ and |1⟩ → |0⟩) if the control qubit is set to |1⟩ and does
nothing if the control qubit is set to |0⟩. The CNOT operation and its associated
Hamiltonian are given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, ĤCNOT =


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 .

The system z(t) = (zj(t))j=0,...,3 evolves according to

ż = −i


0
0

z2 − z3
−z2 + z3

 .

This system evolves over Z = {(z0, . . . , z3) ∈ C4 :
∑3

j=0 |zj |2 = 1}. Using this as
our system, various initial and unsafe regions can be set up to reason about the
behaviour of the CNOT operation.
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Control in |0⟩ Here we consider the following initial and unsafe regions

Z0 = {(zj)3j=0 ∈ C4 : |z0|2 ≥ 0.9},

Zu = {(zj)3j=0 ∈ C4 : |z1|2 + |z2|2 + |z3|2 ≥ 0.11}.

The initial set, Z0, encapsulates the quantum states that start in the |00⟩ state
with high probability and Zu captures the states that are not in the initial region
with probability greater than 0.11. These regions capture the behaviour that the
quantum state should not change much when the control qubit is in the |0⟩ state.
Using Algorithm 1, the barrier B(z) = 0.9− z0z0 can be generated to show that
the system is safe.

A similar example can be considered where the initial state |00⟩ is replaced with
|01⟩ instead (swap z0 and z1 in Z0 and Zu). The behaviour that the state of the
system should not change much is still desired; the function B(z) = 0.9 − z1z1
is computed as a barrier to show this behaviour is met.

Control in |1⟩ Now consider when the initial region has the control qubit near
the state |1⟩. The following regions are considered:

Z0 = {(zj)3j=0 ∈ C4 : |z2|2 ≥ 0.9},

Zu = {(zj)3j=0 ∈ C4 : |z1|2 + |z2|2 ≥ 0.11}.

This system starts close to the |10⟩ state and the evolution should do nothing
to the control qubit. Note that the specified behaviour does not captures the
NOT behaviour on the target qubit. Our Algorithm 1 considers this system safe
by outputting the barrier certificate B(z) = 0.9 − z2z2 − z3z3. This is also the
barrier if the system were to start in the |11⟩ state instead.

6 Conclusions

In this paper, we extended the theory of barrier certificates to handle com-
plex variables and demonstrated that barrier certificates can be extended to use
complex variables. We then showed how one can automatically generate simple
complex-valued barrier certificates using polynomial functions and linear pro-
gramming techniques. Finally, we explored the application of the developed tech-
niques by investigating properties of time-independent quantum systems.

There are numerous directions for this research to take. In particular, one can
consider (quantum) systems that are time-dependent, have a control component
or are discrete-time, i.e., quantum circuits. Data-driven approaches for generat-
ing barrier certificates based on measurements of a quantum system can also be
considered. A final challenge to consider is how to verify large quantum systems.
Techniques, such as Trotterization, allow Hamiltonians to be simulated either
by simpler Hamiltonians of the same size or of lower dimension. How barrier
certificates can ensure safety of such systems is a route to explore.
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and time T ∈ R+ such that z(T ) ∈ Zu. By the definition of our convex barrier
certificate, we have that B(z(0)) ≤ 0 and B(z(T )) > 0. Thus, the barrier must
grow positively at some point during the system evolution. However, we have

that dB(z(t))
dt ≤ 0 for all t ∈ R+ based on Equation (11). The system cannot

grow positively and so we have a contradiction. Therefore, the system must be
safe. ⊓⊔

B Proof of Proposition 1

Let ż = f(z) be a system over Z with Z0 and Zu being the initial and unsafe sets
as before. Let B denote the set of (complex-valued convex) barrier certificates
such that for any B ∈ B the system f(z) is safe. Take B1, B2 ∈ B and consider
the function B(z) = λB1(z) + (1 − λ)B2(z), where λ ∈ [0, 1]. Since B1(z) ≤ 0
and B2(z) ≤ 0 for all z ∈ Z0, then B(z) ≤ 0 as well. A similar argument holds
for B(z) > 0 for all z ∈ Zu. Finally, consider the differential equation dB

dt . It is
trivial to see that

dB

dt
= λ

dB1

dt
+ (1− λ)

dB2

dt
≤ 0,

because differentiation is linear; and dB1

dt , dB2

dt ≤ 0 for all z ∈ Z. Therefore, B
satisfies the properties of a barrier certificate for f(z) and so B ∈ B. Hence, B
is convex. ⊓⊔

C Derivation of Barrier for Hadamard System

By substituting zjzj = |zj |2 and noting that Re{z} = z + z for any z ∈ C, we
have that

B(z) =
11

5
− 3|z0|2 − Re{z0z1} − |z1|2.

Since |z1|2 = 1− |z0|2 (due to properties of quantum systems), we then have

B(z) =
6

5
− 2|z0|2 − Re{z0z1},

and by simply rearranging we get

B(z) = 2(
1

10
− |z0|2 +

1

2
− Re{z0z1}).

D Proof of Proposition 2

We prove this by showing that B meets the conditions of a convex barrier certifi-
cate (given in Definition 6). Safety is then guaranteed from Theorem 2.

Firstly, consider z ∈ Z0. As |z0|2 ≥ 0.9, then B(z) ≤ 2(− 4
5 −Re{z0z1}). Further,

it can be seen that

|Re{z0z1}| = |Re{z0}Re{z1}+ Im{z0} Im{z1}| < 1×
√

1

10
+ 1×

√
1

10
=

√
2

5
.
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Note that we are taking the maximal possible value of each component and
therefore this is larger than the maximal value of Re{z0z1}. Thus,

B(z) ≤ 2(−4

5
− Re{z0z1}) < 2(−4

5
+

√
2

5
) < 0.

A similar argument can be made for when z ∈ Zu and it can be shown that
B(z) > 0. Finally, we use Equations (8) and (5.1) to get

dB

dt
= −i

(
− (2z0 + z1)(z0 + z1)− (z0)(z0 − z1)

+ (2z0 + z1)(z0 + z1) + (z0)(z0 − z1)
)

= −i
(
− 2z0z1 − z0z1 + z0z1 + 2z0z1 + z0z1 − z0z1

)
= 0,∀z ∈ Z.

Therefore, the system meets the conditions given in Equations (9), (10) and (11);
the system is safe. ⊓⊔
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