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Abstract. A large-scale image-text pair dataset has greatly contributed
to the development of vision-language pre-training (VLP) models, which
enable zero-shot or few-shot classification without costly annotation.
However, in the medical domain, the scarcity of data remains a significant
challenge for developing a powerful VLP model. In this paper, we tackle
the lack of image-text data in chest X-ray by expanding image-label pair
as image-text pair via general prompt and utilizing multiple images and
multiple sections in a radiologic report. We also design two contrastive
losses, named ICL and TCL, for learning study-level characteristics of
medical images and reports, respectively. Our model outperforms the
state-of-the-art models trained under the same conditions. Also, enlarged
dataset improve the discriminative power of our pre-trained model for
classification, while sacrificing marginal retrieval performance. Code is
available at https://github.com/kakaobrain/cxr-clip.

Keywords: Chest X-ray · Vision-Language Pre-training · Contrastive
Learning

1 Introduction

Chest X-ray (CXR) plays a vital role in screening and diagnosis of thoracic
diseases [20]. The effectiveness of deep-learning based computer-aided diagnosis
has been demonstrated in disease detection [22]. However, one of the major
challenges in training deep learning models for medical purposes is the need for
extensive, high-quality clinical annotation, which is time-consuming and costly.

Recently, CLIP [23] and ALIGN [11] have shown the ability to perform vision
tasks without any supervision. However, vision-language pre-training (VLP) in
the CXR domain still lacks sufficient image-text datasets because many pub-
lic datasets consist of image-label pairs with different class compositions. Med-
CLIP [27] attempted to a rule-based labler to use both image-text data and
image-label data. However, it relies on the performance of the rule-based labeler
and is not scalable to other diseases that the labeler cannot address.

In this paper, we propose a training method, CXR-CLIP, that integrates
image-text data with image-label data using class-specific prompts made by
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radiologists. Our method does not depend on a rule-based labeler and can be
applied to any image-label data. Also, inspired by DeCLIP [14], we used Multi-
View Supervision (MVS) utilizing multiple images and texts in a CXR study
to make more image-text pairs for efficient learning. In addition, we introduce
two contrastive loss functions, named image contrastive loss (ICL) and text
contrastive loss (TCL), to learn study-level characteristics of the CXR images
and reports respectively.

The main contributions of this paper are summarized as follows. 1) We tackle
the lack of data for VLP in CXR by generating image-text pairs from image-label
datasets using prompt templates designed by radiologists and utilizing multiple
images and texts in a study. 2) Two additional contrastive losses are introduced
to learn discriminate features of image and text, improving image-text retrieval
performances. 3) Performance of our model is validated on diverse datasets with
zero-shot and few-shot settings.

2 Related Work

Data Efficient VLP Recent studies [14,18] have proposed data-efficient VLP
via joint learning with self-supervision. DeCLIP [14] suggested MVS that utilizes
image and text augmentation to leverage positive pairs along with other self-
supervisions. In CXR domain, GloRIA [8] aligned words in reports and sub-
regions in an image for label efficiency, and BioVIL [2] combined self-supervision
for label efficiency. We modify MVS as two distinct images and texts from a study
and present self-supervised loss functions, ICL and TCL for efficient learning.

Self-supervision within CXR study A CXR study could include several
images in different views and two report sections: ’findings’ and ’impression’.
The impression section includes the differential diagnosis inferred from the find-
ings section. BioVIL [2] enhanced the text encoder by matching two sections
during language pre-training. MedAug [25] shows that self-supervised learning
by matching images in a study is better than differently augmented images.
We utilize both of multiple images and texts from a single study in VLP in an
end-to-end fashion.

Leveraging image-label data in VLP MedCLIP [27] integrated unpaired
images, texts, and labels using rule-based labeler [9], which is less capable of
retrieving the exact report for a given image due to the effect of decoupling
image-text pairs. UniCL [29] suggested using prompts to leverage image-label
dataset [4], considering the samples from the same label to be a positive pair.
To our knowledge, this is the first work to utilize prompting for training in CXR
domain.

3 Method

CXR-CLIP samples image-text pairs from not only image-text data but also
image-label data, and learns study-level characteristics with two images and two
texts per study. The overview of the proposed method is illustrated in Fig 1.
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Fig. 1. Overview of the proposed method with a training batch sampling n studies,
where each study has a pair of images (x1, x2) and a pair of text (t1, t2). If a study
has one image or one text, data augmentation is conducted to make second examples.
For the image-label data, two different prompts are generated from class labels as (t1,
t2). Using sampled pairs, the encoders are trained with three kinds of contrastive losses
(MVS, ICL, and TCL).

3.1 Data Sampling

We define a CXR study as s = {X,T}, where X is a set of images, and T is a set
of "findings" and "impression" sections. The study of image-label dataset has a
set of image labels Y instead of T . For the image-label dataset, we make prompt-
based texts T = Concat({p ∼ P (y)}y∈Y ), where p is a sampled prompt sentence,
P (y) is a set of prompts given the class name and value y, and Concat(·) means
concatenating texts. The set of prompts is used to generate sentences such as
actual clinical reports, taking into account class labels and their values (positive,
negative, etc.), unlike the previous prompt [8] for evaluation which randomly
combines a level of severity, location, and sub-type of disease. Our prompts are
available in Appendix.
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We sample two images (x1, x2) in X if there are multiple images. Otherwise,
we use augmented image Ai(x

1) as x2, where Ai is image augmentation. To
leverage various information from different views in CXR (AP, PA, or lateral),
we sample images from two distinct views as possible. Similarly, we sample two
texts (t1, t2) in T if there are both "findings" and "impression". Otherwise, we
use augmented text At(t

1) as t2, where At is text augmentation. For the image-
label data, we sample two prompt sentences as t1 and t2 from the constructed
T = Concat({p ∼ P (y)}y∈Y ).

3.2 Model Architecture

We construct image encoder Ei and text encoder Et to obtain global represen-
tations of image and text, and a projection layer f i and f t to match the size of
final embedding vectors.

Image Encoder We have tested two different image encoders; ResNet-50 [7]
and Swin-Tiny [15] as follow [8,27]. We extract global visual features from the
global average pooled output of the image encoder. A linear layer is adopted to
project the embeddings into the same size as text embeddings. The normalized
visual embedding v is obtained by v = f i(Ei(x)) / ||f i(Ei(x))||. We denote a
batch of the visual embeddings as V = {v}ni=1, where n is a batch size.

Text Encoder We use BioClinicalBERT [1] model, which is the same ar-
chitecture as BERT [5] but pre-trained with medical texts [12] as follow [8,27].
We use [EOS] token’s final output as the global textual representation. Also, a
linear projection layer is adopted the same as the image encoder. The normalized
text embedding u is denoted as u = f t(Et(t)) / ||f t(Et(t))||. We denote a batch
of the text embedding as U = {u}ni=1 and (vi, ui) are paired.

3.3 Loss Function

In this section, we first describe CLIP loss [23] and then describe our losses
(MVS, ICL, TCL) in terms of CLIP loss. The goal of CLIP loss is to pull image
embedding and corresponding text embedding closer and to push unpaired image
and text farther in the embedding space. The InfoNCE loss is generally adopted
as a type of contrastive loss, and CLIP uses the average of two InfoNCE losses;
image-to-text and text-to-image. The formula for CLIP loss is given by

LCLIP (U, V ) = − 1

2n
(
∑
ui∈U

log
exp(vTi ui/τ)∑

vj∈V exp(uT
i vj/τ)

+
∑
vi∈V

log
exp(uT

i vi/τ)∑
uj∈U exp(vTi uj/τ)

)

(1)
, where τ is a learnable temperature to scale logits.

In DeCLIP [14], MVS uses four LCLIP loss with all possible pairs augmented
views; (x, t), (x, At(t)), (Ai(x), t) and (Ai(x), At(t)). We modify DeCLIP’s MVS
to fit the CXR domain by the composition of the second example. DeCLIP only
utilizes an augmented view of the original sample, but we sample a pair of the
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Table 1. The number of studies for each dataset and split in this paper

Data Pre-training Evaluation
Split MIMIC-CXR CheXpert ChestX-ray14 VinDR RSNA SIIM Open-I
Train 222,628 216,478 89,696 12,000 18,678 8,422
Valid 1,808 233 22,423 3,000 4,003 1,808
Test 3,264 1,000 3,000 4,003 1,807 3,788

second image and text as described in 3.1. We denote the first and the second
sets of image embeddings as U1, U2, and text embeddings as V 1, V 2.

LMV S =
1

4
(LCLIP (U

1, V 1)+LCLIP (U
2, V 1)+LCLIP (U

1, V 2)+LCLIP (U
2, V 2))

(2)
The goal of ICL and TCL is to learn modality-specific characteristics in terms

of image and text respectively. We design ICL and TCL as same as CLIP loss, but
the input embeddings are different. ICL only uses image embeddings; LICL =
LCLIP (V

1, V 2) and TCL only uses text embeddings; LTCL = LCLIP (U
1, U2).

ICL pulls image embeddings from the same study and pushes image embeddings
from the different studies, so that, the image encoder can learn study-level di-
versity. Similarly, TCL pulls embeddings of "findings" and "impression" in the
same study or diverse expressions of prompts from the same label and pushes
the other studies’ text embeddings, so that the text encoder can match diverse
clinical expressions on the same diagnosis. Thereby, the final training objective
consists of three contrastive losses balanced each component by λI and λT , for-
mulated by L = LMV S + λILICL + λTLTCL.

4 Experiment

4.1 Datasets

We used three pre-trained datasets and tested with various external datasets
to test the generalizability of models. The statistics of the datasets used are
summarized in Table 1.

MIMIC-CXR [13] consists of CXR studies, each with one or more im-
ages and free-form reports. We extracted "findings" and "impression" from the
reports. We used the training split for pre-training and the test split for image-
to-text retrieval.

CheXpert [9] is an image-label data with 14 classes, obtained from the
impression section by its rule-based labeler, and each class is labeled as positive,
negative, uncertain, or none (not mentioned). We used the training split for pre-
training with class-specific prompts. CheXpert5x200 is a subset of CheXpert
for 5-way classification, which has 200 exclusively positive images for each class.
Note that only the reports of CheXpert5x200 are publicly available, but the
reports of CheXpert are not. Following the previous works [8,27], we excluded
CheXpert5x200 from the training set and used it for test.
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ChestX-ray14 [26] consists of frontal images with binary labels for 14 dis-
eases. Prompts are generated by sampling 3 negative classes per study. We used
20% of the original training set for validation, and the remaining 80% for pre-
training.

RSNA pneumonia [24] is binary-labeled data as pneumonia or normal.
We split train/valid/test set 70%, 15%, 15% of the dataset following [8] for the
external classification task.

SIIM Pneumothorax1 is also binary labeled as pneumothorax or normal.
We split the train/valid/test set same ratio as RSNA pneumonia following [8]
and used it for the classification task.

VinDR-CXR [19] contains 22 local labels and 6 global labels of disease,
which were obtained by experienced radiologists. We split the validation set
from the original training set. Of 28 classes, "other diseases" and "other lesions"
classes were excluded. Then, only 18 classes having 10 or more samples within
the test set were evaluated for the binary classification of each class as follow [10].

Open-I [3] is an image-text dataset. From each study, one of the report
sections and one frontal-view image were sampled and used for image-to-text
retrieval.

4.2 Implementation Details

We used augmentations Ai and At to fit medical images and reports. For Ai, we
resize and crop with scale [0.8, 1.1], randomly adapt CLAHE [21], and random
color jittering; brightness, hue ratios from [0.9, 1.1] and contrast, saturation [0.8,
1.2]. For At, to preserve clinical meaning, sentence swap and back-translation2

from Italian to English is used. The image size and final-embedding size are
set to 224 and 512 respectively as in previous work [27]. We set λI and λT

to 1.0, 0.5 for balancing total loss. Two encoders were trained for 15 epochs
in a mixed-precision manner, early stopped by validation loss, and optimized
by AdamW [17] with an initial learning rate 5e-5 and a weight decay 1e-4. We
used cosine-annealing learning-rate scheduler [16] with warm-up for 1 epoch. A
training batch consists of 128 studies with 256 image-text pairs. We implemented
all experiments on PyTorch with 4 NVIDIA V100 GPUs.

4.3 Comparison with State-of-the-arts

Zero-shot and few-shot classification Table 2 shows performance on clas-
sification tasks of our models and state-of-the-art models. To evaluate zero-
shot classification fairly, we used evaluation prompts suggested from previous
works [2,8,10]. The evaluation prompts are available in Appendix. We evalu-
ate binary classification computed by Area Under ROC (AUC) and multi-class
classification computed by accuracy (ACC). Our ResNet model trained with
MIMIC-CXR outperforms GloRIA [8] except for CheXpert5x200, as GloRIA
1 https://siim.org/page/pneumothorax_challenge
2 https://huggingface.co/Helsinki-NLP
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Table 2. Comparison with state-of-the-art for zero-shot(ZS) or few-shot(10%) classifi-
cation tasks. M, C, and C14 mean MIMIC-CXR, CheXpert, and ChestX-ray14, respec-
tively. C∗ means CheXpert with reports, which are not publicly available. ResNet50
(R50) and SwinTiny (SwinT ) mean the image encoder used for each model.

Pre-train VinDR-CXR RSNA SIIM C5x200Model Name Dataset ZS 10% 100% ZS 10% 100% ZS 10% 100% ZS-ACC
GloRIAR50 C* 78.0 73.0 73.1 80.6 88.2 88.5 84.0 91.5 91.9 62.4∗

CXR-CLIPR50 M 78.8 82.1 82.2 83.3 88.5 89.2 85.2 88.3 90.5 56.2
CXR-CLIPSwinT M 78.3 84.9 85.4 81.3 88.0 88.4 85.5 86.9 88.3 54.3
MedCLIPSwinT M,C 82.4 84.9 85.1 81.9 88.9 89.0 89.0 90.4 90.8 59.2
CXR-CLIPR50 M,C 83.0 81.4 82.1 81.7 88.5 88.9 86.4 88.4 90.7 61.7
CXR-CLIPSwinT M,C 82.7 86.1 86.7 84.5 88.1 88.8 87.9 89.6 91.2 60.1
CXR-CLIPR50 M,C,C14 78.1 80.2 81.0 81.8 88.7 89.3 85.2 91.5 92.8 60.3
CXR-CLIPSwinT M,C,C14 78.9 88.0 89.0 80.1 89.2 89.8 91.4 92.9 94.0 62.8

Table 3. Comparison with state-of-the-arts for image-to-text retrieval. The notations
of datasets and models are same to Table 2.

Pre-Train CheXpert5x200 MIMIC-CXR Open-I TotalModel Name Dataset R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 RSUM
GloRIAR50 C* 17.8 38.8 49.9 7.2 20.6 30.3 1.5 4.4 6.5 177.0
CXR-CLIPR50 M 9.4 23.0 32.6 21.4 46.0 59.2 3.8 8.2 12.3 216.9
CXR-CLIPSwinT M 8.4 21.5 30.2 21.6 48.9 60.2 3.6 8.3 11.5 214.2
MedCLIPSwinT M,C 2.6 3.0 3.6 1.1 1.4 5.5 0.1 0.4 0.7 18.4
CXR-CLIPR50 M,C 5.5 19.2 27.4 20.2 45.9 58.2 3.5 8.2 12.0 200.1
CXR-CLIPSwinT M,C 8.5 23.0 31.6 19.6 44.2 57.1 3.1 8.3 11.6 207.0
CXR-CLIPR50 M,C,C14 5.7 18.0 28.3 19.7 44.4 56.4 2.3 6.7 10.1 191.6
CXR-CLIPSwinT M,C,C14 7.0 20.1 29.7 20.9 46.2 58.8 2.4 6.6 9.4 201.1

trained with image-text pair in CheXpert. Our SwinTiny model trained with
MIMIC-CXR and CheXpert outperforms MedCLIP [27], which is the same ar-
chitecture trained with the same datasets, in most of the metrics. Adding more
pre-training datasets by prompting image-label datasets tends to improve per-
formance for classifications, while the SwinTiny CXR-CLIP pre-trained with
three datasets, performs the best for most of the metrics. More comparison with
self-supervised models is available in Appendix.

Image-to-text retrieval We evaluated image-to-text retrieval computed by
R@K, the recall of the exact report in the top K retrieved reports for a given
image. (Table 3) While GloRIA [8] uses image-text pairs in CheXpert(C*) which
is not available in public, CXR-CLIP uses image-text in MIMIC-CXR. So we
adapt an external image-text dataset Open-I [3] for a fair comparison. GloRIA
has the best performance on CheXpert but our model trained with MIMIC-
CXR, which has similar amounts of studies to CheXpert, outperforms on Open-
I. MedCLIP almost lost the ability to retrieve image-text due to decoupling pairs
of image and text during pre-training. In CXR-CLIP, adding more image-label
datasets such as CheXpert and ChestX-ray14 degrades the image-text retrieval
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Table 4. Ablations and comparison with CLIP [23] and DeCLIP [14]. Our augmen-
tations effectively preserves clinical meaning than EDA. Our full methodology (CXR-
CLIP) outperforms DeCLIP.

Method CheXpert 5x200 MIMIC-CXR Total
ACC R@1 R@5 R@10 R@1 R@5 R@10 RSUM

Vanila CLIP 58.9 4.4 14.4 22.6 17.3 41.2 52.6 152.5
+ Study Level Sampling 58.7 4.6 15.1 23.2 17.8 42.5 54.2 157.4
+ Augmentations 60.6 5.7 17.0 24.9 16.1 40.2 51.5 155.4
+ MVS 61.2 5.4 17.1 24.7 16.3 40.6 53.3 157.4
+ ICL 61.6 6.8 20.3 28.6 17.5 41.6 53.2 168.0
+ TCL (CXR-CLIP) 61.7 6.2 18.2 29.1 19.6 44.8 56.6 174.5
MVS of DeCLIP (EDA) 59.5 3.2 15.5 22.9 15.8 39.1 51.5 148.0
MVS of DeCLIP (Our aug) 59.4 6.0 17.0 24.4 15.1 38.8 51.8 153.1
DeCLIP (Our aug) 59.4 5.7 16.1 24.6 18.1 44.0 55.3 163.8

performance, possibly because the contribution of the text in original reports
was diluted.

4.4 Ablations

For the ablation study, models with ResNet-50 [7] backbone were trained on
MIMIC-CXR and CheXpert datasets and tested on zero-shot classification and
image-to-text retrieval tasks with MIMIC-CXR and CheXpert5x200 datasets.

We conducted two ablations shown in Table 4. First, we analyzed the effect
of each component of CXR-CLIP by adding the components to vanilla CLIP [23]
one by one. To validate our data sampling closer, we divided the sampling method
into three parts 1) study-level sampling 2) data augmentations 3) Multi-view and
Multi-text sampling (MVS). Our study-level sampling strategy improves perfor-
mance compared to vanilla CLIP, which uses a naive sampling method bringing
an image and corresponding report. Additionally, the modified data augmenta-
tion to fit the CXR domain contributes to performance increment of classifica-
tion, the similar performance on retrieval. MVS slightly improves performances
in both classification and image-text retrieval. Adding more supervision (ICL
and TCL) improves performance by utilizing better multi-views and multi-text
inputs. However, TCL drops the performance of recalls in CheXpert5x200, TCL
could be hard to optimize variation of the radiologic report and prompt not
diverse as images.

In the second ablation study, CXR-CLIP was compared to DeCLIP [14] to
confirm that our MVS using two image-text pairs per study is better than the
MVS of DeCLIP which uses naively augmented images and texts. We show
that our text augmentation outperforms DeCLIP’s text augmentation named
EDA [28] in terms of image-to-text recall, which implies our text augmentation
preserves clinical meaning. The superiority of our MVS over DeCLIP’s MVS
confirms that using multiple images and texts from one study is better than
using images and texts from augmented examples. Also, our full methodology
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(CXR-CLIP) outperforms DeCLIP, suggesting that our method efficiently learns
in the CXR domain more than DeCLIP.

5 Conclusion

We presented a framework enlarging training image-text pair by using image-
label datasets as image-text pair with prompts and utilizing multiple images
and report sections in a study. Adding image-label datasets achieved perfor-
mance gain in classification tasks including zero-shot and few-shot settings, on
the other hand, lost the performance of retrieval tasks. We also proposed loss
functions ICL and TCL to enhance the discriminating power within each modal-
ity, which effectively increases image-text retrieval performance. Our additional
loss functions are designed to efficiently learn CXR domain knowledge along
with image-text contrastive learning.
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Table 1. Comparison between our and GloRIA [8] prompt on cheXpert5x200 [9].
Performance gain of the model not trained with prompt (MIMIC-CXR [13]) suggests
that our prompts also worth to evaluate. Training with our prompts further improved
performance.

Pre-train GloRIA prompt Our promptModel Name Dataset C5x200 ACC C5x200 ACC
CXR-CLIPSwinT M 54.3 56.1
CXR-CLIPSwinT M,C 60.1 64.2
CXR-CLIPSwinT M,C,C14 62.8 65.7

Table 2. Comparison with self-supervised models (REFERS [30] and MRM [31]) in
terms of classification tasks. We compared two-settings linear-probing and fine-tune
whole visual backbone. All the models has ViT-base [6] backbone and are trained on
MIMIC-CXR

Model Name VinDR-CXR RSNA SIIM
Linaer Fine-tune Linaer Fine-tune Linaer Fine-tune

REFERSV iT−B 83.6 90.1 86.7 87.9 81.3 89.5
MRMV iT−B 77.0 91.3 86.7 89.9 86.0 93.3
CXR-CLIPV iT−B 89.3 91.6 89.6 90.3 90.2 92.7

Table 3. Evaluation prompts for zero-shot classification. For VinDR-CXR and SIIM,
we use simple prompt in Jang et el. [10], and we use prompt in BioVIL [2] for RSNA.

Dataset Positive Negative
VinDR-CXR, SIIM {classname} No {classname}
RNSA-pneumonia Findings suggesting pneumonia. No evidence of pneumonia.
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Table 4. To compare BioVIL [2], we train our ResNet models with image resolution
512, denoted CXR-CLIP+

R50. RSUM is sum of recall@k, where k = {1, 5, 10}. Our
models trained MIMIC outperforms BioVIL and CXR-CLIP+

R50 generally outperforms
CXR-CLIPR50

Model Name Pre-train
Dataset

VinDR RSNA SIIM CheXpert5x200 MIMIC OpenI
ZS(AUC) ZS(AUC) ZS(AUC) ZS(ACC) RSUM RSUM RSUM

BioVILR50 M - 83.1 - - - - -
CXR-CLIPR50 M 78.8 83.3 85.2 54.0 65.0 126.6 25.3
CXR-CLIP+

R50 M 82.2 84.8 85.2 56.8 64.6 133.7 27.5
CXR-CLIPR50 M,C 83.0 85.0 86.4 61.7 52.1 124.3 23.7
CXR-CLIP+

R50 M,C 87.5 85.3 89.0 57.2 50.1 117.6 22.6
CXR-CLIPR50 M,C,C14 78.1 81.8 85.2 60.3 52.0 120.5 19.1
CXR-CLIP+

R50 M,C,C14 84.6 86.7 87.3 62.0 59.6 120.7 25.1

Table 5. Default positive and negative templates for suggested prompts, as well as
class-specific templates. E is expressions for each class, + means text concatenation,
[·] means random selection from the given list, and ( ) is blank text.

Positive templates Negative templates

Default
[{E}., There is {E}.,
{E} is [present, seen, noted].,
the presence of {E} is [seen, noted]. ]

[ [There is, ( )] + [no {E}.,
no radiographic evidence for {E}.,
no [visible, definite, obvious, appreciable, evident] {E}.,
no [convincing, definite, ( )] evidence of {E}.,
no convincing signs of {E}.],
No {E} is [visible, present, noted]. ]

Edema
Pneumonia

[Default Positive templates,
Findings are + [suggesting,
compatible with, suggestive of,
representing] + {E}. ]

Cardiomegaly
[heart size, cardiac size, cardiac silhouette,
cardiac shadow, cardiac contour]
+ [is, appears] + [enlarged, increased].

[heart size, cardiac size, cardiac silhouette,
cardiac shadow, cardiac contour]
+ [is, appears]
+ [normal, within normal limits, unremarkable].

Enlarged
Cardio-
mediastinum

[[cardiomediastinal, mediastinal] silhouette,
[cardiomediastinum, mediastinum],
mediastinal contour]
+ [is, appears] + [enlarged, widened].

[[cardiomediastinal, mediastinal] silhouette,
[cardiomediastinum, mediastinum],
mediastinal contour]
+ [is, appears]
+ [normal, within normal limits, unremarkable].

No Finding
[the lungs, both lungs,
the lung fields, both lung fields] +
[are clear, appear clear].

-
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Table 6. Various expressions E for classes using default templates. +, [·] and ( ) are
same as Table 4.

Class Name Expressions E

Atelectasis [Atelectasis]
Consolidation [Consolidation]
Edema [Pulmonary edema]
Emphysema [Emphysema, Emphysematous change]

Fibrosis [[( ), pulmonary]+ [( ), fibrotic] + [scar, scarring],
parenchymal + [scar, scarring], fibrotic change]

Fracture [Fracture, Acute fracture]
Hernia [Hernia, Herniation, Hiatal Hernia]

Infiltration [[( ), pulmonary] + infiltration, infiltrate,
infiltrative + [density, opacity, process]]

Lung Lesion Pos: [lung lesion]
Neg: [[lung, pulmonary] + [nodule, mass, lesions, nodules or masses]]

Lung Opacity [pulmonary opacity]
Mass [[pulmonary, lung] + mass]
Nodule [[( ) , pulmonary] + [nodule, nodular opacity, nodular density]]
Pleural Effusion [Pleural Effusion]
Pleural Other [Pleural Abnormality]
Pleural Thickening [Pleural Thickening, Thickened pleura]
Pneumonia [Pneumonia]
Pneumothorax [Pneumothorax]
Support Devices [Support Devices]
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