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Abstract. Coronary artery segmentation on coronary-computed tomog-
raphy angiography (CCTA) images is crucial for clinical use. Due to
the expertise-required and labor-intensive annotation process, there is
a growing demand for the relevant label-efficient learning algorithms.
To this end, we propose partial vessels annotation (PVA) based on the
challenges of coronary artery segmentation and clinical diagnostic char-
acteristics. Further, we propose a progressive weakly supervised learning
framework to achieve accurate segmentation under PVA. First, our pro-
posed framework learns the local features of vessels to propagate the
knowledge to unlabeled regions. Subsequently, it learns the global struc-
ture by utilizing the propagated knowledge, and corrects the errors in-
troduced in the propagation process. Finally, it leverages the similarity
between feature embeddings and the feature prototype to enhance testing
outputs. Experiments on clinical data reveals that our proposed frame-
work outperforms the competing methods under PVA (24.29% vessels),
and achieves comparable performance in trunk continuity with the base-
line model using full annotation (100% vessels).

Keywords: Coronary artery segmentation · Label-efficient learning ·
Weakly supervised learning.

1 Introduction

Coronary artery segmentation is crucial for clinical coronary artery disease diag-
nosis and treatment [4]. Coronary-computed tomography angiography (CCTA),
as a non-invasive technique, has been certified and recommended as established
technology in the cardiological clinical arena [15]. Thus, automatic coronary
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artery segmentation on CCTA images has become increasingly sought after as
a means to enhance diagnostic efficiency for clinicians. In recent years, the per-
formance of deep learning-based methods have surpassed that of conventional
machine learning approaches (e.g. region growing) in coronary artery segmenta-
tion [4]. Nevertheless, most of these deep learning-based methods highly depend
on accurately labeled datasets, which need labor-intensive annotations. There-
fore, there is a growing demand for relevant label-efficient learning algorithms
for automatic coronary artery segmentation on CCTA images.

Label-efficient learning algorithms have garnered considerable interest and
research efforts in natural and medical image processing [5,6,16], while research
on label-efficient coronary artery segmentation for CCTA images is slightly lag-
ging behind. Although numerous label-efficient algorithms for coronary artery
segmentation in X-ray angiograms have been proposed [19,20], only a few re-
searches focus on CCTA images. Qi et al. [13] proposed an elabrately designed
EE-Net to achieve commendable performance with limited labels. Zheng et al
[22] transformed nnU-Net into semi-supervised segmentation field as the gener-
ator of Gan, having achieved satisfactory performance on CCTA images. Most
of these researches use incomplete supervision, which labels a subset of data.
However, other types of weak supervision (e.g. inexact supervision), which are
widely used in natural image segmentation [16], are seldom applied to coronary
artery segmentation on CCTA images.

Different types of supervision are utilized according to the specific tasks. The
application of various types of weak supervision are inhibited in coronary artery
segmentation on CCTA images by the following challenges. 1) Difficult labeling
(Fig. 1(a)). The target regions are scattered, while manual annotation is drawn
slice by slice on the planes along the vessels. Also, boundaries of branches and pe-
ripheral vessels are blurred. These make the annotating process time-consuming
and expertise-required. 2) Complex topology (Fig. 1(b)). Coronary artery shows
complex and slender structures, diameter of which ranges from 2 mm to 5 mm.
The tree-like structure varies individually. Based on these challenges and the
insight that vessels share local feature (Fig. 1(b)), we propose partial vessels
annotation and our framework as following.

Given the above, we propose partial vessels annotation (PVA) (Fig. 1(c)) for
CCTA images. While PVA is a form of partial annotation (PA) which has been
adopted by a number of researches [2,7,12,18], our proposed PVA differs from the
commonly used PA methods. More specifically, PVA labels vessels continuously
from the proximal end to the distal end, while the labeled regions of PA are
typically randomly selected. Thus, our proposed PVA has two merits. 1) PVA
balances efficiency and informativity. Compared with full annotation, PVA only
requires clinicians to label vessels within restricted regions in adjacent slices,
rather than all scattered target regions in each individual slice. Compared with
PA, PVA keep labeled vessels continuous to preserve local topology information.
2) PVA provides flexibility for clinicians. Given that clinical diagnosis places
greater emphasis on the trunks rather than the branches, PVA allows clinicians
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Fig. 1. Motivation. (a) and (b) shows the two challenges of coronary artery segmen-
tation, while (c) shows our proposed partial vessels annotation (PVA) according to the
challenges. a) Coronary artery has blurred boundaries and scattered target regions.
b) Coronary artery has complex overall topology but similar local feature. c) Partial
vessels annotation (red) labels less regions than full annotation (overall).

to focus their labeling efforts on vessels of particular interest. Therefore, our
proposed PVA is well-suited for clinical use.

In this paper, we further propose a progressive weakly supervised learning
framework for PVA. Our proposed framework, using PVA (only 24.29% vessels
labeled), achieved better performance than the competing weakly supervised
methods, and comparable performance in trunk continuity with the full annota-
tion (100% vessels labeled) supervised baseline model. The framework works in
two stages, which are local feature extraction (LFE) stage and global structure
reconstruction (GSR) stage. 1) LFE stage extracts the local features of coronary
artery from the limited labeled vessels in PVA, and then propagates the knowl-
edge to unlabeled regions. 2) GSR stage leverages prediction consistency during
the iterative self-training process to correct the errors, which are introduced in-
evitably by the label propagation process. The code of our method is available
at https://github.com/ZhangZ7112/PVA-CAS.

To summarize, the contributions of our work are three-fold:

– To the best of our knowledge, we proposed partial vessels annotation for
coronary artery segmentation for the first time, which is in accord with
clinical use. First, it balances efficiency and informativity. Second, it provides
flexibility for clinicians to annotate where they pay more attention.

– We proposed a progressive weakly supervised learning framework for par-
tial vessels annotation-based coronary artery segmentation. It only required
24.29% labeled vessels, but achieved comparable performance in trunk con-
tinuity with the baseline model using full annotation. Thus, it shows great
potential to lower the label cost for relevant clinical and research use.

– We proposed an adaptive label propagation unit (LPU) and a learnable plug-
and-play feature prototype analysis (FPA) block in our framework. LPU
integrates the functions of pseudo label initialization and updating, which

https://github.com/ZhangZ7112/PVA-CAS
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dynamically adjusts the updating weights according to the calculated con-
fidence level. FPA enhances vessel continuity by leveraging the similarity
between feature embeddings and the feature prototype.

2 Method

As shown in Fig. 2, our proposed framework for partial vessels annotation (PVA)
works in two stages. 1) The LFE stage(Sec. 2.1) extracts and learns vessel fea-
tures from PVA locally. After the learning process, it infers on the training set to
propagate the learned knowledge to unlabeled regions, outputs of which are in-
tegrated with PVA labels to initialize pseudo labels. 2) The GSR stage (Sec. 2.2)
utilizes pseudo labels to conduct self-training, and leverages prediction consis-
tency to improve the pseudo labels. In our proposed framework, we also designed
an adaptive label propagation unit (LPU) and a learnable plug-and-play feature
prototype analysis (FPA) block. LPU initialize and update the pseudo labels;
FPA block learns before testing and improves the final output during testing.

Fig. 2. Two-stage framework. LFE stage: 1) Sl learns local features from the labeled
vessels in PVA labels. 2) Sl propagates the knowledge to unlabeled regions and LPU
initializes the pseudo labels. GSR stage: 3) Sg learns the global structure from the
pseudo labels. 4) LPU updates the pseudo labels if a quality control test is passed. 5)
FPA improves the testing output after the iterative self-training process of (3) and (4).
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2.1 Local Feature Extraction Stage

In LFE stage, our hypothesis is that the small areas surrounding the labeled
regions hold valid information. Based on this, a light segmentation model Sl

is trained to learn vessel features locally, with small patches centering around
the labeled regions as input and output. In this manner, the negative impact of
inaccurate supervision information in unlabeled regions is also reduced.

Pseudo Label Initialization in LPU. After training, Sl propagates the
learned knowledge of local feature to unlabeled regions. For each image of shape
H ×W ×D, the corresponding output logit ŷ1 ∈ [0, 1]H×W×D of Sl provides a
complete estimate of the distribution of vessels, albeit with some approximation.
Meanwhile, the PVA label yPV A ∈ {0, 1}H×W×D provides accurate information
on the distribution of vessels, but only to a limited extent. Therefore, LPU in-
tegrate ŷ1 and yPV A to initialize the pseudo label yPL (Equ. 1), which will be
utilized in GSR stage and updated during iterative self-training.

y
(t=0)
PL (h,w, d)

∀(h,w,d)∈RH×W×D

=

{
1, yPV A(h,w, d) = 1,

ŷ1(h,w, d), otherwise.
(1)

2.2 Global Structure Reconstruction Stage

The GSR stage mainly consists of three parts: 1) The segmentation model Sg

to learn the global tree-like structure; 2) LPU to improve pseudo labels; 3) FPA
block to improve segmentation results at testing.

Through initialization (Equ. 1), the initial pseudo label y(t=0)
PL contains the

information of both PVA labels and the knowledge of local features in Sl. There-
fore, at the beginning of this stage, Sg learns from y

(t=0)
PL to warm up. After this,

logits of Sg are utilized to update the pseudo labels during iterative self-training.

Pseudo Label Updating in LPU. The principle of this process is that more
reliable logit influences more the distribution of the corresponding pseudo label.
Based on this principle, first we calculate the confidence degree η(t) ∈ [0, 1] for
ŷ
(t)
2 . Defined by Equ. 2, η(t) numerically equals to the average of the logits in

labeled regions. This definition makes sense since the expected logit equals to
ones in vessel regions and zeros in background regions. The closer ŷ

(t)
2 gets to

the expected logit, the higher η(t) (confidence degree) will be.

η(t) =

∑
h

∑
w

∑
d

yPV A(h,w, d) · ŷ(t)2 (h,w, d)∑
h

∑
w

∑
d

yPV A(h,w, d)
(2)

Then, a quality control test is performed to avoid negative optimization as
far as possible. If the confidence degree η(t) is higher than all elements in the
set {η(i)}t−1

i=1, the current logit is trustworthy to pass the test to improve the
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pseudo label. Then, y(t)PL is updated by the exponentially weighted moving aver-
age (EWMA) of the logits and the pseudo labels (Equ. 3). This process is similar
to prediction ensemble [11], which hase been adopted to filter pseudo labels[9].
However, different from their methods, where the factor η(t) is a fixed hyper-
parameter coefficient and the pseudo labels are updated each or every several
epoches, η(t) in our method is adaptive and a quality control test is performed.

y
(t)
PL =

{
η(t)ŷ

(t)
2 + (1− η(t))y

(t−1)
PL , η(t) = max{{η(i)}ti=1}

y
(t−1)
PL , otherwise.

(3)

Feature Prototype Analysis Block. Inspired by [21], which generates class
feature prototype ρc (Equ. 4) from the embeddings zli of labeled points in class
c, we inherit the idea but further transform the mechanism into the proposed
learnable plug-and-play block, FPA block. Experimental experience finds that
the output of FPA block has good continuity, for which the FPA output are
utilized to enhance the continuity of convolution output at testing.

ρc =
1

|Ic|
∑
zl
i∈Ic

zli (4)

In the penultimate layer of the network, which is followed by a 1 × 1 × 1
convolutional layer to output logits, we parallelly put the feature map Z ∈
RC×H×W×D into FPA. The output similarity map O ∈ R1×H×W×D is calcu-
lated by Equ. 5, where Z(h,w, d) ∈ RC denotes the feature embeddings of voxel
(h,w, d), and ρθ ∈ RC the kernel parameters of FPA.

O(h,w, d) = exp(−∥Z(h,w, d)− ρθ∥2) (5)

The learning process of FPA block is before testing, during which the whole
model except FPA gets frozen. To reduce the additional overhead, ρθ is initialized
by one-time calculated ρc and fine-tuned with loss Lfpa (Equ. 6), where only
labeled voxels will take effect in updating the kernel.

Lfpa =

∑
h

∑
w

∑
d

yPV A(h,w, d) · log(O(h,w, d))∑
h

∑
w

∑
d

yPV A(h,w, d)
(6)

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

Experiments are implemented on a clinical dataset, which includes 108 subjects
of CCTA volumes (2:1 for training and testing). The volumes share the size of
512× 512×D, with D ranging from 261 to 608. PVA labels of the training set
are annotated by clinicians, where only 24.29% vessels are labeled.
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The metrics used to quantify the results include both integrity and continuity
assessment indicators. Integrity assessment indicators are Mean Dice Coefficient
(Dice), Relevant Dice Coefficient (RDice) [13], Overlap (OV) [8]; continuity as-
sessment indicators are Overlap util First Error (OF) [14] on the three main
trunks (LAD, LCX and RCA).

3.2 Implementation Details

3D U-Net[3] is set as our baseline model. Experiments were implemented using
Pytorch on GeForce RTX 2080Ti. Adam optimizer was used to train the models
with an initial learning rate of 10−4. The patch sizes were set as 128× 128× 128
and 512 × 512 × 256 respectively for Sl and Sg. When testing, sliding windows
were used with a half-window width step to cover the entire volume.

3.3 Comparative Test

To verify the effectiveness of our proposed method, it is compared with both clas-
sic segmentation models (3D U-Net [3], HRNet [17], Transunet [1]) and partial
annotation-related weakly supervised frameworks (EWPA [12], DMPLS [10]).

Table 1. Quantative results of different methods under partial vessels annotation
(PVA, 24.29% vessels labeled) or full annotation (FA, 100% vessels labeled).

Label Method Dice(%)↑ RDice(%)↑ OV(%)↑ OF↑
LAD LCX RCA

PVA

3D U-Net [3] 60.60±7.09 69.45±7.82 62.24±6.43 0.647±0.335 0.752±0.266 0.747±0.360

HRNet [17] 48.72±7.16 52.31±7.96 37.81±6.61 0.490±0.297 0.672±0.301 0.717±0.356

Transunet [1] 63.08±6.42 71.97±7.38 61.21±6.40 0.669±0.274 0.762±0.243 0.728±0.362

EWPA [12] 55.41±6.15 61.54±6.83 60.48±5.17 0.659±0.334 0.759±0.286 0.749±0.364

DMPLS [10] 59.12±7.69 65.81±8.15 59.99±5.80 0.711±0.292 0.775±0.284 0.711±0.358

Ours 71.45±6.07 83.14±6.72 75.40±6.15 0.895±0.226 0.915±0.190 0.879±0.274

FA 3D U-Net 83.14±3.52 90.91±4.18 89.00±4.75 0.913±0.231 0.843±0.301 0.873±0.265

The quantative results of different methods are summarized in Tab. 1, which
shows that our proposed method outperforms the competing methods under
PVA. The competing frameworks (EWPA and DMPLS) had achieved the best re-
sults in their respective tasks under partial annotation, but our proposed method
achieved better results for PVA-based coronary artery segmentation. It is worth
mentioning that the performance in trunk continuity (measured by the indicator
OF) of our proposed method using PVA (24.29% vessels labeled) is comparable
to that of the baseline model using full annotation (100% vessels labeled).

The qualitative visual results verify that our proposed method outperforms
the competing methods under PVA. Three cases are shown in Fig. 3. All the cases
show that the segmentation results of our method have good overall topology
integrity, especially on trunk continuity.
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Fig. 3. Visual comparison of the segmentation results under PVA. Green symbols (ar-
rows and dotted frames) indicate higher-quality regions than yellow symbols.

3.4 Ablation Study

Ablation experiments were conducted to verify the importance of the components
in our proposed framework (summarized in Tab. 2). The performance improve-
ment verifies the effectiveness of pseudo label initialization (PLI) and updating
(PLU) mechanisms in the label propagation unit (LPU). PLI integrates the in-
formation of PVA labels with the propagated knowledge, and PLU improves the
pseudo labels during self-training. With the help of FPA block, the segmentation
results gain further improvement, especially on the continuity of trunks.

Table 2. Quantative results of ablation analysis of different components.

Sl
LPU Sg FPA Dice(%)↑ RDice(%)↑ OV(%)↑ OF↑

PLI PLU LAD LCX RCA
✓ 60.60±7.09 69.45±7.82 62.24±6.43 0.647±0.335 0.752±0.266 0.747±0.360

✓ ✓ ✓ 64.23±6.44 73.81±6.89 66.19±5.63 0.751±0.328 0.813±0.231 0.784±0.349

✓ ✓ ✓ ✓ 71.43±7.20 81.70±6.92 72.13±5.94 0.873±0.227 0.860±0.223 0.808±0.334

✓ ✓ ✓ ✓ ✓ 71.45±6.07 83.14±6.72 75.40±6.15 0.895±0.226 0.915±0.190 0.879±0.274

4 Conclusion

In this paper, we proposed partial vessels annotation (PVA) for coronary artery
segmentation on CCTA images. The proposed PVA is convenient for clinical
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use for the two merits, providing flexibility as well as balancing efficiency and
informativity. Under PVA, we proposed a progressive weakly supervised learning
framework, which outperforms the competing methods and shows comparable
performance in trunk continuity with the full annotation supervised baseline
model. In our framework, we also designed an adaptive label propagation unit
(LPU) and a learnable plug-and-play feature prototype analysis(FPA) block.
LPU integrates the functions of pseudo label initialization and updating, and
FPA improves vessel continuity by leveraging the similarity between feature
embeddings and the feature prototype. To conclude, our proposed framework
under PVA shows great potential for accurate coronary artery segmentation
while requiring significantly less annotation effort.
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