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Abstract. The most challenging, yet practical, setting of semi-supervised
federated learning (SSFL) is where a few clients have fully labeled data
whereas the other clients have fully unlabeled data. This is particularly
common in healthcare settings where collaborating partners (typically
hospitals) may have images but not annotations. The bottleneck in this
setting is the joint training of labeled and unlabeled clients as the ob-
jective function for each client varies based on the availability of labels.
This paper investigates an alternative way for effective training with la-
beled and unlabeled clients in a federated setting. We propose a novel
learning scheme specifically designed for SSFL which we call Isolated
Federated Learning (IsoFed) that circumvents the problem by avoid-
ing simple averaging of supervised and semi-supervised models together.
In particular, our training approach consists of two parts - (a) isolated
aggregation of labeled and unlabeled client models, and (b) local self-
supervised pretraining of isolated global models in all clients. We evalu-
ate our model performance on medical image datasets of four different
modalities publicly available within the biomedical image classification
benchmark MedMNIST. We further vary the proportion of labeled clients
and the degree of heterogeneity to demonstrate the effectiveness of the
proposed method under varied experimental settings.

1 Introduction

Federated Learning (FL) [10,11,12,27] is a distributed learning approach that al-
lows the collaborative training of machine learning models using data from decen-
tralized sources while preserving data privacy. However, most current FL meth-
ods have limitations, including assuming fully annotated and homogeneous data
distribution among local clients. In a practical scenario, like a multi-institutional
healthcare collaboration, the participating clients (i.e., medical institutions and
hospitals) may not have the incentive or resources to annotate their data [16]. To
address this, semi-supervised federated learning (SSFL) [4,16,28] methods have
been proposed to utilize unlabeled data and integrate semi-supervised learning
algorithms [21,2,19,26,20] into federated settings.

Based on the availability of labeled data, the existing SSFL studies can be
classified into two main scenarios: (a) labels-at-client, with each client having
some labeled and some unlabeled data [9,15], (b) labels-at-server, with each
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client possessing only unlabeled data and the server possessing some labeled
data [7,9,28,4]. We argue that a more realistic SSFL scenario which is highly
challenging but rarely explored in the literature is where some clients have la-
beled data, and others have completely unlabeled data [14,24,16].

The classic federated averaging scheme aggregates weights of all labeled and
unlabeled client models trained in parallel. The labeled clients typically use
cross-entropy-based loss functions while the unlabeled clients primarily use con-
sistency regularization loss [19] or pseudo-labeling-based [1,23] semi-supervised
learning schemes. This results in high gradient diversity [28] between the super-
vised and unsupervised models particularly in heterogeneous client settings, as
these are targeted to optimize separate objective functions. As a result, the ag-
gregated global model is weak and unable to capture a strong representation of
either group of clients. This, in turn, leads to the generation of noisy targets for
unlabeled clients and hence the global model fails to converge. The situation is
further aggravated under non-IID data distribution conditions where the labeled
client class distribution varies greatly from that of unlabeled clients. This nat-
urally poses the following important question: “How can we effectively co-train
supervised and unsupervised models under FL setting that aim to optimize sepa-
rate objective functions at their respective heterogeneous labeled data or unlabeled
data clients?”

To address this question, we present a novel SSFL algorithm which we call
IsoFed that effectively improves client training by isolating the model aggregation
of labeled and unlabeled client groups while still leveraging one group of models
to improve another. In summary, the primary contributions of this paper are:

1. We propose IsoFed, a novel SSFL framework, that realizes isolated aggrega-
tion of labeled and unlabeled client models in the server followed by federated
self-supervised pretraining of the global model in each individual site.

2. This is the first work to reformulate model aggregation for fully labeled and
fully unlabeled clients under SSFL settings. To the best of our knowledge,
we are the first to isolate the aggregation of labeled and unlabeled client
models while switching between the two client groups.

3. This work bridges the gap between Federated Learning and Transfer Learn-
ing (TL) [22] by combining the best of both worlds for learning across sites.
First, we conduct federated model aggregation among the labeled or unla-
beled client groups. Next, we leverage Transfer Learning to allow knowledge
transfer between the two groups. Therefore, we avoid the issue of averag-
ing the supervised and unsupervised models with high gradient diversity in
the context of SSFL while also being unaffected by catastrophic forgetting
encountered in multi-domain transfer learning.

4. We, for the first time, extensively evaluate SSFL methods on multiple med-
ical image benchmarks with a varying proportion of clients and degree of
heterogeneity. Our results show that the proposed isolated aggregation fol-
lowed by federated pretraining outperforms the state-of-the-art method, viz.,
RSCFed [14] by 6.91% in terms of accuracy and achieves near-supervised
learning performance.
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Fig. 1. Problem settings and aggregation schemes for semi-supervised federated learn-
ing. (a) Three plausible semi-supervised federated learning settings. We address the
unique condition (3) with fully labeled and fully unlabeled clients. (b) One round of
a standard FL aggregation scheme. (c) One round of our proposed two-step isolated
aggregation scheme for labeled clients and unlabeled clients.

2 Methods

2.1 Problem Description

Assume a federated learning setting with m fully labeled clients denoted as

{C1, C2, ..., Cm} each possessing a labeled dataset Dl = {(X l
i , y

l
i)}N

l

i=1 and n
fully unlabeled clients defined as {Cm+1, Cm+2, ..., Cm+n} each possessing an
unlabeled dataset Du = {(Xu

i )}N
u

i=1. Our objective is to learn a global model
θglob via decentralized training.

2.2 Local Training

We adopt mean-teacher-based semi-supervised learning [20,12,14] to train each
unlabeled client. At the beginning of each round, the global model Wglob is used
to initialize the teacher model Wt. At the end of each communicating round, the
student model Ws is returned to the server as the local model. Each batch of im-
ages undergoes two types of augmentations. The teacher model receives weakly
augmented data whereas the student model receives strongly augmented data
in each local iteration. In order to decrease entropy of model output, the tem-
perature of predictions is further increased via sharpening operation [3,2,5,14]

as p̂t,i = Sharpen (pt, τ)i = p
1
τ
t,i/
∑

j p
1
τ
t,j where pt,i and p̂t,i denote each element

in pt before and after sharpening, respectively. τ denotes the temperature pa-
rameter. The student model is trained on the local data (Du) via consistency
regularization with the teacher model output. The consistency regularization
loss is defined as LMSE = ∥p̂t − ps∥22 where p̂t and ps are teacher and student
predictions, respectively. ∥.∥22 denotes L2-norm. The student model weights are
optimized via backpropagation whereas the teacher model weights are updated
by exponential moving averaging (EMA) after each local iteration, as in Eqn. 1:

Wt+1 = αWs + (1− α)Wt (1)
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where α denotes momentum parameter. We optimize cross-entropy loss for local
training on labeled clients defined as LCE = −yi log pi, where yi denotes labels.

2.3 Isolated Federated Aggregation

In this section, we explain the proposed isolated aggregation of labeled and unla-
beled client models. Each communication round is composed of two consecutive
substeps. First, the server initializes the global model W t

glob and sends it to un-
labeled clients (Ui). The global model is used to initialize the teacher model
Wt in each client. At this stage, only the unlabeled clients perform local training
on the global model by minimizing the consistency regularization loss. The up-
dated semi-supervised models obtained after running the local epochs are then
uploaded to the server. We adopt a dynamically weighted Federated Averaging
scheme [14] to aggregate the model parameters of all unlabeled clients Wu at
the server. For this, we first obtain the averaged model by performing Fed-Avg
as in Eqn. 2.

Wavg =

∑k=K
k=1 nkWk∑k=K

k=1 nk

(2)

whereK is the total number of clients. nk is the number of samples in each client.
The client models are then dynamically scaled using coefficients ck designed as
functions of the individual distances from the averaged model as denoted in
Eqn. 3. The global model (Wglob) is updated by re-aggregating the client weights
scaled by new coefficients ck. In Eqn. 3, λc is a hyperparameter.

ck =
nk exp(−λc

∥Wk−Wavg∥2

nk
)∑k=K

k=1 nk

,Wglob =

∑k=K
k=1 ckWk∑k=K

k=1 ck
(3)

The updated global model parameters are then communicated to each la-
beled client which initializes its models using these weights and trains the local
model via minimization of the standard cross-entropy loss. After a pre-defined
number of local epochs, each labeled client uploads its local model to the server.
The server then aggregates all the supervised models employing the aforemen-
tioned weighting scheme and the resultant global model W t+1

glob is then sent to
each unlabeled client at the beginning of the next round.

2.4 Client-adaptive Pretraining

Motivated by the recent success of continued pretraining in Natural Language
Processing [6,8,17], we present a client-adaptive pretraining strategy as the sec-
ond part of our proposed method. If we view the isolated FL from a transfer
learning perspective, the global model received in one group of clients from the
server can be regarded as an averaged model pretrained on the other group of
clients. To improve client-specific model performance, we conduct a second phase
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Fig. 2. Overview of our proposed methodology (IsoFed) with 1 labeled and 3 unlabeled
clients. The unlabeled clients are trained using a mean-teacher-based SSL model. A
switching mechanism swaps between labeled and unlabeled clients for isolated model
aggregation in each round. After isolated model aggregation, an information maximiza-
tion loss is used for client-adaptive pretraining to enhance the certainty and diversity
of predictions of the global model for each client before actual local training.

of in-client federated pretraining on the global model before initializing it as a
teacher model.

For self-supervised pretraining, we jointly learn the client-invariant features
and client-specific classifier by optimizing an information-theoretic metric called
information maximization (IM) loss denoted as Linf in Eqn. 4. It acts as an
estimate of the expected misclassification error of the global model for each
client. Optimizing the IM loss makes the global model output predictions that
are individually certain but collectively diverse. With the help of a diversity
preserving regularizer (first component in Eqn. 4), IM avoids the trivial solution
of entropy minimization where all unlabeled data collapses to the same one-hot
encoding. The joint optimization is done by reducing the entropy of the output
probability distribution of global model (pi) in conjunction with maximizing
the mutual information between the data distribution and the estimated output
distribution yielded by the global model.

Linf = Ex∈D

[(
1

N

N∑
i=1

pi

)
log

(
1

N

N∑
i=1

pi

)
− 1

N

N∑
i=1

pi log pi

]
(4)

where N is the number of classes. x denotes any instance belonging to a dataset
D. The entropy minimization leads to the least number of confused predictions
whereas the regularizer avoids the degenerate solution where every data sample
is assigned to the same class [18,13]. The pretrained model is then initialized as
the teacher model to train the local student model in each round.
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3 Experiments and Results

3.1 Datasets and FL settings

To evaluate the performance and generalisability of the proposed method, we
conduct experiments on four publicly available medical image benchmark datasets
with different modalities [25], viz., BloodMNIST (microscopic peripheral blood
cell images), PathMNIST (colon pathology), PneumoniaMNIST (chest X-ray),
and OrganAMNIST (abdominal CT - axial view). Each image resolution is
28× 28 pixels and is normalized before feeding it to the network. BloodMNIST
contains a total of 17,092 images and is organized into 8 classes. PathMNIST
has 107,180 images and has 9 types of tissues. PneumoniaMNIST is a collec-
tion of 5,856 images and the task is binary classification (diseased vs normal).
OrganAMNIST is comprised of 58,850 images and the task is multi-class classi-
fication of 11 body organs. We split each training dataset between 4 clients to
mimic a practical collaborative setting in healthcare. To testify the versatility
of the models, we study two challenging non-IID data partition strategies with
0.5 and 0.8-Dirichlet (γ). As a result, the number of samples per class and per
client widely vary from each other. Additionally, we show the impact of varying
the proportion of labeled clients (75%, 50%, 25%) on model performance. See
Suppl. Sec 1 for more details.

3.2 Implementation and training details

For all datasets, we employ a simple CNN comprising of two 5×5 convolution
layers, a 2×2 max-pooling layer, and two fully-connected layers as the feature
extraction backbone followed by a two-layer MLP and a fully-connected layer as
the classification network. Our model is implemented with PyTorch. We follow
the settings prescribed for a training RSCFed to enable a fair comparison. See
Suppl. Sec 2 for more training details.

3.3 Results and discussion

We use the standard metrics - accuracy, area under a ROC curve (AUC), Pre-
cision, and Recall to evaluate performance. We observe that the dynamically
weighted version of Fed-Avg (discussed in Sec 2.3) outperforms standard Fed-
Avg and hence use it as a baseline in this paper instead of vanilla Fed-Avg. In or-
der to fairly evaluate IsoFed, we compare with the following state-of-the-art SSFL
benchmarks: (a) MT+wFed-Avg: a combination of Mean Teacher and dynam-
ically weighted Fed-Avg, (b) RSCFed: Random sampling consensus-based FL
[14]. Since RSCFed has already been shown to significantly outperform FedIRM
[16] and Fed-Consist [24] on multiple datasets, we exclude those methods from
our comparative study due to space constraints. We consider fully-supervised FL
as an upper bound and report the results for both the non-IID settings on each
dataset. Tables 1-2 show that overall, IsoFed outperforms RSCFed by 6.91%,
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Table 1. Comparison with baselines on BloodMNIST and PathMNIST. wFedAvg
refers to dynamically weighted Federated averaging. UB implies Upper Bound. MT
refers to Mean teacher-based SSL. Acc. and Prec. denote Accuracy and Precision. L
and U denote the number of labeled and unlabeled clients respectively.

Labeling Method
Client Metrics (%) Metrics (%)

L U
Acc. AUC Prec. Recall Acc. AUC Prec. Recall

γ = 0.8 (less non-IID) γ = 0.5 (more non-IID)

Dataset 1 : BloodMNIST, Task : 8-class classification

Fully supervised wFed-Avg (UB) 4 0 79.57 96.61 77.65 75.70 79.45 96.80 78.28 73.31

MT+wFed-Avg 3 1 77.32 96.70 74.16 73.79 70.89 95.11 73.46 65.06
RSCFed 3 1 76.94 95.54 75.11 71.18 75.18 94.99 76.55 68.96
IsoFed 3 1 79.43 97.32 76.70 76.67 76.10 95.88 77.13 72.29

Semi supervised
MT+wFed-Avg 2 2 75.88 96.56 72.85 71.94 58.29 88.35 57.85 60.46

RSCFed 2 2 75.97 95.30 73.58 72.77 61.18 91.50 54.85 60.79
IsoFed 2 2 80.47 97.25 77.11 78.11 64.05 90.01 60.26 64.03

MT+wFed-Avg 1 3 75.24 95.13 72.43 70.37 52.56 89.39 57.89 55.81
RSCFed 1 3 71.88 93.96 70.47 67.75 19.35 64.31 07.05 23.62
IsoFed 1 3 79.23 96.43 76.68 77.00 63.70 90.58 70.22 63.81

Dataset 2 : PathMNIST, Task : 9-class classification

Fully supervised wFed-Avg (UB) 4 0 70.45 94.92 72.13 69.84 68.97 94.93 68.05 67.58

MT+wFed-Avg 3 1 60.97 93.60 68.14 62.00 57.92 92.93 67.20 59.98
RSCFed 3 1 61.55 93.71 61.00 58.95 58.33 93.59 60.68 58.73
IsoFed 3 1 63.10 94.73 69.25 64.62 60.23 93.98 52.80 61.66

Semi supervised
MT+wFed-Avg 2 2 67.10 95.17 66.41 66.40 61.28 91.26 61.50 57.56

RSCFed 2 2 64.18 93.17 60.79 58.89 58.83 90.35 58.88 55.02
IsoFed 2 2 70.32 94.74 65.96 64.86 64.00 93.46 63.88 61.22

MT+wFed-Avg 1 3 59.57 90.66 63.14 58.93 56.31 89.92 60.42 53.92
RSCFed 1 3 64.75 94.09 66.89 63.66 57.42 89.43 54.96 53.53
IsoFed 1 3 66.48 92.24 63.71 62.06 64.02 93.99 66.12 62.39

4.15%, 7.28%, and 6.71% in terms of average accuracy, AUC, Precision, and
Recall respectively.

Table 1 shows our method and our baselines on 8-class classification with
BloodMNIST. L and U denote the number of labeled and unlabeled clients re-
spectively. The average accuracy for fully-supervised FL is 79.51%. Among the
baselines, MT+wFed-Avg has a higher overall accuracy score of 68.36% while
RSCFed has an accuracy score of 63.41%. Particularly, we find RSCFed collapses
under the most extreme case of γ = 0.5 and U=3. IsoFed improves the accuracy
score to 73.83% and is stable for all evaluated conditions. Table 1 further reports
performance on 9-class classification with PathMNIST. The fully-supervised FL
achieves an overall accuracy of 69.71%. The baselines have very similar accuracy
scores of 60.53% and 60.84% respectively. IsoFed improves it to 64.69%.

Table 2 shows binary classification results on PneumoniaMNIST. The fully-
supervised FL has an overall accuracy of 87.18%. MT+wFed-Avg and RSCFed
achieve average accuracy scores of 83.44% and 79.57%. IsoFed has the best accu-
racy of 85.45%. Furthermore, the results of 11-class anatomy classification task
on OrganAMNIST are also reported in Table 2. The upper bound accuracy is
69.61% and the baseline accuracies are 61.91% and 62.97% respectively. IsoFed
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Table 2. Performance comparison of IsoFed with baselines on PneumoniaMNIST and
OrganAMNIST (with ablation study). PT refers to the federated pretraining step.

Labeling Method
Client Metrics (%) Metrics (%)

L U
Acc. AUC Prec. Recall Acc. AUC Prec. Recall

γ = 0.8 (less non-IID) γ = 0.5 (more non-IID)

Dataset 3 : PneumoniaMNIST, Task : Binary classification

Fully supervised wFed-Avg (UB) 4 0 87.34 95.32 86.71 89.02 87.02 95.64 86.45 88.76

MT+wFed-Avg 3 1 86.54 95.20 85.94 88.21 86.86 94.85 85.92 87.86
RSCFed 3 1 86.58 95.63 89.02 88.68 86.70 94.50 85.75 87.65
IsoFed 3 1 87.10 95.04 86.45 89.00 89.26 95.80 88.26 89.44

Semi supervised
MT+wFed-Avg 2 2 83.65 89.74 82.45 82.99 82.21 96.17 83.20 85.26

RSCFed 2 2 78.37 87.36 77.31 78.76 84.46 95.58 84.58 86.88
IsoFed 2 2 84.70 90.75 83.56 84.64 82.68 95.15 83.34 85.41

MT+wFed-Avg 1 3 81.41 89.84 82.05 77.69 79.97 94.45 81.28 83.12
RSCFed 1 3 78.85 86.66 77.56 76.84 62.50 50.00 31.25 50.00
IsoFed 1 3 85.00 91.68 83.98 83.95 77.12 93.65 80.47 81.40

Dataset 4 : OrganAMNIST, Task: 11-class classification

Fully supervised wFed-Avg (UB) 4 0 69.72 94.41 67.44 69.60 69.50 94.63 68.12 69.60

MT+wFed-Avg 3 1 68.36 93.72 68.02 69.38 66.49 93.69 67.51 68.25
RSCFed 3 1 68.14 94.26 67.44 69.53 67.08 93.82 68.82 68.36

IsoFed w/o PT 3 1 68.98 94.32 68.83 69.88 67.45 93.98 67.85 69.35
IsoFed 3 1 69.47 95.05 68.04 70.85 68.65 94.88 68.64 69.77

Semi supervised
MT+wFed-Avg 2 2 66.28 92.77 66.12 67.63 61.71 92.55 65.79 62.66

RSCFed 2 2 66.68 92.42 66.90 66.56 62.51 91.89 64.09 63.35
IsoFed w/o PT 2 2 68.67 93.25 67.65 68.50 64.37 92.11 65.70 65.17

IsoFed 2 2 68.95 93.95 68.32 69.83 64.08 92.45 64.56 65.47
MT+wFed-Avg 1 3 57.75 90.95 61.50 55.68 50.84 87.65 60.07 48.51

RSCFed 1 3 58.50 90.86 63.48 55.76 54.90 89.58 50.53 53.41
IsoFed w/o PT 1 3 62.03 91.36 64.50 61.44 56.40 89.79 61.61 55.72

IsoFed 1 3 62.77 91.48 64.52 61.79 61.90 91.55 62.39 60.21

achieves an overall accuracy score of 65.97%. In general, the performance of all
methods decreases with γ changing from 0.8 to 0.5. It is expected as the clients
become more label-skewed due to higher non-IID data partition. However, our
approach is least affected by this which is reflected in its accuracy decrease by
2.19% as opposed to 4.45% and 2.94% incurred by baselines. As foreseen, perfor-
mance also deteriorates with decrease in the number of labeled clients. For L:U
= 3:1, 2:2, 1:3, the baseline accuracies degrade by 2.16%, 5.61%, 15.31% and
2%, 5.01%, 12.91% w.r.t. fully supervised FL setting. However, for IsoFed, the
decrease in accuracy is only 0.55%, 3.09%,and 7.28%, respectively. This proves
the near-supervised learning performance of the proposed training method.

The superior performance of IsoFed over the baselines and closer performance
to the upper bound demonstrates better learning and generalization. This is
achieved by the isolated aggregation strategy and federated pretraining on all
datasets.
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3.4 Ablation study

Owing to space constraints, we show ablation experiments only on OrganAM-
NIST, which provides the most challenging classification task, to evaluate the
impact of IsoFed components. (More results in Suppl. Sec 2). Table 2 demon-
strates that client-adaptive pretraining improves model accuracy by 5.50% for
the most extreme condition of γ = 0.5 and L:U=1:3.

4 Conclusion

We have introduced a novel SSFL framework called IsoFed, an isolated federated
learning technique, to address joint training of labeled and unlabeled clients in
the context of decentralized semi-supervised learning. It opens a new research
direction in learning across domains by unifying two dominant approaches -
Federated Learning (among labeled or unlabeled clients) and Transfer Learn-
ing (between labeled and unlabeled clients). Our results challenge the conven-
tional strategy of co-training fully labeled and fully unlabeled clients in SSFL.
Experimental results on 4 different medical imaging datasets with varied pro-
portion of labeled clients (25, 50, 75%) and varied non-IID distribution (0.5 &
0.8-Dirichlet) show that IsoFed achieves a considerable boost compared to cur-
rent state-of-the-art SSFL method. IsoFed can be easily incorporated into other
federated learning-based aggregation schemes as well as used in conjunction with
any other semi-supervised learning framework in federated learning setting.
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