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Abstract. While deep neural network models offer unmatched classifi-
cation performance, they are prone to learning spurious correlations in
the data. Such dependencies on confounding information can be diffi-
cult to detect using performance metrics if the test data comes from the
same distribution as the training data. Interpretable ML methods such
as post-hoc explanations or inherently interpretable classifiers promise
to identify faulty model reasoning. However, there is mixed evidence
whether many of these techniques are actually able to do so. In this
paper, we propose a rigorous evaluation strategy to assess an explana-
tion technique’s ability to correctly identify spurious correlations. Using
this strategy, we evaluate five post-hoc explanation techniques and one
inherently interpretable method for their ability to detect three types
of artificially added confounders in a chest x-ray diagnosis task. We find
that the post-hoc technique SHAP, as well as the inherently interpretable
Attri-Net provide the best performance and can be used to reliably iden-
tify faulty model behavior.
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1 Introduction

Black-box neural network classifiers offer enormous potential for computer-aided
diagnosis and prediction in medical imaging applications but, unfortunately, they
also have a strong tendency to learn spurious correlations in the data [I1]. For
the development and safe deployment of machine learning (ML) systems it is
essential to understand what information the classifiers are basing their decisions
on, such that reliance on spurious correlations may be identified.

Spurious correlations arise when the training data are confounded by ad-
ditional variables that are unrelated to the diagnostic information we want to
predict. For instance, older patients in our training data may be more likely to
present with a disease than younger patients. A classifier trained on this data
may inadvertently learn to base its decision on image features related to age
rather than pathology. Crucially, such faulty behavior cannot be identified using
classification performance metrics such as area under the ROC curve (AUC)
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if the testing data contains the same confounding information as the training
data, since the classifier predicts the right thing, but for the wrong reason. If
undetected, however, such spurious correlations may lead to serious safety im-
plications after deployment.

Training with confounders Testing with confounders
Positive samples (wn:h N% cunfounders) Negative samples Test Sample Explanation
(a) Tag (b) Hyperintensities  (¢) Obstruction No confounder.

Fig. 1. Overview. We train classifiers on datasets with three types of artificially added
confounders highlighted by arrows. We then evaluate the ability of explanation tech-
niques to correctly identify reliance on these confounders (shown Attri-Net [24]).

Interpretable ML approaches may be used as a powerful tool to detect spu-
rious correlations during development or after deployment of an ML system.
Currently, the most widely used explanation modality are visual explanations,
which highlight the pixels in the input image that are responsible for a particular
decision. Common strategies include methods which leverage the gradient of the
prediction with respect to the input image [2312522/T9[7], explain the predic-
tions by counterfactually generating an image of the opposite class [Q1820124],
interpret the feature map of the last layer before the classification [27IRI10],
or methods that build a local approximation of the decision function such as
LIME [16], or SHAP [I5].

The majority of visual explanation methods are post-hoc techniques, meaning
a heuristic is applied to any trained model (e.g. a ResNet [I3]) to approximately
understand the decision mechanism for a given data point. However, post-hoc
techniques are by definition only approximations and many techniques have been
found to suffer from serious limitations [26J/4I12]. Inherently interpretable tech-
niques on the other hand build custom architectures that are designed to directly
reveal the reasoning of the classifier to the user without the need for approxima-
tions. This class of methods does not suffer from the same limitations as post-hoc
methods, and it has been argued that inherently interpretable approaches should
be preferred in high-stakes applications such as medical image analysis [I7]. For
instance, if a classifier bases its decision on a spurious signal, an inherently in-
terpretable classifier should by definition reveal this relationship.

Inherently interpretable visual explanation approaches are much less widely
explored than post-hoc techniques, but there has recently been an increased
interest in the topic. Two recently proposed methods in this category are the
attribution network (Attri-Net) [24], and convolutional dynamic alignment net-
works (CoDA-Nets) [6]. Attri-Net first produces human-interpretable feature
attribution maps for each disease category using a GAN-based counterfactual
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generator [24]. Then makes the final prediction with simple logistic regression
classifiers based on those feature attribution maps. CoDA-Nets express neural
networks as input dependent linear transformation [6]. Both approaches produce
explanations on the pixel level of the input images.

Related work on comparing explanation techniques A number of works
have studied the quality of post-hoc explanation techniques. The vast majority
of work focuses exclusively on gradient-based approaches (e.g. [215]). In their
landmark study, Adebayo et al. [I] find that commonly used gradient-based
explanation techniques do not pass some basic sanity checks. Arun et al. [5]
extends this work to weakly supervised localisation in one of the few papers in
this domain focusing on medical data. Both papers, however, do not consider
other types of commonly used approaches such as counterfactual methods, or
local function approximations such as LIME or SHAP.

A small number of works specifically investigate explanations’ sensitivity to
spurious correlations. In closely related work to ours, Adebayo et al. [3] explore
a large library of post-hoc explanation techniques including LIME and SHAP,
for detecting spurious image backgrounds in a bird versus dog classification task
and find that many techniques are in fact able to detect the spurious back-
ground. In subsequent work, the same authors explore the usefulness of four
post-hoc gradient-based explanation methods for identifying spurious correla-
tions in hand and knee radiographs [2] and come to the conclusion that the
examined methods are ineffective at identifying spurious correlations. We note
that prior work is inconclusive on the usefulness of explanation techniques for
identifying spurious correlations. In particular, in the medical context it is still
unclear if commonly used explanation techniques are suitable for the detection
of spurious correlations. Moreover, there is, to our knowledge, no evidence for
the supposition that inherently interpretable techniques are better suited for this
task.

Contributions We present a rigorous evaluation of post-hoc explanations and
inherently interpretable techniques for the identification of spurious correlations
in a medical imaging task. Specifically, we focus on the task of diagnosing car-
diomegaly from chest x-ray data with three types of synthetically generated
spurious correlations (see Fig. . To identify whether an explanation correctly
identifies a model’s reliance on spurious correlations, we propose two quantita-
tive metrics which are highly reflective of our qualitative findings. In contrast
to the majority of prior work we focus on a wide range of different explanation
approaches including counterfactual techniques and local function approxima-
tions, as well as post-hoc techniques and an inherently interpretable approach.
Our analysis yields actionable insights which will be useful for a wide audience
of ML practitioners.
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2 A Framework for Evaluating Explanation Techniques

In the following, we introduce our evaluation strategy and proposed evaluation
metrics, the studied confounders, as well as the evaluated explanation techniques.
The strategy and evaluation metrics are generic and can also be applied to
different problems. The confounders are engineered to correspond to realistic
image artifacts that can appear in chest x-ray imagin

2.1 Evaluation Strategy

We assume a setting in which the development data for a binary neural net-
work based classifier contains an unknown spurious correlation with the target
label. To quantitatively study this setting, we create training data with artifi-
cial spurious correlations by adding a confounding effect (e.g. a hospital tag) in
a percentage of the cases with a positive label, where we vary the percentage
p € {0, 20, 50,80, 100}. E.g., for p = 100% all of the positive images in the train-
ing set will have an artificial confounder, and for p = 0% there is no spurious
signal. With increasing p the reliance on a spurious signal becomes more likely.
The images with a negative label remain untouched.

In the evaluation, we consider a scenario in which the test data contain
the same confounder type with the same proportion p used in the respective
trainings. In this case, we can not tell if a classifier relies on the confounded
features from classification performance. Our aim, therefore, is to investigate
whether explanation techniques can identify that the classifier predicts the right
thing for the wrong reason.

We perform all experiments on chest x-ray images from the widely used
CheXpert dataset [I4], where we focus on the binary classification task on disease
cardiomegaly. We divided our dataset into a training (80%), validation (10%)
test (10%) set.

2.2 Studied Confounders

We study three types of confounders inspired by real-world artefacts. Firstly,
we investigate a hospital tag placed in the lower left corner of the image (see
Fig ) Secondly, we add vertical lines of hyperintense signal that can be caused
by foreign materials on the light path assembly (see Fig ) Lastly, we consider
an oblique occlusion of the image in the lower part of the image, which is an
artefact that we observed for many images in the CheXpert dataset (see Fig )

2.3 Evaluation Metrics for Measuring Confounder Detection

We propose two novel metrics which reflect an explanation’s ability to correctly
identify spurious correlations.

* Our code can be found under |github.com/ss-sun/right-for-the-wrong-reason.
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Confounder Sensitivity (CS) Firstly, the explanations should be able to cor-
rectly attribute the confounder if classifier bases its decision on it. We assess this
property by summing the number of true positive attributions divided by the
total number of confounded pixels for each test image. We consider a pixel a true
positive if it is part of the pixels affected by the confounder and in the top 10%
attributed pixels according to a visual explanation. Thus the maximum sensitiv-
ity of 1 is obtained if all confounded pixels are in the top 10% of the attributions.
Note that we do not penalise attributions outside of the confounding label as
those can still also be correct. To guarantee that we only evaluate on samples for
which the prediction is actually influenced by the confounder, we only include
images for which the prediction with and without the confounding label is of the
opposite class. To reduce computation times we use a maximum of 100 samples
for each evaluation. An optimal explanation methods should obtain a CS score
of 0 if the data contains p = 0% confounded data points, since in that case the
spurious signal should not be attributed. For increasing p the confounder sensi-
tivity should increase, i.e. the explanation should reflect the classifiers increasing
reliance on the confounder.

Sensitivity to prediction changes via explanation NCC Secondly, the ex-
planations should not be invariant to changes in classifier prediction. That is, if
the classifier’s prediction for a specific image changes when adding or removing
a confounder, then the explanations should also be different. We measure this
property using the average normalised cross correlation (NCC) between expla-
nations of test images when confounders were either present or absent.Again,
we only evaluate on images for which the prediction changes when adding the
confounder as in these cases, we know the classifier is relying on confounders,
and we evaluate a maximum of 100 samples. An optimal explanation method
should obtain a high NCC score if the training data contains p = 0% confounded
data points, since in that case the explanation with and without the confounder
should be similar. For increasing p the NCC score should decrease to reflect the
classifiers increasing reliance on the confounder.

2.4 Evaluated Explanation Methods

We evaluated five post-hoc techniques with representative examples from the ap-
proaches mentioned in the introduction: Guided Backpropgation [23] and Grad-
CAM [19] (gradient-based), Gifsplanation (counterfactual), and LIME [16] and
SHAP partition explainer [I5] (local linear approximations). All post-hoc tech-
niques were applied to a standard black-box ResNet50 model. We furthermore
investigated the interpretable visual explanation method Attri-Net [24]. We used
the default parameters for all methods. We found CoDA-Nets [6] required lengthy
hyperparameter tuning for each type of experiment, and decided to exclude it
in this paper.
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3 Results

We first established the classifiers’ performance in the presence of confounders,
then compared all techniques in their ability to identify such confounders.

Classification performance Both investigated classifiers, the ResNet50 and
the inherently interpretable Attri-Net, performed similarly in terms of classifi-
cation AUC (first row of Fig. [2)). For all three confounders, classification AUC
consistently increased with increasing contamination p of the training dataset.
This indicated that the classifiers increasingly relied on the spurious signal. For
p = 100% contamination, where the confounder was present on all positive train-
ing examples, both classifiers reached almost a perfect classification AUC of 1.
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Fig. 2. (top row) Classification AUC of Attri-Net and Resnet50 on images containing
hospital tags (left), hyperintensities (middle) or obstruction confounders (right col-
umn). The classifiers were trained with a varying proportion of confounders present
in the positive examples in the training set (shown on the x-axes). (bottom rows)
The explanation techniques’ ability to identify confounders in terms of confounder
sensitivity (middle row) and explanation NCC (bottom row, lower is better).
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Explanations We analysed the explanations’ ability to identify confounders
by reporting confounder sensitivity (CS, middle row in Fig. |2)) and explanation
NCC (bottom row in Fig. . Out of the investigated methods Attri-Net and
SHAP were closest to the ideal behaviour of high confounder sensitivity and low
explanation NCC for p > 0%. We found that SHAP performed extremely well in
detecting tag confounders, but struggled with hyperintensities confounders. This
can be explained by the fact that the tag confounder is relatively small and thus
is more likely to be completely covered by the superpixels in SHAP. Overall, the
inherently interpretable Attri-Net technique achieved the best balance. In agree-
ment with related literature we found that gradient-based explanation methods
performed poorly. In particular, Guided Backpropagation displayed similar CS-
scores no matter if the classifier relies on a spurious signal (p > 0%) or not
(p = 0%). Note that some results for p = 100% were missing because no data
points fulfilled the criterion of the prediction being flipped with and without the
confounders.

Figs. [3] [4 & [5] contain examples explanations for the hyperintensity, tag,
and edge confounder, respectively. Our qualitative analysis of the results con-
firms the quantitative findings, with SHAP and Attri-Net providing the most
intuitive explanations. In particular, in the challenging hyperintensities scenario
(see Fig. |3) AttriNet was the only method able to highlight the confounders in
a human-interpretable fashion. We note that in all examples when a confounder
was present, SHAP tended to highlight only the confounder, while Attri-Net
also highlighted features related to Cardiomegaly. This may reflect the different
decision mechanisms of the ResNet50 and the Attri-Net.

4 Discussion

In this paper, we proposed an evaluation strategy to assess the ability of visual
explanations to correctly identify a classifier’s reliance on a spurious signal. We
specifically focused on the scenario where the classifier is predicting the right
thing, but for the wrong reason, which is highly significant for the safe devel-
opment of ML-basd diagnosis and prediction systems. Using this strategy, we
assessed the performance of five post-hoc explanation techniques and one inher-
ently interpretable technique with three realistic confounding signals. We found
that the inherently interpretable Attri-Net technique, as well as the post-hoc
SHAP technique performed the best, with Attri-Net yielding the most balanced
performance. Both techniques are suitable for finding false reliance on a spu-
rious signals. We also observed that the variation in the explanations’ sparsity
makes them perform differently in detecting spurious signals of different sizes and
shapes. In agreement with prior work, we found that gradient based techniques
performed less robustly in our experiments.

From our experiments we draw two main conclusions. Firstly, practitioners
looking to check for spurious correlations in a trained black-box model such as
a ResNet should give preference to SHAP which provided the best performance
out of the post-hoc techniques in our experiments. Secondly, an inherently in-
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Fig. 3. Explanations for one example image with and without hyperintensities con-
founders. We show results for models trained on 20% (top rows) and 80% (bottom
rows) confounded data points, respectively.
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Fig. 4. Explanations for one example image with (top) and without (bottom) a tag
confounder for models trained on 50% confounded data points.
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Fig.5. Explanation for one example image with (top) and without (bottom) an
obstruction confounder for models trained on 50% confounded data points.
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terpretable technique, namely Attri-Net, performed the best in our experiments
providing evidence to the supposition by Rudin et al. [I7] that inherently inter-
pretable techniques may provide a fruitful avenue for future work.

A major limitation of our study is the limited number of techniques we
examined. Thus a primary focus of future work will be to scale our experiments
to a wider range of techniques. Future work will also focus on human-in-the-loop
experiments, as we believe, this will be the ultimate assessment of the usefulness
of different explanation techniques.
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Fig. 1. (top row) Classification performance of Attri-Net and Resnet50 on a test set
with the same proportion of confounders as the train set (same as top row of Fig.
2 in main manuscript). (bottom row) Classification performance of Attri-Net and
Resnet50 on test set without confounders. This demonstrates the models’ reliance on
the confounders and exemplifies potential risks associated with the deployment of such
a model.

Table 1. Correlation of confounder sensitivity and explanation NCC with contamina-
tion p.

Methods Attri-Net|LIME| GB |SHAP|GradCAM|Gifsplan.
Corr (confounder sensitivity, p)| 0.65 0 [0.14| 0.58 0.13 0.09
Corr (explanation NCC, p) -0.83 |-0.03|-0.66| -0.65 -0.44 -0.06




12

GB GCam LIME SHAP Gifsplan. Attri-Net

20%

Tag

80%

Tag

Fig. 2. Explanations for one example image with and without tag confounders. We
show results for models trained on 20% (top rows) and 80% (bottom rows) con-
founded data points, respectively.
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Fig. 3. Explanations for one example image with and without obstruction confounders.
We show results for models trained on 20% (top rows) and 80% (bottom rows)
confounded data points, respectively.
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