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Abstract. Detecting breast lesion in videos is crucial for computer-
aided diagnosis. Existing video-based breast lesion detection approaches
typically perform temporal feature aggregation of deep backbone fea-
tures based on the self-attention operation. We argue that such a strat-
egy struggles to effectively perform deep feature aggregation and ig-
nores the useful local information. To tackle these issues, we propose a
spatial-temporal deformable attention based framework, named STNet.
Our STNet introduces a spatial-temporal deformable attention module
to perform local spatial-temporal feature fusion. The spatial-temporal
deformable attention module enables deep feature aggregation in each
stage of both encoder and decoder. To further accelerate the detection
speed, we introduce an encoder feature shuffle strategy for multi-frame
prediction during inference. In our encoder feature shuffle strategy, we
share the backbone and encoder features, and shuffle encoder features
for decoder to generate the predictions of multiple frames. The exper-
iments on the public breast lesion ultrasound video dataset show that
our STNet obtains a state-of-the-art detection performance, while oper-
ating twice as fast inference speed. The code and model are available at
https://github.com/AlfredQin/STNet.

Keywords: Breast lesion detection · Ultrasound videos · Spatial-temporal
deformable attention · Multi-frame prediction.

1 Introduction

Ultrasound imaging is a very effective technique for breast lesion diagnosis,
which has high sensitivity. Automatically detecting breast lesions is a challeng-
ing problem with a potential to aid in improving the efficiency of radiologists
in ultrasound-based breast cancer diagnosis [19,22]. Some of the challenges as-
sociated with automatic breast lesion detection include blurry boundaries and
changeable sizes of breast lesions.
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Most existing breast lesion detection methods can be categorized into image-
based [20,11,12,17,18] and video-based [1,9] breast lesion detection approaches.
Image-based breast lesion detection approaches perform detection in each frame
independently. Compared to image-based breast lesion detection approaches,
methods based on videos are capable of utilizing temporal information for im-
proved detection performance. For instance, Chen et al. [1] exploited temporal
coherence for semi-supervised video-based breast lesion detection. Recently, Lin
et al. [9] proposed a feature aggregation network, termed as CVA-Net, that ex-
ecutes intra-video and inter-video fusions at both video and clip levels based on
attention blocks. Although the recent CVA-Net aggregates clip and video level
features, we distinguish two key issues that hamper its performance. First, the
self-attention based cross-frame feature fusion is a global-level operation and it
operates once before the encoder-decoder, thereby ignoring the useful local in-
formation and in turn missing an effective deep feature fusion. Second, CVA-Net
only performs one-frame prediction based on multiple frame inputs, which is
very time-consuming.

To address the aforementioned issues, we propose a spatial-temporal de-
formable attention based network, named STNet, for detecting the breast le-
sions in ultrasound videos. Within our STNet, we introduce a spatial-temporal
deformable attention module to fuse multi-scale spatial-temporal information
among different frames, and further integrate it into each layer of the encoder
and decoder. In this way, different from the recent CVA-Net, our proposed STNet
performs both deep and local feature fusion. In addition, we introduce multi-
frame prediction with encoder feature shuffle operation that shares the backbone
and encoder features, and only perform multi-frame prediction in the decoder.
This enables us to significantly accelerate the detection speed of the proposed
approach. We conduct extensive experiments on a public breast lesion ultra-
sound video dataset, named BLUVD-186 [9]. The experimental results validate
the efficacy of our proposed STNet that has a superior detection performance.
For example, our proposed STNet achieves a mAP of 40.0% with an absolute
gain of 3.9% in terms of detection accuracy, while operating at two times faster,
compared to the recent CVA-Net [9].

2 Method

Here, we describe our proposed spatial-temporal deformable attention based
framework, named STNet, for detecting breast lesions in the ultrasound videos.
Fig.1(a) presents the overall architecture of our proposed STNet, which is built
on the end-to-end detector deformable DETR [23]. Within our STNet, we intro-
duce spatial-temporal deformable attention into the encoder and the decoder.
As in CVA-Net [9], we take six frames Ik−1, Ik, Ik+1, Ir1, Ir2, Ir3 from one
ultrasound video as inputs, where there are three neighboring frames Ik−1, Ik,
Ik+1 and three randomly-selected frames Ir1, Ir2, Ir3. Given these input frames,
we use the backbone, such as ResNet-50 [6], to extract deep multi-scale fea-
tures Fk−1, Fk, Fk+1, Fr1, Fr2, Fr3. Afterwards, we introduce a spatial-temporal
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Fig. 1. (a) Overall architecture of the proposed STNet. The proposed STNet takes
six frames as inputs and extracts multi-scale features of each frame. Afterwards, the
proposed STNet utilizes a spatial-temporal deformable attention (STDA) based en-
coder (b) and decoder (c) for spatial-temporal multi-scale information fusion. Finally,
the proposed STNet performs classification and regression. (d) During inference, we
introduce a encoder feature shuffle strategy for multi-frame prediction.

deformable attention based encoder (ST-Encoder) to perform intra-frame and
inter-frame multi-scale feature fusion. Then, we introduce a spatial-temporal
deformable attention based decoder (ST-Decoder) to generate output feature
embeddings Pk, which are fed to a classifier and a box predictor for classifica-
tion and bounding-box regression. During inference, we take three neighboring
frames and three randomly-selected frames as the inputs, and simultaneously
predict the results of three neighboring frames using our encoder feature shuffle
strategy. As a result, our approach operates at a faster inference speed.

2.1 Spatial-Temporal Deformable Attention

Given a reference point, deformable attention [23] aggregates the features of a
group of key sampling points near it. Compared to original transformer self-
attention [14], deformable attention has low-complexity along with a faster con-
vergence speed. Motivated by this, we adopt deformable attention for breast le-
sion detection and extend it to spatial-temporal deformable attention (STDA).
Our STDA not only aggregates the features of current frame, but also aggregates
the features of the rest of the frames. Fig. 2 presents the structure of our pro-
posed STDA. Let Ft =

{
F l
t

}L

l=1
represent the set of multi-scale feature maps at
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Fig. 2. Structure of our proposed Spatial-temporal deformable attention (STDA).
Given a query feature and reference point, our STDA not only fuses multi-scale features
within a frame, but also aggregates multi-scale features between different frames.

frame t, where F l
t ∈ RC×Hl×Wl is the feature map at level l. Given the query fea-

tures pq and corresponding reference points zq, the spatio-temporal multi-scale
attention is given as:

STDA
(
zq,pq, {Ft}Tt=0

)
=

M∑
m=1

Wm

T∑
t=1

L∑
l=1

K∑
k=1

AtlqkF
l
t (ϕl(pq) +∆ptlqk), (1)

where m represents multi-head index and k is sampling point index. Wm is
a linear layer, Atlqk indicates attention weight of sampling point, and ∆ptlqk

indicates sample offset of sampling point. ϕl normalizes the coordinates pq by
the scale of feature map F l

t . The sampling offset ∆ptlqk is predicted by the query
feature zq with a linear layer. The attention weight Atlqk is predicted by feeding
query feature zq to a linear layer and a softmax layer. As a result, the sum of
attention weights is equal to one as

T∑
t=1

L∑
l=1

K∑
k=1

Atlqk = 1. (2)

Compared to the standard deformable attention, the proposed spatial-temporal
deformable attention fully exploits spatial information within frame and tempo-
ral information across frames.

2.2 Spatial-Temporal Deformable Attention based Encoder and
Decoder

Here, we integrate the proposed spatial-temporal deformable attention (STDA)
into encoder and decoder (called ST-Encoder and ST-Decoder ). As shown in Fig.
1(b), ST-Encoder takes deep multi-scale feature maps Fk−1, Fk, Fk+1, Fr1, Fr2,
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Fr3 as inputs. Afterwards, we employ STDA to perform spatial and temporal
fusion and generate the fused multi-scale feature maps F ′

k−1, F
′
k, F

′
k+1, F

′
r1, F ′

r2,
F ′
r3, where the query corresponds to each pixel in multi-scale feature maps. Then,

the fused feature map goes through a feed-forward network (FFN) to generate
the output feature maps Ek−1, Ek, Ek+1, Er1, Er2, Er3. Similar to the original
deformable DETR, we adopt cascade structure to stack six STDA and FFN
layers in ST-Encoder.

The ST-Decoder takes the output feature maps Ek−1, Ek, Ek+1, Er1, Er2,
Er3 and a set of learnable queries Q ∈ RN×C as inputs. The learnable queries first
go through a self-attention layer. Afterwards, STDA performs cross-attention
operation between these feature maps and the queries, where the key elements
are these output feature maps of ST-Encoder. Then, we employ a FFN layer to
generate the prediction features Pk ∈ RN×C . We also stack six self-attention,
STDA, and FFN layers in ST-Decoder for deep feature extraction.

2.3 Multi-frame Prediction With Encoder Feature Shuffle

As discussed above, the proposed STNet adopts six frames to predict the results
of one frame. Although STNet fully exploits temporal information for improved
breast lesion detection, it becomes time-consuming for multi-frame prediction.
To accelerate the detection speed, we introduce multi-frame prediction with en-
coder feature shuffle during inference. Instead of going through the entire network
several times, we first share deep multi-scale feature maps before encoder and
second perform the decoder several times for multi-frame prediction. To per-
form multi-frame prediction only in the decoder, we propose the encoder feature
shuffle operation shown in Fig. 1(d). By exchanging the order of neighboring
frame Ik−1, Ik, Ik+1, the decoder can predict the results of three neighboring
frames, respectively. Compared to the original STNet, the proposed encoder fea-
ture shuffle strategy only employs decoder forward three frames and accelerates
the inference speed.

3 Experiments

3.1 Dataset and Implementation Details

Dataset We conduct the experiments on the public BLUVD-186 dataset [9],
comprising 186 videos including 112 malignant and 74 benign cases. The dataset
has totally 25,458 ultrasound frames, where the number of frames in a video
ranges from 28 to 413. The videos encompass a comprehensive tumor scan, from
its initial appearance to its largest section and eventual disappearance. All videos
were captured using PHILIPS TIS L9-3 and LOGIQ-E9. The grounding-truths in
a frame, including breast lesion bounding-boxes and corresponding categories,
are labeled by two pathologists, which have eight years of professional back-
ground in the field of breast pathology. We adopt the same dataset splits as in
the previous work CVA-Net [9], to guarantee a fair comparison. Specifically, the
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Table 1. State-of-the-art quantitative comparison of our approach with existing meth-
ods in literature on the BLUVD-186 dataset. Our approach achieves a superior perfor-
mance on three different metrics. Compared to the recent CVA-Net [9], our approach
obtains a gain of 3.9% in terms of overall AP. We show the best results in bold.

Method Type Backbone AP AP50 AP75

GFL [7] image ResNet-50 23.4 46.3 22.2
Cascade RPN [15] image ResNet-50 24.8 42.4 27.3
Faster R-CNN [13] image ResNet-50 25.2 49.2 22.3
VFNet [21] image ResNet-50 28.0 47.1 31.0
RetinaNet [8] image ResNet-50 29.5 50.4 32.4
DFF [25] video ResNet-50 25.8 48.5 25.1
FGFA [24] video ResNet-50 26.1 49.7 27.0
SELSA [16] video ResNet-50 26.4 45.6 29.6
Temporal ROI Align [5] video ResNet-50 29.0 49.9 33.1
MEGA [2] video ResNet-50 32.3 57.2 35.7
CVA-Net [9] video ResNet-50 36.1 65.1 38.5
STNet (Ours) video ResNet-50 40.0 70.3 43.3

testing set comprises 38 videos randomly selected from all 186 videos, while the
rest of the videos are used as the training set.
Evaluation Metrics Three commonly-used metrics are employed for perfor-
mance evaluation of breast lesion detection methods on the ultrasound videos,
namely average precision (AP), AP50, and AP75.
Implementation Details We employ the ResNet-50 [6] pre-trained on Ima-
geNet [3], and use Xavier [4] to initialize the remaining network parameters. To
enhance the diversity of training data, all videos are randomly subjected to hor-
izontal flipping, cropping, and resizing. Similar to that of CVA-Net, we employ a
two-phase training strategy to achieve better convergence. In the first phase, we
employ Adam optimizer to train the model for 8 epochs. We then fine-tune the
model for another 20 epochs with the SGD optimizer. Throughout both phases
of training, we adopt the consistent hyper-parameters, where the learning rate
is 5 × 10−5 and the weight decay is 1 × 10−4. We train the model on a single
NVIDIA A100 GPU and set the batch size as 1.

3.2 State-of-the-Art Comparison

Our proposed approach is compared with eleven state-of-the-art methods, com-
prising image-based and video-based methods. We report the detection perfor-
mance of these state-of-the-art methods generated by CVA-Net [10]. Specifically,
CVA-Net acquires the detection performance of these methods by utilizing their
publicly available codes or re-implementing them if no publicly available codes.
Quantitative Comparisons Table 1 presents the state-of-the-art quantitative
comparison of our approach with the eleven existing breast lesion video detection
methods in literature. As a general trend, video-based methods tend to yield
higher average precision (AP), AP50, and AP75 scores compared to image-based
breast lesion detection methods. Among the eleven existing methods, the recent
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Fig. 3. Qualitative breast lesion detection comparison on example ultrasound video
frames between the recent CVA-Net [9] and our proposed STNet. We also show the
ground truth as reference. Our STNet achieves improved detection performance, com-
pared to CVA-Net. Best viewed zoomed in.

CVA-Net [9] achieves the best overall AP score of 36.1, AP50 score of 65.1,
and AP75 score of 38.5. Our proposed STNet method consistently outperforms
CVA-Net [9] on all three metrics (AP, AP50, and AP75). Specifically, our STNet
achieves a significant improvement in the overall AP score from 36.1 to 40.0,
the AP50 score from 65.1 to 70.3, and the AP75 score from 38.5 to 43.3. The
significant improvement demonstrates the efficacy of our approach for detecting
breast lesions in ultrasound videos.
Qualitative Comparisons Fig. 3 presents the qualitative breast lesion detec-
tion comparison between CVA-Net and our proposed approach on an ultrasound
video containing the benign breast lesions. Moreover, we show the ground truth
of each frame on the third row for reference. The first row of the figure shows
that CVA-Net struggles to identify the breast lesions in the second and third
frames. Further, although CVA-Net manages to identify the breast lesions in the
first and fifth frames, the classification results are inaccurate (as highlighted by
the blue rectangle in Fig. 3). In contrast, our STNet method in the second row
of Fig. 3 accurately detects the breast lesions in all video frames and achieves
accurate classification performance for each frame.
Inference Speed Comparison We present the inference speed comparison
between our proposed STNet and CVA-Net on an NVIDIA RTX 3090 GPU
using the same environment. We use FPS (frames per second) as the performance
metric. Specifically, our proposed STNet achieves an averaged inference speed
of 21.84 FPS, while CVA-Net achieves an averaged speed of 12.17 FPS. Our
model operates around two times faster than CVA-Net, which we attribute to
the ability of our model to predict three frames simultaneously.
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Table 2. Ablation study with different design choices. Our proposed STNet achieves
a superior performance compared to the baseline and some different designs. We show
the est results in bold.

AP AP50 AP75

Baseline + Single-frame 30.2 55.0 31.7
Baseline + Multi-frame 35.1 61.6 37.4
ST-Encoder + DA-Decoder 34.9 59.8 37.7
DA-Encoder + ST-Decoder 35.8 60.4 38.0
STNet (Ours) 40.0 70.3 43.3

3.3 Ablation Study

Effectiveness of STDA: To show the efficacy of our proposed STDA, we per-
form different ablation studies. The first baseline network, referred as "Baseline
+ Single-frame", uses the original deformable DETR and takes a single frame as
input. The second baseline network, referred as "Baseline + Multi-frame", uses
modified deformable DETR with multi-head attention module to fuse six input
frames. For the third study, labeled "ST-Encoder + DA-Decoder", we retain the
encoder with STDA in our model but replace the STDA in the decoder with
the conventional deformable attention. Similarly, in the fourth study, labeled
"DA-Encoder + ST-Decoder", we retain the decoder with STDA in our model
but replace the STDA in the encoder with the conventional deformable atten-
tion. As shown in Table 2, the results show that "ST-Encoder + DA-Decoder"
and "DA-Encoder + ST-Decoder" improve the AP by 4.7 and 5.6, respectively,
compared to "Baseline + Single-frame". This demonstrates that STDA can ef-
fectively perform intra-frame and inter-frame multi-scale feature fusion, even
when only partially adopted in the encoder or decoder. Furthermore, our pro-
posed STNet improves the AP by 5.1 and 4.2 compared to "ST-Encoder + DA-
Decoder" and "DA-Encoder + ST-Decoder", respectively, indicating that the
integration of STDA in both the encoder and decoder is crucial for achieving
superior detection performance.

4 Conclusion

We propose a novel breast lesion detection approach for ultrasound videos,
termed as STNet, which performs local spatial-temporal feature fusion and deep
feature aggregation in each stage of both encoder and decoder using our spatial-
temporal deformable attention module. Additionally, we introduce the encoder
feature shuffle strategy that enables multi-frame prediction during inference,
thereby enabling us to accelerate the inference speed while maintaining better
detection performance. The experiments conducted on a public breast lesion
ultrasound video dataset show the efficacy of our STNet, resulting in a supe-
rior detection performance while operating at a fast inference speed. We believe
STNet presents a promising solution and will help further promote future re-
search in the direction of efficient and accurate breast lesion detection in videos.
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