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Abstract. Eye movements can reveal valuable insights into various as-
pects of human mental processes, physical well-being, and actions. Re-
cently, several datasets have been made available that simultaneously
record EEG activity and eye movements. This has triggered the develop-
ment of various methods to predict gaze direction based on brain activity.
However, most of these methods lack interpretability, which limits their
technology acceptance. In this paper, we leverage a large data set of si-
multaneously measured Electroencephalography (EEG) and Eye track-
ing, proposing an interpretable model for gaze estimation from EEG
data. More specifically, we present a novel attention-based deep learning
framework for EEG signal analysis, which allows the network to focus
on the most relevant information in the signal and discard problematic
channels. Additionally, we provide a comprehensive evaluation of the pre-
sented framework, demonstrating its superiority over current methods in
terms of accuracy and robustness. Finally, the study presents visualiza-
tions that explain the results of the analysis and highlights the potential
of attention mechanism for improving the efficiency and effectiveness of
EEG data analysis in a variety of applications.
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1 Introduction

Gaze information is a widely used behavioral measure to study attentional focus
[7], cognitive control [19], memory traces [23] and decision making [28]. The most
commonly used gaze estimation technique in laboratory settings is the infrared
eye tracker, which detects gaze position by emitting invisible near-infrared light
and then capturing the reflection from the cornea [6]. While infrared eye tracker
still remains the most accurate and reliable solution for the gaze estimation, these
systems have several limitations, including individual differences in the contrast
of the pupil and iris and the need for time-consuming setup and calibration
before each scanning session [3, 11].
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Recently, Electroencephalogram (EEG) has been explored as an alternative
method to estimate eye movements by recording electrical activity from the
brain non-invasively with high temporal resolution [16]. The growing body of
literature has shown that Deep Learning architectures could be significantly
effective for many EEG-based tasks [4, 26]. Nevertheless, with the advantages
that Deep Learning brings, new challenges arise. Most of these models applied
to electroencephalography (EEG) data tend to lack interpretability, making it
difficult to understand the underlying reasons for their predictions, which sub-
sequently leads to a decrease in the acceptability of advanced technology in
neuroscience [25]. However, a potential solution already exists, in the form of
the attention mechanism [29]. The attention mechanism has the potential to
provide a more transparent and understandable way of analyzing EEG data, en-
abling us to comprehend the relationships between different brain signals better
and make more informed decisions based on the results. With the development
and implementation of these techniques, we can look forward to a future where
EEG data can be utilized more effectively and efficiently in various applications.

Attention mechanisms have recently emerged as a powerful tool for process-
ing sequential data, including time-series data in various fields such as natural
language processing, speech recognition, and computer vision [5, 24, 29]. In the
context of EEG signal analysis, attention mechanism has shown promising results
in various applications, including sleep stage classification, seizure detection, and
event-related potential analysis [8, 13, 17]. Since different electrodes record the
brain activity from the different brain areas and functions, the information den-
sity from each electrode can vary for different tasks [15].

In this study, we introduce a new deep learning framework for analyzing EEG
signals applying attention mechanisms. For the method evaluation, we used the
EEGEyeNet dataset and benchmark [16], which includes concurrent EEG and
infrared eye-tracking recordings, with eye tracking data serving as a ground
truth. Our method incorporates attention modules to assign weights to indi-
vidual electrodes based on their importance, allowing the network to prioritize
relevant information in the signal. Specifically, we demonstrate the ability of our
framework to accurately predict gaze position and saccade direction, achieving
superior performance compared to previously benchmarked methods. Further-
more, we provide visualizations of model’s interpretability through case studies.

2 Model

2.1 Motivation

In this study, our primary goal was to build a model sensitive to different elec-
trodes. The motivation for this goal is two-fold. Firstly, with regards to inter-
preting the model, the electrodes can be considered the smallest entity as they
record signals from specific regions of the brain. Therefore, the electrode-based
explanation is a reasonable approach considering human understanding. Second,
in the context of model learning, incorporating adaptive weighting of electrodes
within a neural network can potentially enhance the accuracy and reliability of
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gaze estimation systems. This is because electrodes are functionally connected
to cognitive behaviors. Specifically, in tasks such as gaze estimation, electrodes
positioned near the eyes can capture electrical signals from the orbicularis oculi
muscles [2], thereby making the pre-frontal brain areas more crucial for precise
estimation [15]. Additionally, the noise of EEG recordings could be induced by

Fig. 1: We augment an electrode-
sensitive component to a deep learn-
ing model, which works as follows: a)
extract electrode-wise information from
input data, b) control the predictions,
and c) provide explanations.

broken wire contacts, too much or
dried gel, or loose electrodes [27], the
influence of such electrodes should be
reduced in the network under ideal cir-
cumstances.

As shown in Figure 1, our model
design focuses on enhancing an exist-
ing deep learning architecture with an
electrode-sensitive component. This
component first extracts electrode-
related information, and then utilizes
this information for two purposes:
(1) emphasizing the reliable electrodes
and diminishing the influence of suspi-
cious electrodes, while simultaneously
(2) providing explanations for each
prediction.

2.2 Attention-CNN

Following the idea from the previous section, we propose the Attention-CNN
model, where the attention blocks are used as the electrode-sensitive compo-
nent. As shown in Figure 2, the Attention-CNN model is structured by adding
an attention block after each convolution block in every layer and an additional
single attention block before the final prediction block (the blocks in blue). A
convolution block contains a convolution layer, a batch-norm layer [14], a leaky
ReLU [18] and a max-pooling layer. In addition, the residual [10] techniques

Fig. 2: The Architecture of the Attention-CNN model.
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are applied in the CNN framework. The convolution layer operates only in the
time dimension. The attention blocks, acting as an electrode-sensitive compo-
nent, can be carried out by Squeeze-and-Excitation Block (SE Block) [12] and/or
Self-Attention Block (SA Block) [29]. In the attention blocks, the retrieved elec-
trode importance is used to weigh the features in each layer. Additionally, the
same weights can provide explanations for the predictions of the model. In the
prediction block, the features are flattened and then fed into the fully connected
layer to finally obtain the predictions. While the SA Block is only required once
in the process, the SE Blocks are added in every residual block. In order to keep
the same scale for the same sample, the parameters of the SE Blocks are shared
for the whole process. All building blocks are trained end-to-end, including the
weights for the electrode importance used in the attention blocks.

Squeeze and Excitation Block: the SE block involves two principle oper-
ations. The Squeeze operation compresses features u ∈ RT ′×J into electrode-
wise vectors z ∈ RJ by using global average pooling. Here, T ′ denotes the fea-
ture size, and J is the number of electrodes. More precisely, the j-th element
of z is calculated by zj = Fsq(uj) =

1
T ′

∑T ′

i=1 uj(i). The Excitation operation
first computes activation s by employing the gating mechanism with sigmoid
activation: s = Fex(z,W) = σ(W2δ(W1z)), where σ refers to the sigmoid func-
tion, δ represents the ReLU [20] function, and W are learnable weights. The
final output of SE block weigh each channel adaptively by re-scaling U with s:
x̃j = Fscale(uj , sj) = sj · uj . In contrast to the original implementation [12]
which deals with 3-dimensional data, the input data in our setup has only 2
dimensions (electrodes and time).

Self Attention Block: The self-attention mechanism [22] was first used in
the field of Natural language processing (NLP), aiming at catching the attention
of/between different words in a sentence or paragraph. The attention is obtained
by letting the input data interact with themselves and determining which fea-
tures are more important. This was implemented by introducing the Query,
Key, Value technique, which is defined as Q = ϕQ(U,WQ), K = ϕK(U,WK),
V = ϕV (U,WV ), where U denotes the input of self-attention block and ϕ(·, ·)
represents linear transformation.

Then, Attention Weights are computed using Query and Key:

Matt = softmax(
Q ·KT

√
dk

)

where dk stands for the dimensions of the Key, and
√
dk works as a scaling factor.

The softmax function was applied to adjust the range of the value in attention
weights (Matt) to [0, 1].

Unlike the transformer model, the attention weights are first compressed into
a one-dimensional vector by a layer of global average pooling (ψ) and normalized
by a sigmoid function. More precisely, we compute Zatt = sigmoid(ψ(Matt)).
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Finally, the output of SA Block X is computed by : X = κ(Zatt, V ), where κ
denotes the electrode-wise production.

3 Experiments and Results

3.1 Materials and Experimental Settings

EEGEyeNet Dataset: For our experiments, we utilized the EEGEyeNet dataset
[16], which includes synchronized EEG and Eye-tracking data. The EEG signals
were collected using a high-density, 128-channel EEG Geodesic Hydrocel sys-
tem sampled at a frequency of 500 Hz. Eye-tracking data, including eye position
and pupil size, were gathered using an infrared video-based eye tracker (Eye-
Link 1000 Plus, SR Research), also operating at a sampling rate of 500 Hz. The
recorded EEG and eye-tracking information was pre-processed, synchronized and
segmented into 1-second clips based on eye movements. The infrared eye track-
ing recordings were used as ground truth. In this paper, the processed dataset
we utilized contains two parts: the Position Task and Direction Task, which
correspond to two types of eye movements: fixation, i.e., the maintaining of the
gaze on a single location, and saccade, i.e. the rapid eye movements that shift
the centre of gaze from one point to another. While Position Task estimates the
absolute position from fixation, Direction Task estimates the relative changes
during saccades, involving two sub-tasks, i.e., the prediction of amplitude and
angle. The statistics and primary labels of these two parts are shown in Table 1.

Table 1: Dataset Description
Task #Subjects #Samples Primary labels

Position 72 41783
subject_id: the identical ID of the participant
pos: the fixation position in the form of (x, y)

Direction 72 50264
subject_id: the identical ID of the participant
amplitude:the distance in pixels during the saccade
angle: the saccade direction in radians

To ensure data integrity and prevent data leakage, the dataset was split into
training, validation, and test sets across subjects, with 70 % of the subjects used
for training, and 15% each for validation and testing. This procedure ensures
that no data from the same subject appears in both the training and valida-
tion/testing phases, thereby avoiding potential subject-related patterns from
being learned by the model during training and tested on in validation/testing.
For more details of this dataset, please refer to [16].

Implementation Details: The experiments are implemented with PyTorch
[21]. When training the Attention-CNN model, the batch size is set to 32, the
number of epochs is 50, and the learning rate is 1e−4. There are 12 convolution
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blocks, and the residual operation repeats every three convolution blocks. The
feature length of the hidden layer is set as 64, and the kernel size is 64. The num-
ber of convolutional layers, kernel size and hidden feature length, are selected
based on validation performance. We conducted experiments with three config-
urations: the SE Block and the SA Block together, only one of the attention
blocks, or no attention blocks at all. For the angle prediction in Direction Task,
we use angle loss langle = |(atan(sin(p − t), cos(p − t))|, where p denotes the
predicted results, and t denotes the targets. For Position Task and Amplitude
prediction in the Direction Task, the loss function is set to smooth-L1 [9].

Evaluation: For Position task, Euclidean distance is applied as the evaluation
metric in both pixels and visual angles. Compared to pixel distance, visual angles
depend on both object size on the screen and the viewing distance, thus enabling
the comparison across varied settings. The performance of Direction Task is
measured by the square root of the mean squared error (RMSE) for the angle
(in radians) and the amplitude (in pixels) of saccades. In order to avoid the error
caused by the repeatedness of angles in the plane (i.e. 2π and 0 radian represents
the same direction), atan(sin(α), cos(α)) is applied, just like in angle loss.

3.2 Performance of the Attention-CNN

Table 2 shows the quantitative performance of the Attention-CNN in this work.
For the Position Task, CNN with SE block has an average performance with the
RMSE of 109.58 pixels. Likewise, the CNN model with both SE block and the
SA block has a similar performance (110.05 pixels). Similar to Position Task, in
amplitude prediction of Direction Task, the attention blocks aid the prediction
evidently, heightening the performance by 5 pixels. Here, the model with both
attention blocks has a lower variance. For angle prediction, the CNN model with
both SE block and SA block has the best performance among all with the RMSE
of 0.1707 radians.

We can conclude that the CNN model with both attention blocks consistently
outperforms the CNN model alone by 5 to 10 percent across all tasks, indicating
that electrode-wise attention assists in the learning process of the models.

Table 2: The performance of the Attention-CNN on Direction and Position Task.

Models Angle/Amplitude Abs. Position

Angle RMSE Amp. RMSE Euclidean Distance (Visual Angle)

CNN 0.1947±0.021 57.4486±2.053 115.0143±0.648 (2.39±0.010)
CNN + SE 0.1754±0.007 55.1656±3.513 109.5816±0.238 (2.27±0.004)
CNN + SA 0.1786±0.010 52.1583±1.943 112.3823±0.851 (2.33±0.013)
CNN + both 0.1707±0.011 52.2782±1.169 110.0523±0.670 (2.28±0.010)
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(a) ① → ② (b) ② → ③ (c) ③ → ④ 

(d) ④ → ⑤ (e) ⑤ → ⑥ (f) ⑥ → ⑦

Fig. 3: Visualization of signal intensity across scalp and electrode importance
from our models. Left: the track of a continuous sequence of saccades. Right:
the corresponding brain activities (red: positive electrical signal, blue: negative
electrical signal) and the important electrodes detected by the attention-based
model (denoted as yellow nodes, the threshold is set as the mean value of all
electrodes during the sequence). The model used here is the CNN with SA block.

3.3 Model Interpretability by Case Studies

To provide a more detailed analysis of the interpretability of our proposed
Attention-CNN model, as well as to further investigate the underlying reasons
for the observed accuracy improvement, we conducted a visual analysis of the
model performance, with a particular focus on the role of the attention block.
Our analysis yielded two key findings, which are as follows:

Firstly, the attention blocks were able to detect the electrical difference be-
tween the right and left pre-frontal area in case of longer saccades, i.e. rapid
eye movements from one side of the screen to the other; see the saccades (d)
and (e) in Figure 3. We present the sequence of saccades and observed the EEG
signals as well as the electrode importance from proposed models in Figure 3.
The attention block effectively captured this phenomenon by highlighting the
electrodes surrounding the prominent signals (saccades (d) and (e) in Figure
3). Conversely, in cases where the saccade was of a shorter distance (other sac-
cades in Figure 3), attention was more widely distributed across the scalp rather
than being concentrated in specific regions. This is justifiable as the neural net-
work aims to integrate a more comprehensive set of information from all EEG
channels.

Additionally, the attention block effectively learned to circumvent the inter-
ference caused by noisy electrodes and redirected attention towards the frontal
region. Figure 4 illustrates a scenario where problematic electrodes were situated
around both ears, exhibiting abnormal amplitudes (±100 µV). Using Layer-wise
Relevance Propagation [1] to elucidate the CNN model’s predictions, the result
depicted in Figure 4b revealed that the most significant electrodes were located
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(a) Input EEG data (b) LRP results from CNN (c) Scales from CNN+SA

Fig. 4: One example of test samples containing problematic electrodes is the
Position Task. As shown in (a), the dark red areas around the ears represent
intense electrical signals with abnormal amplitudes (> 100 V). In (b), the Layer-
wise Relevance Propagation (LRP) results from the CNN model reveal that the
electrodes around the left ear still play a crucial role in the prediction process.
Conversely, the Attention-CNN model’s results (c), indicate that it bypasses the
ear area and allocates more emphasis to the pre-frontal region. As a result, the
error in Euclidean Distance improved by 200.85 pixels for this specific sample
(from 265.18 to 64.33).

over the left ear, coinciding with the noisy electrodes. In contrast, as shown in
Figure 4c, the Attention-CNN model effectively excluded the unreliable elec-
trodes and allocated greater attention to the frontal region of the brain.

3.4 Explainability Quantification

We further examine the validity in explainability of the proposed method by
comparing the distribution of learned attention of noisy and non-noisy electrodes
in the Direction Task. The attention block’s effectiveness is is demonstrated
by its ability to assign lower weights to these noisy electrodes in contrast to
the non-noisy ones. Within all samples in the Direction Task that feature at
least one noisy electrode, only 19% of the non-noisy electrodes had normalized
attention weights below 0.05. In contrast, 42% of the noisy electrodes exhibited
this trait, implying the attention block’s ability to reduce weights of abnormal
electrodes. We direct readers to the Supplementary materials for a distribution
plot showcasing the difference between noisy and non-noisy electrodes, along
with additional details. It’s important to note that quantifying explainability
methods for signal-format data, such as EEG, presents a significant challenge
and has limited existing research. Therefore, additional investigations in this
field are anticipated in future studies.
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4 Conclusion

In this study, we aimed to address the issue of the lack of interpretability in
deep learning models for EEG-based tasks. Our approach was to leverage the
fact that EEG signal noise or artifacts are often localized to specific electrodes.
We accomplished this by incorporating attention modules as electrode-sensitive
components within a neural network architecture. These attention blocks were
used to emphasize the importance of specific electrodes, resulting in more accu-
rate predictions and improved interpretability through the use of scaling.

Moreover, our proposed approach was less susceptible to noise. We con-
ducted comprehensive experiments to evaluate the performance of our proposed
Attention-CNN model. Our results demonstrate that this model can accurately
classify EEG and eye-tracking data while also providing insights into the quality
of the recorded EEG signals. This contribution is significant as it can lead to the
development of new decoding techniques that are less sensitive to noise.

In summary, our study underscores the importance of incorporating attention
mechanisms into deep learning models for analyzing EEG and eye-tracking data.
This approach opens up new avenues for future research in this area and has the
potential to provide valuable insights into the neural basis of cognitive processes.
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