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Abstract. Medical image segmentation relies heavily on large-scale deep
learning models, such as UNet-based architectures. However, the real-
world utility of such models is limited by their high computational re-
quirements, which makes them impractical for resource-constrained envi-
ronments such as primary care facilities and conflict zones. Furthermore,
shifts in the imaging domain can render these models ineffective and even
compromise patient safety if such errors go undetected. To address these
challenges, we propose M3D-NCA, a novel methodology that leverages
Neural Cellular Automata (NCA) segmentation for 3D medical images
using n-level patchification. Moreover, we exploit the variance in M3D-
NCA to develop a novel quality metric which can automatically detect
errors in the segmentation process of NCAs. M3D-NCA outperforms the
two magnitudes larger UNet models in hippocampus and prostate seg-
mentation by 2% Dice and can be run on a Raspberry Pi 4 Model B (2GB
RAM). This highlights the potential of M3D-NCA as an effective and effi-
cient alternative for medical image segmentation in resource-constrained
environments.

Keywords: Neural Cellular Automata · Medical Image Segmentation ·
Automatic Quality Control.

1 Introduction

Medical image segmentation is ruled by large machine learning models which
require substantial infrastructure to be executed. These are variations of UNet-
style [18] architectures that win numerous grand challenges [9]. This emerging
trend raises concerns, as the utilization of such models is limited to scenarios
with abundant resources, posing barriers to adoption in resource-limited settings.
For example, conflict zones [11], low-income countries [3], and primary care fa-
cilities in rural areas [1] often lack the necessary infrastructure to support the
deployment of these models, impeding access to critical medical services. Even
when the infrastructure is in place, shifts in domains can cause the performance
of deployed models to deteriorate, posing a risk to patient treatment decisions.
To address this risk, automated quality control is essential [6], but it can be
difficult and computationally expensive.
⋆ Corresponding author: john.kalkhof@gris.tu-darmstadt.de, +49 6151 155-681

ar
X

iv
:2

30
9.

02
95

4v
1 

 [
cs

.C
V

] 
 6

 S
ep

 2
02

3



2 J. Kalkhof et al.

M3D
NCA

Automatic Quality Control

M3D-NCA

≈

Avg

≈

✔

Pseudo Ensemble

≈ ✔

UNet

Lightweight

✘

M3D
NCA

Fig. 1. M3D-NCA is lightweight, with a parameter count of less than 13k and can be
run on a Raspberry Pi 4 Model B (2GB RAM). The stochasticity enables a pseudo-
ensemble effect that improves prediction performance. This variance also allows the
calculation of a score that indicates the quality of the predictions.

Neural Cellular Automata (NCA) [5] diverges strongly from most deep learn-
ing architectures. Inspired by cell communication, NCAs are one-cell models that
communicate only with their direct neighbours. By iterating over each cell of an
image, these relatively simple models, with often sizes of less than 13k parame-
ters, can reach complex global targets. By contrast, UNet-style models quickly
reach 30m parameters [12], limiting their area of application. Though several
minimal UNet-style architectures with backbones such as EfficientNet [23], Mo-
bileNetV2 [19], ResNet18 [7] or VGG11 [21] exist, their performance is generally
restricted by their limited size and still require several million parameters.

With Med-NCA, Kalkhof et al. [12] have shown that by iterating over two
scales of the same image, high-resolution 2D medical image segmentation using
NCAs is possible while reaching similar performance to UNet-style architectures.
While this is a step in the right direction, the limitation to two-dimensional data
and the fixed number of downscaling layers make this method inapplicable for
many medical imaging scenarios and ultimately restricts its potential.

Naively adapting Med-NCA for three-dimensional inputs exponentially in-
creases VRAM usage and convergence becomes unstable. We address these chal-
lenges with M3D-NCA, which takes NCA medical image segmentation to the
third dimension and is illustrated in Fig. 1. Our n-level architecture addresses
VRAM limitations by training on patches that are precisely adaptable to the
dataset requirements. Due to the one-cell architecture of NCAs the inference
can be performed on the full-frame image. Our batch duplication scheme
stabilizes the loss across segmentation levels, enabling segmentation of high-
resolution 3D volumes with NCAs. In addition, we propose a pseudo-ensemble
technique that exploits the stochasticity of NCAs to generate multiple valid
segmentations masks that, when averaged, improve performance by 0.5-1.3%.
Moreover, by calculating the variance of these segmentations we obtain a quality
assessment of the derived segmentation mask. Our NCA quality metric (NQM)
detects between 50% (prostate) and 94.6% (hippocampus) of failure cases. M3D-
NCA is lightweigth enough to be run on a Raspberry Pi 4 Model B (2GB RAM).

We compare our proposed M3D-NCA against the UNet [18], minimal vari-
ations of UNet, Seg-NCA [20] and Med-NCA [12] on the medical segmentation
decathlon [2] datasets for hippocampus and prostate. M3D-NCA consistently
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Fig. 2. The n-level M3D-NCA architecture uses patchification and batch duplication
during training.

outperforms minimal UNet-style and other NCA architectures by at least 2.2%
and 1.1% on the hippocampus and prostate, respectively, while being at least
two magnitudes smaller than UNet-style models. However, the performance is
still lower than the nnUNet by 0.6% and 6.3% Dice, the state-of-the-art auto ML
pipeline for many medical image segmentation tasks. This could be due to the
additional pre-and post-processing steps of the pipeline, as well as the extensive
augmentation operations.

We make our complete framework available under github.com/MECLabTUDA/
M3D-NCA, including the trained M3D-NCA models for both anatomies as they
are only 56KB in size.

2 Methodology

Cellular Automata (CA) are sets of typically hand-designed rules that are it-
eratively applied to each cell of a grid. They have been actively researched for
decades, Game Of Life [4] being the most prominent example of them. Recently,
this idea has been adapted by Gilpin et al. [5] to use neural networks as a rep-
resentation of the update rule. These Neural Cellular Automata (NCA) are
minimal and interact only locally (illustration of a 2D example can be found
in the supplementary). Recent research has demonstrated the applicability of
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NCAs to many different domains, including image generation tasks [13], self-
classification [17], and even 2D medical image segmentation [12].

NCA segmentation in medical images faces the problem of high VRAM con-
sumption during training. Our proposed M3D-NCA described in Sec. 2.1 solves
this problem by performing segmentation on different scales of the image and
using patches during training. In Sec. 2.3 we introduce a score that indicates
segmentation quality by utilizing the variance of NCAs during inference.

2.1 M3D-NCA Training Pipeline

Our core design principle for M3D-NCA is to minimize the VRAM requirements.
Images larger than 100×100, can quickly exceed 40 GB of VRAM, using a naive
implementation of NCA, especially for three-dimensional configurations.

The training of M3D-NCA operates on different scales of the input image
where the same model architecture m is applied, as illustrated in Fig. 2. The
input image is first downscaled by the factor d multiplied by the number of
layers n. If we consider a setup with an input size of 320×320×24, a downscale
factor of d = 2, and n = 3, the image is downscaled to 40 × 40 × 3. As d
and n exponentially decrease the image size, big images become manageable.
On this smallest scale, our first NCA model m1, which is constructed from
our core architecture (Section 2.2), is iterated over for s steps, initializing the
segmentation on the smallest scale. The output of this model gets upscaled by
factor d and appended with the according higher resolution image patch. Then,
a random patch is selected of size 40× 40× 3, which the next model m2 iterates
over another s times. We repeat this patchification step n − 1 times until we
reach the level with the highest resolution. We then perform the dice focal loss
over the last remaining patch and the according ground truth patch. Changing
the downscaling factor d and the number of layers n allows us to precisely control
the VRAM required for training.

Batch Duplication: Training NCA models is inherently more unstable than
classical machine learning models like the UNet, due to two main factors. First,
stochastic cell activation can result in significant jumps in the loss trajectory,
especially in the beginning of the training. Second, patchification in M3D-NCA
can cause serious fluctuations in the loss function, especially with three or more
layers, thus it may never converge properly.

The solution to this problem is to duplicate the batch input, meaning that
the same input images are multiple times in each batch. While this limits the
number of images per stack, it greatly improves convergence stability.

Pseudo Ensemble: The stochasticity of NCAs, caused by the random ac-
tivation of cells gives them an inherent way of predicting multiple valid segmen-
tation masks. We utilize this property by executing the trained model 10 times
on the same data sample and then averaging over the outputs. We visualize the
variance between several predictions in Fig. 3.

Once the model is trained, inference can be performed directly on the full-
scale image. This is possible due to the one-cell architecture of NCAs, which
allows them to be replicated across any image size, even after training.
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Fig. 3. Variance over 10 predictions on different samples of the hippocampus (left) and
prostate dataset (right).

2.2 M3D-NCA Core Architecture

The core architecture of M3D-NCA is optimized for simplicity. First, a convo-
lution with a kernel size k is performed, which is appended with the identity of
the current cell state of depth c resulting in state vector v of length 2 ∗ c. v thus
contains information about the surrounding cells and the knowledge stored in
the cell. v is then passed into a dense layer of size h, followed by a 3D BatchNorm
layer and a ReLU. In the last step, another Dense layer is applied, which has
the output size c, resulting in the output being of the same size as the input.
Now the cell update can be performed, which adds the model’s output to the
previous state. Performing a full execution of the model requires it to be applied
s times. In the standard configuration, the core NCA sets the hyperparame-
ters to k = 7 for the first layer, and k = 3 for all the following ones. c = 16
and h = 64 results in a model size of 12480 parameters. The bigger k in the
first level allows the model to detect low-frequency features, and c and h are
chosen to limit VRAM requirements. The steps s are determined per level by
s = max(width, height, depth)/((k − 1)/2), allowing the model to communicate
once across the whole image.

2.3 Inherent Quality Control

The variance observed in the derived segmentation masks serves as a quantifiable
indicator of the predicted segmentation. We expect that a higher variance value
indicates data that is further away from our training domain and consequently
may lead to poorer segmentation accuracy. Nevertheless, relying solely on this
number is problematic, as the score obtained is affected by the size of the seg-
mentation mask. To address this issue, we normalize the metric by dividing the
sum of the standard deviation by the number of segmentation pixels.

The NCA quality metric (NQM) where v is an image volume and vi are
N = 10 different predictions of M3D-NCA for v is defined as follows:

NQM =

∑
s∈SD(s)∑
m∈µ(m)

, SD =

√∑N
i=1(vi − µ)2

N
, µ =

∑N
i=1 vi
N

(1)

We calculate the relation between Dice and NQM by running a linear re-
gression on the training dataset, which has been enriched with spike artifacts to
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Fig. 4. Comparison of the Dice segmentation performance versus the number of pa-
rameters of NCA architectures, minimal UNets and the nnUNet (check supplementary
for detailed numbers).

extend the variance range. Using the regression, we derive the detection thresh-
old for a given Dice value (e.g., Dice > 0.8). In clinical practice, this value would
be based on the task and utility.

3 Experimental Results

The evaluation of the proposed M3D-NCA and baselines is performed on hip-
pocampus (198 patients, ∼ 35×50×35) and prostate (32 patients, ∼ 320×320×
20) datasets from the medical segmentation decathlon (medicaldecathlon.com)
[2,22]. All experiments use the same 70% training, and 30% test split and are
trained on an Nvidia RTX 3090Ti and an Intel Core i7-12700. We use the
standard configuration of the UNet [15], Segmentation Models Pytorch [8] and
nnUNet [10] packages for the implementation in PyTorch [14].

3.1 Comparison and Ablation

Our results in Fig. 4 show that despite their compactness, M3D-NCA performs
comparably to much larger UNet models. UNet-style models instead tend to un-
derperform when parameter constraints are imposed. While an advanced training
strategy, such as the auto ML pipeline nnUNet, can alleviate this problem, it
involves millions of parameters and requires a minimum of 4GB of VRAM [9].

In contrast, our proposed M3D-NCA uses two orders of magnitude fewer
parameters, reaching 90.5% and 82.9% Dice for hippocampus and prostate re-
spectively. M3D-NCA outperforms all basic UNet-style models, falling short of
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Fig. 5. Example inference times of a 2-level M3D-NCA architecture across different
image scales on a Raspberry Pi 4 Model B (2GB RAM), where s defines the number
of steps in each layer.

the nnUNet by only 0.6% for hippocampus and 6.3% for prostate segmentation.
Utilizing the 3D patient data enables M3D-NCA to outperform the 2D segmen-
tation model Med-NCA in both cases by 2.4% and 1.1% Dice. The Seg-NCA
[20] is due to its one-level architecture limited to small input images of the size
64x64, which for prostate results in a performance difference of 12.8% to our
proposed M3D-NCA and 5.4% for hippocampus. We execute M3D-NCA on a
Raspberry Pi 4 Model B (2GB RAM) to demonstrate its suitability on resource-
constrained systems, as shown in Fig. 5. Although our complete setup can be
run on the Raspberry Pi 4, considerably larger images that exceed the device’s
2GB memory limit require further optimizations within the inference process. By
asynchronously updating patches of the full image with an overlapping margin
of (k−1)/2 we can circumvent this limitation while ensuring identical inference.

Lay. Scale F. # Param. ↓ Standard w/o Batch Dup. w/o Pseudo E.
Dice ↑ Dice ↑ Dice ↑

2 4 12480 0.829± 0.051 0.811± 0.045 0.824± 0.051
3 2 16192 0.802± 0.038 0.723± 0.103 0.789± 0.041
4 2 8880 0.747± 0.112 0.704± 0.211 0.734± 0.117

Table 1. Ablation results of M3D-NCA on the prostate dataset.

The ablation study of M3D-NCA in Tab. 1 shows the importance of batch
duplication during training, especially for larger numbers of layers. Without
batch duplication, performance drops by 1.8-7.9% Dice. Increasing the number
of layers reduces VRAM requirements for larger datasets, but comes with a
trade-off where each additional layer reduces segmentation performance by 2.7-
5.5% (with the 4-layer setup, a kernel size of 5 is used on the first level, otherwise
the downscaled image would be too small). The pseudo-ensemble setup improves
the performance of our models by 0.5-1.3% and makes the results more stable.

The qualitative evaluation of M3D-NCA, illustrated in Fig. 6, shows that
M3D-NCA produces accurate segmentations characterized by well-defined bound-
aries with no gaps or random pixels within the segmentation volume.
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Fig. 6. Qualitative Results of M3D-NCA on hippocampus (left) and prostate (right).

3.2 Automatic Quality Control

To evaluate how well M3D-NCA identifies failure cases through the NQM met-
ric, we degrade the test data with artifacts using the TorchIO package [16].
More precisely, we use noise (std = 0.5), spike (intensity = 5) and ghosting
(num_ghosts = 6 and intensity = 2.5) artifacts to force the model to collapse
(prediction / metric pairs can be found in the supplementary). We effectively
identify 94.6% and 50% of failure cases (below 80% Dice) for hippocampus and
prostate segmentation, respectively, as shown in Fig. 7. Although not all failure
cases are identified for prostate, most false positives fall close to the thresh-
old. Furthermore, the false negative rates of 4.6% (hippocampus) and 8.3%
(prostate), highlights its value in identifying particularly poor segmentations.
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Fig. 7. The variance of NCAs during inference encapsulated in the NQM score indicates
the quality of segmentation masks. In this example, the calculated threshold should
detect predictions worse than 80% Dice. The distribution of FP/FN cases shows that
most fall close to the threshold.

4 Conclusion

We introduce M3D-NCA, a Neural Cellular Automata-based training pipeline
for achieving high-quality 3D segmentation. Due to the small model size with
under 13k parameters, M3D-NCA can be run on a Raspberry Pi 4 Model B
(2GB RAM). M3D-NCA solves the VRAM requirements for 3D inputs and the
training instability issues that come along. In addition, we propose an NCA
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quality metric (NQM) that leverages the stochasticity of M3D-NCA to detect
50-94.6% of failure cases without additional overhead. Despite its small size,
M3D-NCA outperforms UNet-style models and the 2D Med-NCA by 2% Dice
on both datasets. This highlights the potential of M3D-NCAs for utilization in
primary care facilities and conflict zones as a viable lightweight alternative.
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Fig. 1. Simplified example of the update of a single cell in a 2D grid using NCAs.

Model Hippocampus Prostate
Dice ↑ # Parameters ↓ Dice ↑ # Parameters ↓

nnUNet 2D 0.899± 0.031 1928032 0.892± 0.016 29966112
nnUNet 3D 0.911± 0.028 5602720 0.872± 0.039 5471648

MobileNetV2 0.760± 0.056 6628369 0.660± 0.087 6628369
EfficientNet 0.676± 0.041 6250893 0.645± 0.093 6250893
ResNet18 0.733± 0.046 14321937 0.663± 0.178 14321937
VGG11 0.849± 0.036 18252881 0.782± 0.131 18252881
UNet 3D 0.883± 0.022 4584769 0.808± 0.052 19071297
UNet 2D 0.862± 0.031 36950273 0.694± 0.086 36950273
Seg-NCA 0.851± 0.045 39472 0.702± 0.126 39472
Med-NCA 0.881± 0.027 70016 0.818± 0.069 70016
M3D-NCA 0.905± 0.024 8768 0.829± 0.051 12480

Table 1. Comparison of our proposed M3D-NCA with state-of-the-art NCA and UNet
segmentation models.

Fig. 2. Comparison between the prediction of M3D-NCA, the variance between pre-
dictions, the calculated NQM score and the Dice on the prostate dataset.
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