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Abstract. Regular group convolutional neural networks (G-CNNs) have
been shown to increase model performance and improve equivariance to
different geometrical symmetries. This work addresses the problem of
SE(3), i.e., roto-translation equivariance, on volumetric data. Volumet-
ric image data is prevalent in many medical settings. Motivated by the
recent work on separable group convolutions, we devise a SE(3) group
convolution kernel separated into a continuous SO(3) (rotation) kernel
and a spatial kernel. We approximate equivariance to the continuous
setting by sampling uniform SO(3) grids. Our continuous SO(3) ker-
nel is parameterized via RBF interpolation on similarly uniform grids.
We demonstrate the advantages of our approach in volumetric medical
image analysis. Our SE(3) equivariant models consistently outperform
CNNs and regular discrete G-CNNs on challenging medical classification
tasks and show significantly improved generalization capabilities. Our
approach achieves up to a 16.5% gain in accuracy over regular CNNs.

Keywords: geometric deep learning · equivariance · group convolution
· SE(3) · volumetric data.

1 Introduction

Invariance to geometrical transformations has been long sought-after in the field
of machine learning [6, 12]. The strength of equipping models with inductive
biases to these transformations was shown by the introduction of convolutional
neural networks (CNNs) [13]. Following the success of CNNs, [7] generalized the
convolution operator to commute with geometric transformation groups other
than translations, introducing group-convolutional neural networks (G-CNNs),
which have been shown to outperform conventional CNNs [19, 20, 2, 11].

Early G-CNNs were mainly concerned with operating on 2D inputs. With the
increase in computing power, G-CNNs were extended to 3D G-CNNs. Volumetric
data is prevalent in many medical settings, such as in analyzing protein struc-
tures [15] and medical image analysis [5, 21, 26, 27]. Equivariance to symmetries
such as scaling and rotations is essential as these symmetries often naturally
occur in volumetric data. Equivariance to the group of 3D rotations, SO(3), re-
mains a non-trivial challenge for current approaches due to its complex structure
and non-commutative properties [19].

ar
X

iv
:2

30
6.

13
96

0v
2 

 [
cs

.C
V

] 
 2

0 
Ju

l 2
02

3



2 Thijs P. Kuipers, Erik J. Bekkers

An important consideration regarding 3D convolutions that operate on vol-
umetric data is overfitting. Due to the dense geometric structure in volumetric
data and the high parameter count in 3D convolution kernels, 3D convolutions
are highly susceptible to overfitting [14]. G-CNNs have been shown to improve
generalization compared to CNNs [23, 20]. However, G-CNNs operating on dis-
crete subgroups can exhibit overfitting to these discrete subgroups [3], failing to
obtain equivariance on the full continuous group. This effect is amplified for 3D
G-CNNs, limiting their improved generalization capabilities.

Contributions. In this work, we introduce regular continuous group convo-
lutions equivariant to SE(3), the group of roto-translations. Motivated by the
work on separable group convolutions [11], we separate our SE(3) kernel in a
continuous SO(3) and a spatial convolution kernel. We randomly sample dis-
crete equidistant SO(3) grids to approximate the continuous group integral. The
continuous SO(3) kernels are parameterized via radial basis function (RBF) in-
terpolation on a similarly equidistantly spaced grid. We evaluate our method on
several challenging volumetric medical image classification tasks from the MedM-
NIST [26, 27] dataset. Our approach consistently outperforms regular CNNs and
discrete SE(3) subgroup equivariant G-CNNs and shows significantly improved
generalization capabilities. To this end, this work offers the following contribu-
tions.

1. We introduce separable regular SE(3) equivariant group convolutions that
generalize to the continuous setting using RBF interpolation and randomly
sampling equidistant SO(3) grids.

2. We show the advantages of our approach on volumetric medical image classi-
fication tasks over regular CNNs and discrete subgroup equivariant G-CNNs,
achieving up to a 16.5% gain in accuracy over regular CNNs.

3. Our approach generalizes to SE(n) and requires no additional hyperparam-
eters beyond setting the kernel and sample resolutions.

4. We publish our SE(3) equivariant group convolutions and codebase for de-
signing custom regular group convolutions as a Python package.1

Paper Outline. The remainder of this paper is structured as follows. Section 2
provides an overview of current research in group convolutions. Section 3 intro-
duces the group convolution theory and presents our approach to SE(3) equiv-
ariant group convolutions. Section 4 presents our experiments and an evaluation
of our results. We give our concluding remarks in Section 5.

2 Literature Overview

Since the introduction of the group convolutional neural network (G-CNN), re-
search in G-CNNs has grown in popularity due to their improved performance

1 Our codebase can be accessed at: https://github.com/ThijsKuipers1995/gconv.

https://github.com/ThijsKuipers1995/gconv
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and equivariant properties over regular CNNs. Work on G-CNNs operating on
volumetric image data has primarily been focused on the 3D roto-translation
group SE(3) [22, 20, 19]. CubeNet was the first introduced 3D G-CNN, operat-
ing on the rotational symmetries of the 3D cube [22]. The approach presented in
[20] similarly works with discrete subsets of SE(3). These approaches are not fully
equivariant to SE(3). Steerable 3D G-CNNs construct kernels through a linear
combination of spherical harmonic functions, obtaining full SE(3) equivariance
[19]. Other approaches that are fully SE(3) equivariant are the Tensor-Field-
Network [18] and N-Body networks [17]. However, these operate on point clouds
instead of 3D volumes.

3 Separable SE(n) Equivariant Group Convolutions

This work introduces separable SE(3) equivariant group convolutions. However,
our framework generalizes to SE(n). Hence, we will describe it as such. Section
3.1 presents a brief overview of the regular SE(n) group convolution. Section 3.2
introduces our approach for applying this formulation to the continuous domain.

3.1 Regular Group Convolutions

The traditional convolution operates on spatial signals, i.e., signals defined on
Rn. Intuitively, one signal (the kernel) is slid across the other signal. That is,
a translation is applied to the kernel. From a group-theoretic perspective, this
can be viewed as performing the group action from the translation group. The
convolution operator can then be formulated in terms of the group action. By
commuting to a group action, the group convolution produces an output signal
that is equivariant to the transformation imposed by the corresponding group.

The SE(n) Group Convolution Operator. Instead of operating on sig-
nals defined on Rn, SE(n)-convolutions operate on signals defined on the group
SE(n) = Rn ⋊ SO(n). Given an n-dimensional rotation matrix R, and SE(3)-
signals f and k, the SE(n) group convolution is defined as follows:

(f ∗group k)(x,R) =

∫
Rn

∫
SO(n)

k
(
R−1(x̃− x),R−1R̃

)
f(x̃, R̃)dR̃dx̃. (1)

The Lifting Convolution Operator. Input data is usually not defined on
SE(n). Volumetric images are defined on R3. Hence, the input signal should be
lifted to SE(n). This is achieved via a lifting convolution, which accepts a signal
f defined on Rn and applies a kernel k defined on SO(n), resulting in an output
signal on SE(n). The lifting convolution is defined as follows:

(f ∗lifting k)(x) =
∫
Rn

k(R−1(x̃− x))f(x̃)dx̃. (2)

The lifting convolution can be seen as a specific case of group convolution where
the input is implicitly defined on the identity group element.
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3.2 Separable SE(n) Group Convolution

The group convolution in Equation 1 can be separated into a convolution over R
followed by a convolution over Rn by assuming kSE(n)(x,R) = kSO(n)(R)kRn(x).
This improves performance and significantly reduces computation time [11].

The Separable SE(n) Kernel. Let i and o denote in the input and output
channel indices, respectively. We separate the SE(3) kernel as follows:

kioSE(n)(x,R) = kioSO(n)(R)koRn(x). (3)

Here, kSO(n) performs the channel mixing, after which a depth-wise separable
spatial convolution is performed. This choice of separation is not unique. The
channel mixing could be separated from the SO(n) kernel. However, this has
been shown to hurt model performance [11].

Discretizing the Continuous SO(n) Integral. The continuous group inte-
gral over SO(n) in Equation 1 can be discretized by summing over a discrete
SO(n) grid. By randomly sampling the grid elements, the continuous group in-
tegral can be approximated [24]. However, randomly sampled kernels may not
capture the entirety of the group manifold. This will result in a noisy estimate.
Therefore, we constrain our grids to be uniform, i.e., grid elements are spaced
equidistantly. Similarly to the authors of [2], we use a repulsion model to generate
SO(n) grids of arbitrary resolution.

Continuous SO(n) Kernel with Radial Basis Function Interpolation.
The continuous SO(n) kernel is parameterized via a similarly discrete SO(n)
uniform grid. Each grid element Ri has corresponding learnable parameters ki.
We use radial basis function (RBF) interpolation to evaluate sampled grid ele-
ments. Given a grid of resolution N , the continuous kernel kSO(n) is evaluated
for any R as:

kSO(n)(R) =

N∑
i=1

ad,ψ(R,Ri)ki. (4)

Here, ad,ψ(R,Ri) represents the RBF interpolation coefficient of R correspond-
ing to Ri obtained using Gaussian RBF ψ and Riemannian distance d. The
uniformity constraint on the grid allows us to scale ψ to the grid resolution
dynamically. This ensures that the kernel is smooth and makes our approach
hyperparameter-free.

4 Experiments and Evaluation

In this section, we present our results and evaluation. Section 4.1 introduces our
experimental setup. Our results on MedMNIST are presented in Sections 4.2
and 4.3. Section 4.4 offers a deeper look into the generalization performance.
Directions for future work based on our results are suggested in Section 4.5.
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4.1 Evaluation Methodology

From here on, we refer to our approach as the SE(3)-CNN. We evaluate the
SE(3)-CNNs for different group kernel resolutions. The sample and kernel res-
olutions are kept equal. We use a regular CNN as our baseline model. We also
compare discrete SE(3) subgroup equivariant G-CNNs. K-CNN and T-CNN are
equivariant to the 180 and 90-degree rotational symmetries, containing 4 and 12
group elements, respectively.

All models use the same ResNet [8] architecture consisting of an initial con-
volution layer, two residual blocks with two convolution layers each, and a final
linear classification layer. Batch normalization is applied after the first convo-
lution layer. In the residual blocks, we use instance normalization instead. Max
spatial pooling with a resolution of 2 × 2 × 2 is applied after the first residual
block. Global pooling is applied before the final linear layer to produce SE(3)
invariant feature descriptors. The first layer maps to 32 channels. The residual
blocks map to 32 and 64 channels, respectively. For the G-CNNs, the first convo-
lution layer is a lifting convolution, and the remainders are group convolutions.
All spatial kernels have a resolution of 7 × 7 × 7. Increasing the group kernel
resolution increases the number of parameters. Hence, a second baseline CNN
with twice the number of channels is included. The number of parameters of the
models is presented in Table 1.

We evaluate the degree of SE(3) equivariance obtained by the SE(3)-CNNs
on OrganMNIST3D [4, 25] and rotated OrganMNIST3D. For rotated Organ-
MNIST3D, samples in the test set are randomly rotated. We further evalu-
ate FractureMNIST3D [9], NoduleMNIST3D [1], AdrenalMNIST3D [27], and
SynapseMNIST3D [27] from the MedMNIST dataset [26, 27]. These volumetric
image datasets form an interesting benchmark for SE(3) equivariant methods,
as they naturally contain both isotropic and anisotropic features. All input data
has a single channel with a resolution of 28 × 28 × 28. Each model is trained
for 100 epochs with a batch size of 32 and a learning rate of 1× 10−4 using the
Adam [10] optimizer on an NVIDIA A100 GPU. The results are averaged over
three training runs with differing seeds.

4.2 SE(3) Equivariance Performance

Table 1 shows the accuracies and accuracy drops obtained by the evaluated
models on the OrganMNIST3D test set and rotated test set. The decrease in ac-
curacy is calculated as the percentage of the difference between the test scores on
the test set and the rotated test set. Both baselines suffer from a high accuracy
drop. This is expected, as these models are not equivariant to SE(3). K-CNN
and T-CNN fare better. Due to its higher SO(3) kernel resolution, T-CNN out-
performs K-CNN. However, these methods do not generalize to the SE(3) group.
The SE(3)-CNNs obtain significantly lower drops in accuracy, showing their im-
proved generalization to SE(3). The SE(3)-CNNs at sample resolutions of 12 and
16 also reach higher accuracies than both baseline models. As the sample reso-
lution increases, performance on the standard test set shows a more pronounced
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Table 1: Number of parameters, computational performance, accuracies, and
drop in accuracy on test scores between OrganMNIST3D and rotated OrganM-
NIST3D. Computational performance is measured during training. The highest
accuracy and lowest error are shown in bold.

Model Baseline Baseline big SE(3)-CNN K-CNN T-CNN

Sample res. - - 4 6 8 12 16 4 12

# parameters 89k 200k 80k 96k 111k 142k 172k 80k 142k
Seconds/epoch 3.37 5.83 9.67 14.43 18.48 27.31 36.37 9.70 27.75
Memory (GB) 3.34 4,80 6.89 9.188 12.38 15.75 20.86 6.70 15.52

Accuracy 0.545 0.697 0.655 0.681 0.688 0.703 0.698 0.633 0.722
Rotated Acc. 0.207 0.264 0.581 0.593 0.592 0.608 0.628 0.327 0.511

Drop in Acc. % 62.15 62.09 11.26 12.91 14.07 13.60 10.09 48.27 29.27

increase than on the rotated test set. This results in a slight increase in accuracy
drop. At a sample resolution of 16, accuracy on the standard test set decreases
while the highest accuracy is obtained on the rotated test set. A high degree
of SE(3) equivariance seems disadvantageous on OrganMNIST3D. This would
also explain why T-CNN achieved the highest accuracy on the standard test
set, as this model generalizes less to SE(3). OrganMNIST3D contains samples
aligned to the abdominal window, resulting in high isotropy. This reduces the
advantages of SE(3) equivariance.

4.3 Performance on MedMNIST

The accuracies obtained on FractureMNIST3D, NoduleMNIST3D, AdrenalM-
NIST3D, and SynapseMNIST3D are reported in Table 2. The SE(3)-CNNs ob-
tain the highest accuracies on all datasets. On FreactureMNIST3D, the highest
accuracy is achieved by the SE(3)-CNN (12). Both K-CNN and T-CNN achieve
an accuracy very similar to the baseline models. The baseline-big model slightly
outperforms both K-CNN and T-CNN. On NoduleMNIST3D, SE(3)-CNN (6)
and SE(3)-CNN (8) achieve the highest accuracy, with SE(3)-CNN (12) per-
forming only slightly lower. K-CNN and T-CNN outperform both baseline mod-
els. On AdrenalMNIST3D, the differences in accuracy between all models are
the lowest. SE(3)-CNN (16) obtains the highest accuracy, whereas the baseline
model obtains the lowest. The baseline-big model outperforms K-CNN and T-
CNN. On SynapseMNIST3D, we again observe a significant difference in perfor-
mance between the SE(3)-CNNs and the other models. SE(3)-CNN (6) obtained
the highest performance. T-CNN outperforms K-CNN and both baseline mod-
els. However, the baseline-big model outperforms K-CNN. On NoduleMNIST3D
and AdrenalMNIST3D, only a slight performance gain is achieved by the SE(3)-
CNNs. This is likely due to the isotropy of the samples in these datasets. In
these cases, SE(3) equivariance is less beneficial. In contrast, FractureMNIST3D
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Table 2: Accuracies and SE(3)-CNN performance gain in percentage points (p.p.)
over the CNN baselines on FractureMNIST3D, NoduleMNIST3D, AdrenalM-
NIST3D, and SynapseMNIST3D. Sample resolution in parenthesis behind the
model name. Standard deviation in parenthesis behind the accuracies. The high-
est accuracy is indicated in bold.

Model Fracture Nodule Adrenal Synapse

Baseline 0.450 (±0.033) 0.834 (±0.019) 0.780 (±0.006) 0.694 (±0.006)
Baseline-big 0.499 (±0.032) 0.846 (±0.010) 0.806 (±0.022) 0.720 (±0.019)

SE(3)-CNN (4) 0.588 (±0.029) 0.869 (±0.008) 0.800 (±0.006) 0.865 (±0.010)
SE(3)-CNN (6) 0.617 (±0.013) 0.875 (±0.008) 0.804 (±0.002) 0.870 (±0.008)
SE(3)-CNN (8) 0.615 (±0.002) 0.875 (±0.014) 0.815 (±0.015) 0.885 (±0.007)
SE(3)-CNN (12) 0.621 (±0.002) 0.873 (±0.005) 0.814 (±0.010) 0.858 (±0.028)
SE(3)-CNN (16) 0.604 (±0.012) 0.858 (±0.011) 0.832 (±0.005) 0.869 (±0.023)

K-CNN (4) 0.486 (±0.012) 0.859 (±0.013) 0.798 (±0.011) 0.709 (±0.009)
T-CNN (12) 0.490 (±0.036) 0.862 (±0.006) 0.800 (±0.011) 0.777 (±0.021)

Gain in p.p. 12.2 2.9 2.6 16.5

(a) Train scores on SynapseMNIST3D. (b) Test scores on SynapseMNIST3D.

Fig. 1: Accuracy scores of the baseline models, the SE(3)-CNN (4) and (16)
models, and the discrete SE(3) subgroup models on (a) the train set and (b) the
test set of SynapseMNIST3D.

and SynapseMNIST3D are more anisotropic, resulting in significant performance
gains of up to 16.5%.

4.4 Model Generalization

The scores obtained on both the train set and test sets of SynapseMNIST3D in
Figures 1a and 1b, respectively. We observed similar behavior on all datasets.
Figure 1 shows a stark difference between the SE(3)-CNNs and the other mod-
els. The baselines and K-CNN and T-CNN converge after a few epochs on the
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train set. SE(3)-CNN (16) requires all 100 epochs to converge on the train set.
SE(3)-CNN (4) does not converge within 100 epochs. This improvement dur-
ing the training window is also observed in the test scores. This suggests that
SE(3)-CNNs suffer less from overfitting, which results in improved model gener-
alization. K-CNN and T-CNN behave similarly to the baselines. We hypothesize
that this results from the weight-sharing that occurs during the RBF interpo-
lation. We do observe a higher variance in scores of the SE(3)-CNNs, which we
attribute to the random nature of the convolution kernels.

4.5 Future Work

With an increase in the sample resolution, a better approximation to SE(3)
equivariance is achieved. However, we observe that this does not necessarily
improve model performance, e.g., in the case of isotropic features. This could
indicate that the equivariance constraint is too strict. We could extend our ap-
proach to learn partial equivariance. Rather than sampling on the entire SO(3)
manifold, each group convolution layer could learn sampling in specific regions.
This suggests a compelling extension of our work, as learning partial invariance
has shown to increase model performance [16].

5 Conclusion

This work proposed an SE(3) equivariant separable G-CNN. Equivariance is
achieved by sampling uniform kernels on a continuous function over SO(3) us-
ing RBF interpolation. Our approach requires no additional hyper-parameters
compared to CNNs. Hence, our SE(3) equivariant layers can replace regular
convolution layers. Our approach consistently outperforms CNNs and discrete
subgroup equivariant G-CNNs on challenging medical image classification tasks.
We showed that 3D CNNs and discrete subgroup equivariant G-CNNs suffer
from overfitting. We showed significantly improved generalization capabilities of
our approach. In conclusion, we have demonstrated the advantages of equivariant
methods in medical image analysis that naturally deal with rotation symmetries.
The simplicity of our approach increases the accessibility of these methods, mak-
ing them available to a broader audience.
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