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Abstract. Generative Adversarial Networks (GANs) have demonstrated
their ability to generate synthetic samples that match a target distribu-
tion. However, from a privacy perspective, using GANs as a proxy for
data sharing is not a safe solution, as they tend to embed near-duplicates
of real samples in the latent space. Recent works, inspired by k-anonymity
principles, address this issue through sample aggregation in the latent
space, with the drawback of reducing the dataset by a factor of k. Our
work aims to mitigate this problem by proposing a latent space naviga-
tion strategy able to generate diverse synthetic samples that may support
effective training of deep models, while addressing privacy concerns in
a principled way. Our approach leverages an auxiliary identity classi-
fier as a guide to non-linearly walk between points in the latent space,
minimizing the risk of collision with near-duplicates of real samples. We
empirically demonstrate that, given any random pair of points in the
latent space, our walking strategy is safer than linear interpolation. We
then test our path-finding strategy combined to k-same methods and
demonstrate, on two benchmarks for tuberculosis and diabetic retinopa-
thy classification, that training a model using samples generated by our
approach mitigate drops in performance, while keeping privacy preser-
vation. Code is available at: https://github.com/perceivelab/PLAN
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1 Introduction

The success of deep learning for medical data analysis has demonstrated its po-
tential to become a core component of future diagnosis and treatment method-
ologies. However, in spite of the efforts devoted to improve data efficiency [14],
the most effective models still rely on large datasets to achieve high accuracy and
generalizability. An effective strategy for obtaining large and diverse datasets is
to leverage collaborative efforts based on data sharing principles; however, cur-
rent privacy regulations often hinder this possibility. As a consequence, small
private datasets are still used for training models that tend to overfit, introduce
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biases and generalize badly on other data sources addressing the same task [24].
As a mitigation measure, generative adversarial networks (GANs) have been
proposed to synthesize highly-realistic images, extending existing datasets to in-
clude more (and more diverse) examples [17], but they pose privacy concerns
as real samples may be encoded in the latent space. K-same techniques [9,15]
attempt to reduce this risk by following the k-anonymity principle [21] and re-
placing real samples with synthetic aggregations of groups of k samples. As a
downside, these methods reduce the dataset size by a factor of k, which greatly
limits their applicability.

To address this issue, we propose an approach, complementing k-same tech-
niques, for generating an extended variant of a dataset by sampling a privacy-
preserving walk in the GAN latent space. Our method directly optimizes latent
points, through the use of an auxiliary identity classifier, which informs on the
similarity between training samples and synthetic images corresponding to candi-
date latent points. This optimized navigation meets three key properties of data
synthesis for medical applications: 1) equidistance, encouraging the generation
of diverse realistic samples suitable for model training; 2) privacy preservation,
limiting the possibility of recovering original samples, and, 3) class-consistency,
ensuring that synthesized samples contain meaningful clinical information. To
demonstrate the generalization capabilities of our approach, we experimentally
evaluate its performance on two medical image tasks, namely, tuberculosis classi-
fication using the Shenzhen Hospital X-ray dataseet [5,7,8] and diabetic retinopa-
thy classification on the APTOS dataset [13]. On both tasks, our approach yields
classification performance comparable to training with real samples and signifi-
cantly better than existing k-same techniques such as k-SALSA [9], while keeping
the same robustness to membership inference attacks.

Contributions: 1) We present a latent space navigation approach that pro-
vides a large amount of diverse and meaningful images for model training; 2)
We devise an optimization strategy of latent walks that enforces privacy; 3) We
carry out several experiments on two medical tasks, demonstrating the effec-
tiveness of our generative approach on model’s training and its guarantees to
privacy preservation.

2 Related Work

Conventional methods to protect identity in private images have involved mod-
ifying pixels through techniques like masking, blurring, and pixelation [19,3].
However, these methods have been found to be insufficient for providing ade-
quate privacy protection [1]. As an alternative, GANs have been increasingly
explored to synthesize high-quality images that preserve information from the
original distribution, while disentangling and removing privacy-sensitive compo-
nents [22,23]. However, these methods have been mainly devised for face images
and cannot be directly applicable to medical images, since there is no clear dis-
tinction between identity and non-identity features [9].
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Recent approaches, based on the k-same framework [15], employ GANs to
synthesize clinically-valid medical images principle by aggregating groups of
real samples into synthetic privacy-preserving examples [9,18]. In particular, k-
SALSA [9] uses GANs for generating retinal fundus images by proposing a local
style alignment strategy to retain visual patterns of the original data. The main
downside of these methods is that, in the strive to ensure privacy preservation
following the k-anonymity [21] principle, they significantly reduce the size of the
original dataset.

Our latent navigation strategy complements these approaches by synthesiz-
ing large and diverse samples, suitable for downstream tasks. In general, latent
space navigation in GANs manipulates the latent vectors to create new images
with specific characteristics. While many works have explored this concept to
control semantic attributes of generated samples [12,4], to the best of our knowl-
edge, no method has tackled the problem from a privacy-preservation standpoint,
especially on a critical domain such as medical image analysis.

3 Method

The proposed Privacy-preserving LAtent Navigation (PLAN) strategy en-
visages three separate stages: 1) GAN training using real samples; 2) latent
privacy-preserving trajectory optimization in the GAN latent space; 3) privacy-
preserving dataset synthesis for downstream applications. Fig. 1 illustrates the
overall framework and provides a conceptual interpretation of the optimization
objectives.

Fig. 1. Overview of the PLAN approach. Using real samples, we train a GAN,
an identity classifier ϕid and an auxiliary classifier ϕclass. Given two arbitrary latent
points, wa and wb, PLAN employs ϕid and ϕclass to gain information on latent space
structure and generate a privacy-preserving navigation path (right image), from which
synthetic samples can be sampled (far right images, zoom-in for details).
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Formally, given a GAN generator G : W → X , we aim to navigate its latent
space W to generate samples in image space X in a privacy-preserving way, i.e.,
avoiding latent regions where real images might be embedded. The expected
result is a synthetic dataset that is safe to share, while still including consistent
clinical features to be used by downstream tasks (e.g., classification).

Our objective is to find a set of latent points W̄ ⊂ W
from which it is safe to synthesize samples that are significantly different from

training points: given the training set X̂ ⊂ X and a metric d on X , we want to
find W̄ such that minx∈X̂ d (G (w̄) ,x) > δ, ∀w̄ ∈ W̄, for a sufficiently large δ.
Manually searching for W̄, however, may be unfeasible: generating a large W̄ is
computationally expensive, as it requires at least |W̄| forward passes through G,
and each synthesized image should be compared to all training images;

moreover, randomly sampled latent points might not satisfy the above con-
dition.

To account for latent structure, one could explicitly sample away from la-
tent vectors corresponding to real data. Let Ŵi ⊂ W be the set of latent
vectors that produce near-duplicates of a training sample xi ∈ X , such that
G(ŵi) ≈ xi, ∀ŵi ∈ Ŵi. We can thus define Ŵ =

⋃N
i=1 Ŵi as the set of latent

points corresponding to all N samples of the training set: knowledge of Ŵ can
be used to move the above constraint from X to W, by finding W̄ such that
minŵ∈Ŵ d (w̄, ŵ) > δ, ∀w̄ ∈ W̄. In practice, although Ŵi can be approximated
through latent space projection [12,2] from multiple initialization points, its car-
dinality |Ŵi| cannot be determined a priori as it is potentially unbounded.

From these limitations, we pose the search of seeking privacy-preserving la-
tent points as a trajectory optimization problem, constrained by a set of objec-
tives that mitigate privacy risks and enforce sample variability and class con-
sistency. Given two arbitrary latent points (e.g., provided by a k-same aggre-
gation method), wa,wb ∈ W, we aim at finding a latent trajectory W̄T =
[wa = w̄1, w̄2, . . . , w̄T−1,wb = w̄T ] that traverses the latent space from wa to
wb in T steps, such that none of its points can be mapped to any training sam-
ple. We design our navigation strategy to satisfy three requirements, which are
then translated into optimization objectives:

1. Equidistance. The distance between consecutive points in the latent tra-
jectory should be approximately constant, to ensure sample diversity and
mitigate mode collapse. We define the equidistance loss, Ldist, as follows:

Ldist =

T−1∑
i=1

∥w̄i, w̄i+1∥22 (1)

where ∥·∥2 is the L2 norm. Note that without any additional constraint, Ldist

converges to the trivial solution of linear interpolation, which
gives no guarantee that the path will not contain points belonging to Ŵ.

2. Privacy preservation. To navigate away from latent regions corresponding
to real samples, we employ an auxiliary network ϕid, trained on X̂ to per-
form identity classification. We then set the privacy preservation constraint
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by imposing that a sampled trajectory must maximize the uncertainty of
ϕid, thus avoiding samples that could be recognizable from the training set.
Assuming ϕid to be a neural network with as many outputs as the number of
identities in the original dataset, this constraint can be mapped to a privacy-
preserving loss, Lid, defined as the Kullback-Leibler divergence between the
softmax probabilities of ϕid and the uniform distribution U :

Lid =

T∑
i=1

KL[ϕid(G(w̄i)) ∥ U(1/nid)] (2)

where nid is the number of identities.

This loss converges towards points with enhanced privacy, on which a trained
classifier is maximally uncertain.

3. Class consistency. The latent navigation strategy, besides being privacy-
preserving, needs to retain discriminative features to support training of
downstream tasks on the synthetic dataset. In the case of a downstream
classification task, given wa and wb belonging to the same class, all points
along a trajectory between wa and wb should exhibit the visual features
of that specific class. Moreover, optimizing the constraints in Eq. 1 and
Eq. 2 does not guarantee good visual quality, leading to privacy-preserving
but useless synthetic samples. Thus, we add a third objective that enforces
class-consistency on trajectory points. We employ an additional auxiliary
classification network ϕclass, trained to perform classification on the original
dataset, to ensure that sampled latent points share the same visual properties
(i.e., the same class) ofwa andwb. The corresponding loss Lclass is as follows:

Lclass =

T∑
i=1

CE [ϕclass(G(w̄i)), y] (3)

where CE is the cross-entropy between the predicted label for each sample
and the target class label y.

Overall, the total loss for privacy-preserving latent navigation is obtained as:

LPLAN = Ldist + λ1Lid + λ2Llabel (4)

where λ1 and λ2 weigh the three contributions.

In a practical application, we employ PLAN in conjunction with a privacy-
preserving method that produces synthetic samples (e.g., a k-same approach).
We then navigate the latent space between random pairs of such samples, and
increase the size of the dataset while retaining privacy preservation. The resulting
extended set is then used to train a downstream classifier ϕdown on synthetic
samples only. Overall, from an input set of N samples, we apply PLAN to N/2
random pairs, thus sampling TN/2 new points.
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4 Experimental Results

We demonstrate the effectiveness and privacy-preserving properties of our PLAN
approach on two classification tasks, namely, tuberculosis classification and dia-
betic retinopathy (DR) classification.

4.1 Training and evaluation procedure

Data preparation. For tuberculosis classification, we employ the Shenzhen
Hospital X-ray set3 [5,7,8] that includes 662 frontal chest X-ray images (326
negatives and 336 positives). For diabetic retinopathy classification, we use the
APTOS fundus image dataset [13] of retina images labeled by ophthalmologists
with five grades of severity. We downsample it by randomly selecting 950 images,
equally distributed among classes, to simulate a typical scenario with low data
availability (as in medical applications), where GAN-based synthetic sampling,
as a form of augmentation, is more needed. All images are resized to 256×256
and split into train, validation and test set with 70%, 10%, 20% proportions.
Baseline methods. We evaluate our approach from a privacy-preserving per-
spective and by its capability to support downstream classification tasks. For
the former, given the lack of existing methods for privacy-preserving GAN latent
navigation, we compare PLAN to standard linear interpolation. After assessing
privacy-preserving performance, we measure the impact of our PLAN sampling
strategy when combined to k-SALSA [9] and the latent cluster interpolation ap-
proach from [18] (LCI in the following) on the two considered tasks.
Implementation details. We employ StyleGAN2-ADA [11] as GAN model for
all baselines, trained in a label-conditioned setting on the original training sets.
For all classifiers (ϕid, ϕclass and ϕdown) we employ a ResNet-18 network [6].
Classifiers ϕid and ϕclass are trained on the original training set, while ϕdown

(i.e., the task classifier, one for each task) is trained on synthetic samples only.
For ϕid, we apply standard data augmentation (e.g., horizontal flip, rotation)
and add five GAN projections for each identity, to mitigate the domain shift be-
tween real and synthetic images. ϕdown is trained with a learning rate of 0.001, a
batch size of 32, for 200 (Shenzhen) and 500 (APTOS) epochs. Model selection
is carried out at the best validation accuracy, and results are averaged over 5
runs. When applying PLAN on a pair of latent points, we initialize a trajec-
tory of T = 50 points through linear interpolation, and optimize Eq. 4 for 100
steps using Adam with a learning rate of 0.1; λ1 and λ2 are set to 0.1 and 1,
respectively. Experiments are performed on an NVIDIA RTX 3090.

4.2 Results

To measure the privacy-preserving properties of our approach, we employ the
membership inference attack (MIA) [20], which attempts to predict if a sample

3 This dataset was released by the National Library of Medicine, NIH, Bethesda, USA.
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was used in a classifier’s training set. We use attacker model and settings de-
fined in [16,10], training the attacker on 30% of the training set (seen by PLAN
through ϕid and ϕclass) and 30% of the test set (unseen by PLAN); as a test set
for MIA, we reserve 60% of the original test set, leaving 10% as a validation set
to select the best attacker. Ideally, if the model preserves privacy, the attacker
achieves chance performance (50%), showing inability to identify samples used
for training. We also report the FID of the generated dataset, to measure its
level of realism, and the mean of the minimum LPIPS [25] (“mmL” for short)
distances between each generated sample and its closest real image, to measure
how generated samples differ from real ones. We compare PLAN to a linear
interpolation between arbitrary pairs of start and end latent points, and com-
pute the above measures on the images corresponding to the latent trajectories
obtained by two approaches. We also report the results of the classifier trained
on real data to provide additional bounds for both classification accuracy and
privacy-preserving performance.

Table 1. Comparison between the downstream classifier (ϕdown) model trained with
real samples and those trained with synthetic samples generated from the linear path
and privacy path, respectively.

Shenzhen Aptos

Acc. (%)(↑) MIA (↓) FID (↓) mmL (↑) Acc. (%)(↑) MIA (↓) FID (↓) mmL (↑)

Real 81.23±1.03 71.41±3.59 – – 50.74±2.85 73.30±4.04 – –

Linear 82.14±1.40 56.28±1.60 63.85 0.125 41.58±2.11 50.53±3.06 85.17 0.118

PLAN 83.85±1.33 50.13±3.99 63.22 0.159 46.95±3.06 48.51±2.85 90.81 0.131

Results in Table 1 demonstrate that our approach performs similarly to train-
ing with real data, but with higher accuracy with respect to the linear baseline.
Privacy-preserving results, measured through MIA and mmL, demonstrate the
reliability of our PLAN strategy in removing sensitive information, reaching the
ideal lower bound of MIA accuracy.
Fig. 2 shows how, for given start and end points, PLAN-generated samples
keep high quality but differ significantly from real samples, while latent linear
interpolation may lead to near-duplicates. This is confirmed by the higher LPIPS
distance between generated samples and the most similar real samples for PLAN.
After verifying the generative and privacy-preserving capabilities of our ap-
proach, we evaluate its contribution to classification accuracy when combined
with existing k-same methods, namely k-SALSA [9] and LCI [18]. Both methods
apply latent clustering to synthesize a privacy-preserving dataset, but exhibit low
performance transferability to classification tasks, due to the reduced size of the
resulting synthetic dataset. We carry out these experiments on APTOS, using
k = 5 and k = 10, for comparison with [9]4. Results are given in Table 2 and

4 Values of k smaller than 5 led to vulnerabilities to MIA on APTOS, as shown in [9].
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Fig. 2. Linear vs PLAN navigation between two arbitrary points. For each
step of the latent trajectory, we compute the LPIPS distance between each synthetic
sample and its closest real image. On the right, a qualitative comparison of images
at step 35 and their closest real samples: the synthetic image obtained with PLAN
differs significantly from its closest real sample; in linear interpolation, synthetic and
real samples look similar. Bottom images show synthetic samples generated by linear
interpolation and PLAN at the same steps (zoom-in for details).

show how our PLAN strategy enhances performance of the two baseline meth-
ods, reaching performance similar to training the retinopathy classifier with real
samples (i.e., 50.74 on real data vs 44.95 when LCI [18] is combined with PLAN)
and much higher than the variants without PLAN. We also measured MIA ac-
curacy between the variants with and without PLAN, and we did not observe
significant change among the different configurations: accuracy was at the chance
level in all cases, suggesting their privacy-preserving capability.

Table 2. Impact of our navigation strategy on k-same methods on the APTOS dataset.
Performance are reported in terms of accuracy.

k-SALSA [9] k-SALSA LCI [18] LCI

+PLAN +PLAN

k = 5 25.58±6.32 36.59±3.48 38.74±4.51 43.16±2.71

k = 10 27.47±3.42 34.21±1.62 36.42±3.77 44.95±1.61
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5 Conclusion

We presented PLAN, a latent space navigation strategy designed to reduce pri-
vacy risks when using GANs for training models on synthetic data. Experimental
results, on two medical image analysis tasks, demonstrate how PLAN is robust
to membership inference attacks while effectively supporting model training with
performance comparable to training on real data. Furthermore, when PLAN is
combined with state-of-the-art k-anonymity methods, we observe a mitigation
of performance drop while maintaining privacy-preservation properties. Future
research directions will address the scalability of the method to large datasets
with a high number of identities, as well as learning latent trajectories with ar-
bitrary length to maximize privacy-preserving and augmentation properties of
the synthetic datasets.
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