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Abstract. We present a novel methodology that combines graph and
dense segmentation techniques by jointly learning both point and pixel
contour representations, thereby leveraging the benefits of each approach.
This addresses deficiencies in typical graph segmentation methods where
misaligned objectives restrict the network from learning discriminative
vertex and contour features. Our joint learning strategy allows for rich
and diverse semantic features to be encoded, while alleviating common
contour stability issues in dense-based approaches, where pixel-level ob-
jectives can lead to anatomically implausible topologies. In addition,
we identify scenarios where correct predictions that fall on the contour
boundary are penalised and address this with a novel hybrid contour
distance loss. Our approach is validated on several Chest X-ray datasets,
demonstrating clear improvements in segmentation stability and accu-
racy against a variety of dense- and point-based methods. Our source
code is freely available at:

www.github.com /kitbransby/Joint _Graph Segmentation
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1 Introduction

Semantic segmentation is a fundamental task in medical imaging used to delin-
eate regions of interest, and has been applied extensively in diagnostic radiology.
Recently, deep learning methods that use a dense probability map to classify each
pixel such as UNet [2], R-CNN [3], FCN [4] have advanced the state-of-the-art in
this area. Despite overall excellent performance, dense-based approaches learn
using a loss defined at the pixel-level which can lead to implausible segmen-
tation boundaries such as unexpected interior holes or disconnected blobs [I].
This is a particular problem in medical image analysis where information-poor,
occluded or artefact-affected areas are common and often limit a network’s abil-
ity to predict reasonable boundaries. Furthermore, minimising the largest error
(Hausdorff distance (HD)) is often prioritised over general segmentation metrics
such as Dice Similarity (DS) or Jaccard Coefficient (JC) in medical imaging, as
stable and trustworthy predictions are more desirable.

To address this problem in segmentation networks, Gaggion et al. proposed
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HybridGNet [I] that replaces the convolutional decoder in UNet with a graph
convolutional network (GCN), where images are segmented using a polygon gen-
erated from learned points. Due to the relational inductive bias of graph net-
works where features are shared between neighbouring nodes in the decoder,
there is a natural smoothing effect in predictions leading to stable segmenta-
tion and vastly reduced HD. In addition this approach is robust to domain shift
and can make reasonable predictions on unseen datasets sourced from different
medical centres, whereas dense-based methods fail due to domain memorization
[5]. In HybridGNet, improved stability and HD comes at the cost of reduced
contour detail conveyed by sub-optimal DS and JC metrics when compared to
dense-based approaches such as UNet. Many methods have addressed this prob-
lem by rasterizing polygon points predicted by a decoder to a dense mask and
then training the network using typical pixel-level losses such as Dice or cross-
entropy [7/9/10]. These approaches have merit but are often limited by their
computational requirements. For example, in CurveGCN [7], the rasterization
process uses OpenGL polygon triangulation which is not differentiable, and the
gradients need to be approximated using Taylor expansion which is computa-
tionally expensive and can therefore only be applied at the fine-tuning stage [8].
While in ACDRNet [10], rasterization is differentiable, however the triangulation
process is applicable only to convex polygons, and therefore limits application
to more complicated polygon shapes. Rasterization is extended to non-convex
polygons in BoundaryFormer [9] by bypassing the triangulation step and instead
approximating the unsigned distance field. This method gives excellent results
on MS-COCO dataset [I1], however is computationally expensive (see Section
53).

With this in mind, we return to HybridGNet which efficiently optimises
points directly and theorise about the causes of the performance gap relative to
dense segmentation models. We identify that describing segmentation contours
using points is a sub-optimal approach because (1) points are an incomplete
representation of the segmentation map; (2) the supervisory signal is usually
weaker (n distances are calculated from n pairs of points, versus, h x w dis-
tances for pairs of dense probability maps); (3) the distance from the contour
is more meaningful than the distance from the points representing the contour,
hence minimising the point-wise distance can lead to predictions which fall on
the contour being penalised.

Contributions: We propose a novel joint architecture and contour loss to ad-
dress this problem that leverages the benefits of both point and dense approaches.
First, we combine image features from an encoder trained using a point-wise dis-
tance with image features from a decoder trained using a pixel-level objective.
Our motivation is that contrasting training strategies enable diverse image fea-
tures to be encoded which are highly detailed, discriminative and semantically
rich when combined. Our joint learning strategy benefits from the segmentation
accuracy of dense-based approaches, but without topological errors that regu-
larly afflict models trained using a pixel-level loss. Second, we propose a novel
hybrid contour distance (HCD) loss which biases the distance field towards pre-
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dictions that fall on the contour boundary using a sampled unsigned distance
function which is fully differentiable and computationally efficient. To our knowl-
edge this is the first time unsigned distance fields have been applied to graph
segmentation tasks in this way. Our approach is able to generate highly plausible
and accurate contour predictions with lower HD and higher DS/JC scores than
a variety of dense and graph-based segmentation baselines.

2 Methods

2.1 Network Design

We implement an architecture consisting of two networks, a Dense-Graph (DG)
network and a Dense-Dense (DD) network, as shown in Fig [I} Each network
takes the same image input X of height H and width W with skip connections
passing information from the decoder of DD to the encoder of DG. For DG,
we use a HybridGNet-style architecture containing a convolutional encoder to
learn image features at multiple resolutions, and a graph convolutional decoder
to regress the 2D coordinates of each point. In DG, node features are initialised
in a variational autoencoder (VAE) bottleneck where the final convolutional
output is flattened to a low dimensional latent space vector z. We sample z
from a distribution Normal(u, o) using the reparameterization trick [12], where
1 and o are learnt parameters of the encoder. Image-to-Graph Skip Connections
(IGSC) [1] are used to sample dense feature maps F; € REXWXC from DG’s
encoder using node position predictions P € RV*? from DG’s graph decoder
and concatenate these with previous node features F; € RVN*/ to give new
node features F{, € RN*(f+C+2) Here, N is the number of nodes in the graph
and f is the dimension of the node embedding. We implement IGSC at every
encoder-decoder level and pass node predictions as output, resulting in seven
node predictions. For DD, we use a standard UNet using the same number of
layers and dimensions as the DG encoder with a dense segmentation prediction
at the final decoder layer.
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Fig. 1. Network Architecture: a Dense-Dense network (top) enriches image features in
a Dense-Graph network (bottom).
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2.2 Graph Convolutional Network

Our graph decoder passes features initialised from the VAE bottleneck through
six Chebyshev spectral graph convolutional [I3] (ChebConv) layers using K-order
polynomial filters. Briefly, this is defined by X’ = J(Z’;(:1 Z®) . 0(k)) where
Ok) ¢ Rfin X fout gre learnable weights and o is a ReLU activation function. Z®*)
is computed recursively such that Z() = X |, Z® = [.Zz0) z*) —9.[.z(k-1) _
Z#=2) where X € RN * fir are graph features, and L represents the scaled and
normalized graph Laplacian [I4]. In practice, this allows for node features to be
aggregated within a K-hop neighbourhood, eventually regressing the 2D location
of each node using additional ChebConv prediction layers (fo,: = 2). As in [I],
our graph network also includes an unpooling layer after ChebConv block 3 to
upsample the number of points by adding a new point in between existing ones.

Example A Example B

Fig. 2. Feature map activation comparison between UNet encoder, UNet decoder, Hy-
bridGNet encoder and our encoder, using two examples. Top four most activated chan-
nels are summed channel-wise for convolutional layers 1-5 in each encoder/decoder.
L—R: decreasing resolution, increasing channel depth. Note, activations in our encoder
consistently highlight areas which are more pertinent to segmentation

2.3 Joint Dense-Point Learning

As typical DG networks are trained with a point-wise distance loss and not
a pixel-level loss, the image encoder is not directly optimised to learn clear
and well-defined boundary features. This misalignment problem results in the
DG encoder learning features pertinent to segmentation which are distinctively
different from those learnt in DD encoders. This is characterised by activation
peaks in different image regions such as the background and other non-boundary
areas (see Fig. To leverage this observation, we enrich the DG encoder feature
maps at multiple scales by fusing them with image features learnt by a DD
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decoder using a pixel-level loss. These diverse and highly discriminative features
are concatenated before being passed through the convolutional block at each
level. Current GCN feature learning paradigms aim at combining feature maps
from neighbouring or adjacent levels so as to aggregate similar information. This
results in a "coarse-to-fine" approach by first passing high level features to early
graph decoder blocks, followed by low level features to late graph decoder blocks.
Our joint learning approach is similar to this strategy but also supplements
each DG encoder level with both semantically rich and highly detailed contour
features learnt by the DD network.

Image + Ground Truth B = 0 (MSE Term only) - Contour Term only
r

Fig. 3. Our Hybrid Contour Distance loss biases the distance field to contours rather
than the points representing the contour. Top L—R: Segmentation mask represented
with edges, unsigned distance field for lungs, and heart. Bottom: Effect of beta in HCD.

2.4 Hybrid Contour Distance

Mean squared error (MSE) is a spatially symmetric loss which is agnostic to true
contour borders. We alleviate this pitfall by designing an additional contour-
aware loss term that is sensitive to the border. To achieve this we precompute
a 2D unsigned distance map S from the dense segmentation map for each class
¢ (i.e lungs, heart), where each position represents the normalised distance to
the closest contour border of that class. Specifically, for a dense segmentation
map M we use a Canny filter [I5] to find the contour boundary 6 M and then
determine the minimum distance between a point z € ¢ and any point p on
the boundary 6 M.. This function is positive for both the interior and exterior
regions, and zero on the boundary. Our method is visualised in Fig (first row)
and formalised below:

Se(x) =min|x — p| for all p € M, (1)
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During training, we sample S, as an additional supervisory signal using the
predicted 2D point coordinates ¢; € ¢, and combine with MSE with weight 5.
The effect of f is illustrated in Fig|3| (second row) and full HCD loss function is
defined below, where N is the number of points and y; € c is the ground truth
point coordinate.

Lacn = 3 Yol — 60 +55.(3) @

3 Experiments and Results

3.1 Datasets

We obtain four publicly available Chest X-ray segmentation datasets (JSRT [16],
Padchest [17], Montgomery [I8], and Shenzen [19]), with 245, 137, 566 and 138
examples respectively. JSRT cases are from patients diagnosed with lung nodules,
while Padchest contains patients with a cardiomegaly diagnosis and features
20 examples where a pacemaker occludes the lung border. These two datasets
contain heart and lung contour ground truth labels and are combined in a single
dataset of 382 examples. Montgomery and Shenzen contain lung contour ground
truth labels only, and are combined into a second dataset of 704 cases where 394
examples are from patients with tuberculosis and 310 are from patients without.
Each combined dataset is randomly split into 70% train, 15% validation and
15% test examples, each with a 1024px x 1024px resolution X-ray image and
ground truth point coordinates for organ contours obtained from [5].

3.2 Model Implementation & Training

We implement our model in PyTorch and use PyTorch-Geometric for the graph
layer. All models were trained for 2500 epochs using a NVIDIA A100 GPU
from Queen Mary’s Andrena HPC facility. For reliable performance estimates,
all models and baselines were trained from scratch three times, the mean scores
obtained for quantitative analysis and the median model used for qualitative
analysis. Hyperparameters for all experiments were unchanged from [I]. To im-
pose a unit Gaussian prior on the VAE bottleneck we train the network with an
additional KL-divergence loss term with weight 1e~>, and use 8 = 2.5e~2 for
the HCD weight. For joint models we pretrain the first UNet model separately
using the recipe from [I] and freeze its weights when training the full model.
This is done to reduce complexity in our training procedure.

3.3 Comparison to Existing Methods & Ablation Study

We compare our approach to a variety of different dense- and point-based seg-
mentation methods. First we validate our joint DD-DG learning approach by
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Fig. 4. JSRT & Padchest: Qualitative Analysis. Note that our method does not suffer
from the topological errors of dense-based methods but benefits from their segmenta-
tion accuracy. Specifically, improvements (white boxes) are most prevalent in areas of
complexity such as where the heart and lungs intersect.

comparing to a DD-only segmentation network (UNet [2]) and DG-only segmen-
tation networks (HybridGNet [6], HybridGNet+ISGC [I).

Next, we explore five alternative configurations of our joint architecture to
demonstrate that our design choices are superior. These are: (1) UNet Joint:
a network that uses our joint learning strategy but with two DD (UNet) net-
works, (2) Hourglass: joint learning but with no sharing between DD decoder
and DG encoder, only the output of DD is passed to the input of DG, similar to
the stacked hourglass network [21I22], (3) Hourglass Concat: as above, but the
output of DD is concatenated with the input and both are passed to DG, (4)
Multi-task: a single dense encoder is shared between a dense and graph decoder,
similar to [23], (5) No Joint: our network with no joint learning strategy.

To demonstrate the effectiveness of our HCD loss, we compare to our joint
network trained with the contour term removed (MSE only). Our HCD loss is
similar to differentiable polygon rasterization in BoundaryFormer [9], as they
both use the distance field to represent points with respect to the true bound-
ary. However, our method precomputes the distance field for each example and
samples it during training, while BoundaryFormer approximates it on the fly.
Hence we also compare to a single DG network (HybridGNet+IGSC) where each
point output is rendered to a dense 1028px x 1028px segmentation map using
rasterization and the full model is trained using a pixel-level loss.

Table demonstrate that our methodology outperforms all point- and
dense-based segmentation baselines on both datasets. As seen in Fig[] the per-
formance increase from networks that combine image features from dense and
point trained networks (column 7,9) is superior to when image features from
two dense trained networks are combined (column 5). Furthermore, concatenat-
ing features at each encoder-decoder level (Table row 11) instead of at the
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input-output level (row 5-6) shows improved performance. The addition of HCD
supervision to a DG model (Table[I}j2] row 8) gives similar improvements in seg-
mentation when compared to using a differentiable rasterization pipeline (row
10), yet is far more computationally efficient (Table [2| column 7).

Predict Supervision Lungs Heart
DCt HDJ JCt DCt HD | JCt
HybridGNet point point 0.9313 17.0445 0.8731 0.9065 15.3786 0.8319
HybridGNet+IGSC point point 0.9589 13.9955 0.9218 0.9295 13.2500 0.8702
UNet dense dense 0.9665 28.7316 0.9368 0.9358 29.6317 0.8811
UNet Joint dense dense 0.9681 26.3758 0.9395 0.9414 24.9409 0.8909
Hourglass point both 0.9669 13.4225 0.9374 0.9441 12.3434 0.8954
Hourglass Concat point both 0.9669 13.5275 0.9374 0.9438 12.1554 0.8948
Multi-task point both 0.9610 15.0490 0.9257 0.9284 13.1997 0.8679
No Joint point point 0.9655 13.2137 0.9341 0.9321 13.1826 0.8748
MSE Only point both 0.9686 12.4058 0.9402 0.9439 12.0872 0.8953
Rasterize point dense 0.9659 13.7267 0.9349 0.9344 12.9118 0.8785
Ours point both 0.9698 13.2087 0.9423 0.9451 11.7721 0.8975

Table 1. JSRT & Padchest Dataset: Quantitative Analysis

Predict  Supervision DC?T HDJ JC?r Inference (s)
HybridGNet point point 0.9459 12.0294  0.8989 0.0433
HybridGNet + IGSC  point point 0.9677 9.7591 0.9380 0.0448
UNet dense dense 0.9716 16.7093  0.9453 0.0047
UNet Joint dense dense 0.9713 16.5447  0.9447 0.0103
Hourglass point both 0.9701 10.9284 0.9434 0.1213
Hourglass Concat point both 0.9712 10.8193  0.9448 0.1218
Multi-task point both 0.9697 10.8615  0.9417 0.0535
No Joint point point 0.9701 9.8246 0.9424 0.0510
MSE Only point both 0.9729 9.6527 0.9474 0.1224
Rasterize point dense 0.9718 9.4485 0.9453 0.2421
Ours point both 0.9732 10.2166  0.9481 0.1226

Table 2. Montgomery & Shenzen Dataset: Quantitative Analysis + Inference Time

4 Conclusion

We proposed a novel segmentation architecture which leverage the benefits of
both dense- and point- based algorithms to improve accuracy while reducing
topological errors. Extensive experiments support our hypothesis that networks
that utilise joint dense-point representations can encode more discriminative
features which are both semantically rich and highly detailed. Limitations in
segmentation methods using a point-wise distance were identified, and remedied
with a new contour-aware loss function that offers an efficient alternative to
differentiable rasterization methods. Our methodology can be applied to any
graph segmentation network with a convolutional encoder that is optimised using
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a point-wise loss, and our experiments across four datasets demonstrate that our
approach is generalizable to new data.
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