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Abstract. Automated medical image segmentation using deep neural
networks typically requires substantial supervised training. However,
these models fail to generalize well across different imaging modalities.
This shortcoming, amplified by the limited availability of expert
annotated data, has been hampering the deployment of such methods
at a larger scale across modalities. To address these issues, we propose
M-GenSeg, a new semi-supervised generative training strategy for cross-
modality tumor segmentation on unpaired bi-modal datasets. With the
addition of known healthy images, an unsupervised objective encourages
the model to disentangling tumors from the background, which parallels
the segmentation task. Then, by teaching the model to convert images
across modalities, we leverage available pixel-level annotations from
the source modality to enable segmentation in the unannotated target
modality. We evaluated the performance on a brain tumor segmentation
dataset composed of four different contrast sequences from the public
BraTS 2020 challenge data. We report consistent improvement in
Dice scores over state-of-the-art domain-adaptive baselines on the
unannotated target modality. Unlike the prior art, M-GenSeg also
introduces the ability to train with a partially annotated source modality.

Keywords: Image Segmentation · Semi-supervised Learning · Unpaired
Image-to-image Translation.

1 Introduction

Deep learning methods have demonstrated their tremendous potential when
it comes to medical image segmentation. However, the success of most
existing architectures relies on the availability of pixel-level annotations,
which are difficult to produce [1]. Furthermore, these methods are known
to be inadequately equipped for distribution shifts. Therefore, cross-modality
generalization is needed when one imaging modality has insufficient training
data. For instance, conditions such as Vestibular Schwannoma, where new
hrT2 sequences are set to replace ceT1 for diagnosis to mitigate the use of
contrast agents, is a sample use case [2]. Recently Billot et al. [3] proposed
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a domain randomisation strategy to segment images from a wide range of
target contrasts without any fine-tuning. The method demonstrated great
generalization capability for brain parcellation, but the model performance when
exposed to tumors and pathologies was not quantified. This challenge could also
be addressed through unsupervised domain-adaptive approaches, which transfer
the knowledge available in the "source" modality S from pixel-level labels to the
"target" imaging modality T lacking annotations [4].

Several generative models attempt to generalize to a target modality by
performing unsupervised domain adaptation through image-to-image translation
and image reconstruction. In [5], by learning to translate between CT and MR
cardiac images, the proposed method jointly disentangles the domain specific and
domain invariant features between each modality and trains a segmenter from
the domain invariant features. Other methods [6,7,8,9,10,11,12] also integrate
this translation approach, but the segmenter is trained in an end-to-end manner
on the synthetic target images generated from the source modality using a
CycleGAN [13] model. These methods perform well but do not explicitly use
the unannotated target modality data to further improve the segmentation.

In this paper, we propose M-GenSeg, a novel training strategy for cross-
modality domain adaptation, as illustrated in Fig. 1. This work leverages and
extends GenSeg [14], a generative method that uses image-level "diseased" or
"healthy" labels for semi-supervised segmentation. Given these labels, the model
imposes an image-to-image translation objective between the image domain
presenting tumor lesions and the domain corresponding to an absence of lesions.
Therefore, like in low-rank atlas based methods [15,16,17] the model is taught
to find and remove a lesion, which acts as a guide for the segmentation.
We incorporate cross-modality image segmentation with an image-to-image
translation objective between source and target modalities. We hypothesize
both objectives are complementary since GenSeg helps localizing the tumors
on unannotated target images, while modality translation enables fine-tuning
the segmenter on the target modality by displaying annotated pseudo-target
images. We evaluate M-GenSeg on a modified version of the BraTS 2020 dataset,
in which each type of sequence (T1, T2, T1ce and FLAIR) is considered as a
distinct modality. We demonstrate that our model can better generalize than
other state-of-the-art methods to the target modality.

2 Methods

2.1 M-GenSeg : semi-supervised segmentation

Healthy-diseased translation. We propose to integrate image-level
supervision to the cross-modality segmentation task with GenSeg, a model that
introduces translation between domains with a presence (P) or absence (A) of
tumor lesions. Leveraging this framework has a two-fold advantage here. Indeed,
(i) training a GenSeg module on the source modality makes the model aware
of the tumor appearances in the source images even with limited source pixel-
level annotations. This helps to preserve tumor structures during the generation
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Fig. 1: M-GenSeg: Latent representations are shared for simultaneous cross-
modality translation (green) and semi-supervised segmentation (blue). Source
images are passed through the source GenSeg module and the S→T*→S
modality translation cycle. Domain adaptation is achieved when training the
segmentation on annotated pseudo-target T* images (ST

P). It is not shown but,
symmetrically, target images are treated in an other branch to train the T→S→T
cyclic translation, and the target GenSeg module to further close the domain gap.

of pseudo-target samples (see section 2.1). Furthermore, (ii) training a second
GenSeg module on the target modality allows to further close the domain gap
by extending the segmentation objective to unannotated target data.
In order to disentangle the information common to A and P, and the information
specific to P, we split the latent representation of each image into a common
code c and a unique code u. Essentially, the common code contains information
inherent to both domains, which represents organs and other structures, while
the unique code stores features like tumor shapes and location. In the two
following paragraphs, we explain P→A and A→P translations for source images.
The same process is applied for target images by replacing S notation with T .

Presence to absence translation. Given an image SP of modality S in the presence
domain P, we use an encoder ES to compute the latent representation [cSP,u

S
P].

A common decoder GS
com takes as input the common code cSP and generates

a healthy version SPA of that image by removing the apparent tumor region.
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Simultaneously, both common and unique codes are used by a residual decoder
GS

res to output a residual image ∆S
PP, which corresponds to the additive change

necessary to shift the generated healthy image back to the presence domain. In
other words, the residual is the disentangled tumor that can be added to the
generated healthy image to create a reconstruction SPP of the initial diseased
image:

SPA = GS
com(cSP) and ∆S

PP = GS
res(c

S
P,u

S
P) and SPP = SPA +∆S

PP (1)

Absence to presence translation. Concomitantly, a similar path is implemented
for images in the healthy domain. Given an image SA of modality S in domain
A, we generate a translated version in domain P. To do so, a synthetic tumor
∆S

AP is generated by sampling a code from the normal distribution N (0, I) and
replacing the encoded unique code for that image. The reconstruction SAA of
the original image in domain A and the synthetic diseased image SAP in domain
P are computed from the encoded features [cSA,uS

A] as follows:

SAA = GS
com(cSA) and SAP = SAA +GS

res(c
S
A,u ∼ N (0, I)) (2)

Like approaches in [18,19,20] we therefore generate diseased samples from
healthy ones for data augmentation. However, M-GenSeg aims primarily at
tackling cross-modality lesion segmentation tasks, which is not addressed in these
studies. Furthermore, note that these methods are limited to data augmentation
and do not incorporate any unannotated diseased samples when training the
segmentation network, as achieved by our model with the P→A translation.

Modality translation. Our objective is to learn to segment tumor lesions
in a target modality by reusing potentially scarce image annotations in
a source modality. Note that for each modality m ∈ {S, T}, M-GenSeg
holds a segmentation decoder Gm

seg that shares most of its weights with the
residual decoder Gm

res, but has its own set of normalization parameters and
a supplementary classifying layer. Thus, through the Absence and Presence
translations, these segmenters have already learned how to disentangle the tumor
from the background. However, supervised training on a few example annotations
is still required to learn how to transform the resulting residual representation
into appropriate segmentation maps. While this is a fairly straightforward task
for the source modality using pixel-level annotations, achieving this for the
target modality is more complex, justifying the second unsupervised translation
objective between source and target modalities. Based on the CycleGan [13]
approach, modality translations are performed via two distinct generators that
share their encoder with the GenSeg task. More precisely, combined with
the encoder ES a decoder GT enables performing S→T modality translation,
while the encoder ET and a second decoder GS perform the T→S modality
translation. To maintain the anatomical information, we ensure cycle-consistency
by reconstructing the initial images after mapping them back to their original
modality. We note ST

d = GT ◦ ES(Sd) and STS
d = GS ◦ ET (S

T
d ), respectively
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the translation and reconstruction of Sd in the S→T→S translation loop,
with domain d ∈ {A,P} and ◦ the composition operation. Similarly we have
TS

d = GS ◦ ET (Td) and TST
d = GT ◦ ES(T

S
d) for the T→S→T cycle.

Note that to perform the domain adaptation, training the model to segment
only the pseudo-target images generated by the S→T modality generator would
suffice (in addition to the diseased/healthy target translation). However, training
the segmentation on diseased source images also imposes additional constraints
on encoder ES , ensuring the preservation of tumor structures. This constraint
proves beneficial for the translation decoder GT as it generates pseudo-target
tumoral samples that are more reliable. Segmentation is therefore trained on
both diseased source images SP and their corresponding synthetic target images
ST
P, when provided with annotations yS. To such an extent, two segmentation

masks are predicted ŷS = GS
seg ◦ ES(SP) and ŷST = GT

seg ◦ ET (S
T
P).

2.2 Loss functions

Segmentation Loss. For the segmentation objective, we compute a soft Dice
loss [21] on the predictions for both labelled source images and their translations:

Lseg = Dice (yS, ŷS) +Dice (yS, ŷST) (3)

Reconstruction Losses. Lmod
cyc and LGen

rec respectively impose pixel-level image
reconstruction constraints on modality translation and GenSeg tasks. Note that
L1 refers to the standard L1 norm:

Lmod
cyc = L1

(
STS
A ,SA

)
+ L1

(
TST

A ,TA

)
+ L1

(
STS
P ,SP

)
+ L1

(
TST

P ,TP

)
LGen
rec = L1 (SAA,SA) + L1 (SPP,SP) + L1 (TAA,TA) + L1 (TPP,TP)

(4)

Moreover, like in [14] we compute a loss LGen
lat that ensures that the translation

task holds the information relative to the initial image, by reconstructing their
latent codes with the L1 norm. It also enforces the distribution of unique codes
to match the prior N (0, I) by making uAP match u, where uAP is obtained by
encoding the fake diseased sample xAP produced with random sample u.

Adversarial Loss. For the healthy-diseased translation adversarial objective,
we compute a hinge loss LGen

adv as in GenSeg, learning to discriminate between
pairs of real/synthetic images of the same output domain and always in the
same imaging modality, e.g. SA vs SPA. In the modality translation task, the
Lmod
adv loss is computed between pairs of images of the same modality without

distinction between domains A and P , e.g. {SA,SP} vs {TS
A,TS

P}

Overall Loss. The overall loss for M-GenSeg is a weighted sum of the
aforementioned losses. These are tuned separately. All weights sum to 1. First,
λGen
adv , λGen

rec , and λGen
lat weights are tuned for successful translation between

diseased and healthy images. Then, λmod
adv and λmod

cyc are tuned for successful
modality translation. Finally, λseg is tuned for segmentation performance.

LTotal = λsegLseg + λmod
adv Lmod

adv + λmod
cyc Lmod

cyc

+λGen
adv LGen

adv + λGen
rec LGen

rec + λGen
lat LGen

lat

(5)
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2.3 Implementation Details

Training and hyper-parameters. All models are implemented using PyTorch
and are trained on one NVIDIA A100 GPU with 40 GB memory. We used a batch
size of 15, an AMSGrad optimizer (β1 = 0.5 and β2 = 0.999) and a learning rate
of 10−4. Our models were trained for 300 epochs and weights of the segmentation
model with the highest validation Dice score were saved for evaluation. The same
on-the-fly data augmentation as in [14] was applied for all runs. Each training
experiment was repeated three times with a different random seed for weight
initialization. The performance reported is the mean of all test Dice scores,
with standard deviation, across the three runs. The following parameters yielded
both great modality and absence/presence translations : λmod

adv = 3, λmod
cyc = 20,

λGen
adv = 6, λGen

rec = 20 and λGen
lat = 2. Note that optimal λseg varies depending on

the fraction of pixel-level annotations provided to the network for training.

Architecture. One distinct encoder, common decoder, residual/segmentation
decoder, and modality translation decoder are used for each modality. The
architecture used for encoders, decoders and discriminators is the same as in
[14]. However, in order to give insight on the model’s behaviour and properly
choose the semantic information relevant for each objective, we introduced
attention gates [22] in the skip connections. Fig. 2a shows the attention maps
generated for each type of decoder. As expected, residual decoders focus towards
tumor areas. More interestingly, in order not to disturb the process of healthy
image generation, common decoders avoid lesion locations. Finally, modality
translators tend to focus on salient details of the brain tissue, which facilitates
contrast redefinition needed for accurate translation.

3 Experimental Results

3.1 Datasets

Experiments were performed on the BraTS 2020 challenge dataset [23,24,25],
adapted for the cross-modality tumor segmentation problem where images are
known to be diseased or healthy. Amongst the 369 brain volumes available in
BraTS, 37 were allocated each for validation and test steps, while the 295 left
were used for training. We split the 3D brain volumes into 2 hemispheres and
extracted 2D axial slices. Any slices with at least 1% tumor by brain surface area
were considered diseased. Those that didn’t show any tumor lesion were labelled
as healthy images. Datasets were then assembled from each distinct pair of the
four MRI contrasts available (T1, T2, T1ce and FLAIR). To constitute unpaired
training data, we used only one modality (source or target) per training volume.
All the images are provided with healthy/diseased weak labels, distinct from
the pixel-level annotations that we provide only to a subset of the data. Note
that the interest for cross-sequence segmentation is limited if multi-parametric
acquisitions are performed as is the case in BraTS. However, this modified version
of the dataset provides an excellent study case for the evaluation of any modality
adaptation method for tumor segmentation.
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Fig. 2: (a) Attention maps for Presence → Absence and modality translations.
Red indicates areas of focus while dark blue correspond to locations ignored by
the network. (b) Examples of translations from Presence to Absence domains and
resulting segmentation. Each column represents a domain adaptation scenario
where target modality had no pixel-level annotations provided.

3.2 Model Evaluation

Domain adaptation. We compared M-GenSeg with AccSegNet [10] and
AttENT [6], two high performance models for domain-adaptative medical image
segmentation. To that extent, we performed domain-adaptation experiments
with source and target modalities drawn from T1, T2, FLAIR and T1ce. We
used available GitHub code for the two baselines and performed fine-tuning on
our data. For each possible source/target pair, pixel-level annotations were only
retained for the source modality. We show in Fig. 2b several presence to absence
translations and segmentation examples on different target modality images.
Although no pixel-level annotations were provided for the target modality,
tumors were well disentangled from the brain, resulting in a successful presence
to absence translation, as well as segmentation. Note that for hypo-intense
lesions (T1 and T1ce), M-GenSeg still manages to convert complex residuals into
consistent segmentation maps. We plot in Fig. 3 the Dice performance on the
target modality for (i) supervised segmentation on source data without domain
adaptation, (ii) domain adaptation methods and (iii) UAGAN [26], a model
designed for unpaired multi-modal datasets, trained on all source and target
data. Over all modality pairs our model shows an absolute Dice score increase
of 0.04 and 0.08, respectively, compared to AccSegNet and AttENT.
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Fig. 3: Dice performance on the target modality for each possible source modality.
We compare results for M-GenSeg with AccSegNet and AttENT baselines. For
reference we also show Dice scores for source supervised segmentation (No
adaptation) and UAGAN trained with all source and target annotations.

Annotation deficit. M-GenSeg introduces
the ability to train with limited pixel-level
annotations available in the source modality. We
show in Fig. 4 the Dice scores for models trained
when only 1%, 10%, 40%, or 70% of the source
T1 modality and 0% of the T2 target modality
annotations were available. While performance is
severely dropping at 1% of annotations for the
baselines, our model shows in comparison only
a slight decrease. We thus claim that M-GenSeg
can yield robust performance even when a small
fraction of the source images is annotated.

1% 20% 40% 60% 80% 100%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T1 annotations

T
2

D
ic

e
Sc

or
e

M-GenSeg AccSegNet
AttENT Supervised Unet

Fig. 4: T2 domain adaptation
with T1 annotation deficit.

Reaching supervised performance. We report that, when the target
modality is completely unannotated, M-GenSeg reaches 90% of UAGAN’s
performance (vs 81% and 85% for AttENT and AccSegNet). Further experiments
showed that with a fully annotated source modality, it is sufficient to annotate
25% of the target modality to reach 99% of the performance of fully-supervised
UAGAN (e.g. M-GenSeg : 0.861±0.004 vs UAGAN : 0.872±0.003 for T1 → T2
experiment). Thus, the annotation burden could be reduced with M-GenSeg.

3.3 Ablation Experiments

We conducted ablation tests to validate our methodological choices. We report
in Table 1 the relative loss in Dice scores on target modality as compared to
the proposed model. We assessed the value of doing image-level supervision
by setting all the λGen loss weights to 0 . Also, we showed that training
modality translation only on diseased data is sufficient . However, doing it for
healthy data as well provides additional training examples for this task. Likewise,
performing translation from absence to presence domain is not necessary but
makes more efficient use of the data. Finally, we evaluated M-GenSeg with
separate latent spaces for the image-level supervision and modality translation,



M-GenSeg: Domain Adaptation For Target Modality Tumor Segmentation 9

and we contend that M-GenSeg efficiently combines both tasks when the latent
representations share model updates.

Ablation Mean Std
No image-level supervision -8.22 ± 2.71 %
No healthy modality translation -2.41 ± 1.29 %
No absence to presence translation -3.84 ± 1.71 %
Unshared latent spaces -4.39 ± 1.91 %

Table 1: Ablation studies : relative Dice change on target
modality.

4 Conclusion

We propose M-GenSeg, a new framework for unpaired cross-modality tumor
segmentation. We show that M-GenSeg is an annotation-efficient framework that
greatly reduces the performance gap due to domain shift in cross-modality tumor
segmentation. We claim that healthy tissues, if adequately incorporated to the
training process of neural networks like in M-GenSeg, can help to better delineate
tumor lesions in segmentation tasks. However, top performing methods on BraTS
are 3D models. Thus, future work will explore the use of full 3D images rather
than 2D slices, along with more optimal architectures. Our code is available:
https://github.com/MaloADBA/MGenSeg_2D.
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