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Abstract. Deep learning-based medical image segmentation models suf-
fer from performance degradation when deployed to a new healthcare
center. To address this issue, unsupervised domain adaptation and multi-
source domain generalization methods have been proposed, which, how-
ever, are less favorable for clinical practice due to the cost of acquiring
target-domain data and the privacy concerns associated with redistribut-
ing the data from multiple source domains. In this paper, we propose
a Channel-level Contrastive Single Domain Generalization (C2SDG)
model for medical image segmentation. In C2SDG, the shallower features
of each image and its style-augmented counterpart are extracted and
used for contrastive training, resulting in the disentangled style repre-
sentations and structure representations. The segmentation is performed
based solely on the structure representations. Our method is novel in
the contrastive perspective that enables channel-wise feature disentan-
glement using a single source domain. We evaluated C2SDG against six
SDG methods on a multi-domain joint optic cup and optic disc segmen-
tation benchmark. Our results suggest the effectiveness of each module
in C2SDG and also indicate that C2SDG outperforms the baseline and
all competing methods with a large margin. The code will be available
at https://github.com/ShishuaiHu/CCSDG.

Keywords: Single domain generalization · Medical image segmentation
· Contrastive learning · Feature disentanglement.

1 Introduction

It has been widely recognized that the success of supervised learning approaches,
such as deep learning, relies on the i.i.d. assumption for both training and test
samples [11]. This assumption, however, is less likely to be held on medical
image segmentation tasks due to the imaging distribution discrepancy caused by
non-uniform characteristics of the imaging equipment, inconsistent skills of the
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Fig. 1. Average OD (a) and OC (b) segmentation performance (Dice%) obtained on
unseen target domain (BASE2) versus removed channel of shallow features. The Dice
scores obtained before and after dropping a channel are denoted by ‘Baseline’ and
‘DASC’, respectively. The 24th channel (c) and 36th channel (d) obtained on three
target-domain images are visualized.

operators, and even compromise with factors such as patient radiation exposure
and imaging time [14]. Therefore, the imaging distribution discrepancy across
different healthcare centers renders a major hurdle that prevents deep learning-
based medical image segmentation models from clinical deployment [7,18].

To address this issue, unsupervised domain adaptation (UDA) [17,8] and
multi-source domain generalization (MSDG) [10,16] have been studied. UDA
needs access to the data from source domain(s) and unlabeled target domain,
while MSDG needs access to the data from multiple source domains. In clinical
practice, both settings are difficult to achieve, considering the cost of acquiring
target-domain data and the privacy concerns associated with redistributing the
data from multiple source domains [22,9].

By contrast, single domain generalization (SDG) [22,15,19,2,23,13] is a more
practical setting, under which only the labeled data from one source domain
are used to train the segmentation model, which is thereafter applied to the
unseen target-domain data. The difficulty of SDG is that, due to the existence
of imaging distribution discrepancy, the trained segmentation model is prone to
overfit the source-domain data but generalizes poorly on target-domain data. An
intuitive solution is to increase the diversity of training data by performing data
augmentation at the image-level [21,15,19,13]. This solution has recently been
demonstrated to be less effective than a more comprehensive one, i.e., conduct-
ing domain adaptation on both image- and feature-levels [12,2,8]. As a more
comprehensive solution, Dual-Norm [23] first augments source-domain images
into ‘source-similar’ images with similar intensities and ‘source-dissimilar’ im-
ages with inverse intensities, and then processes these two sets of images using
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different batch normalization layers in the segmentation model. Although achiev-
ing promising performance in cross-modality CT and MR image segmentation,
Dual-Norm may not perform well under the cross-center SDG setting, where
the source- and target-domain data are acquired at different healthcare centers,
instead of using different imaging modalities. In this case, the ‘source-dissimilar’
images with inverse intensities do not really exist, and it remains challenging
to determine the way to generate both ‘source-similar’ and ‘source-dissimilar’
images [4,1]. To address this challenge, we suggest resolving ‘similar’ and ‘dis-
similar’ from the perspective of contrastive learning. Given a source image and its
style-augmented counterpart, only the structure representations between them
are ‘similar’, whereas their style representations should be ‘dissimilar’. Based on
contrastive learning, we can disentangle and then discard the style representa-
tions, which are structure-irrelevant, using images from only a single domain.

Specifically, to disentangle the style representations, we train a segmenta-
tion model, i.e., the baseline, using single domain data and assess the impact
of the features extracted by the first convolutional layer on the segmentation
performance, since shallower features are believed to hold more style-sensitive
information [18,8]. A typical example was given in Fig. 1 (a) and (b), where
the green line is the average Dice score obtained on the target domain (the
BASE2 dataset) versus the index of the feature channel that has been dropped.
It reveals that, in most cases, removing a feature does not affect the model per-
formance, indicating that the removed feature is redundant. For instance, the
performance even increases slightly after removing the 24th channel. This obser-
vation is consistent with the conclusion that there exists a sub-network that can
achieve comparable performance [6]. On the contrary, it also shows that some
features, such as the 36th channel, are extremely critical. Removing this feature
results in a significant performance drop. We visualize the 24th and 36th chan-
nels obtained on three target-domain images in Fig. 1 (c) and (d), respectively. It
shows that the 36th channel is relatively ‘clean’ and most structures are visible
on it, whereas the 24th channel contains a lot of ‘shadows’. The poor quality
of the 24th channel can be attributed to the fact that the styles of source- and
target-domain images are different and the style representation ability learned on
source-domain images cannot generalize well on target-domain images. There-
fore, we suggest that the 24th channel is more style-sensitive, whereas the 36th
channel contains more structure information. This phenomenon demonstrates
that ‘the devil is in channels’. Fortunately, contrastive learning provides us a
promising way to identify and expel those style-sensitive ‘devil’ channels from
the extracted image features.

In this paper, we incorporate contrastive feature disentanglement into a seg-
mentation backbone and thus propose a novel SDG method called Channel-level
Contrastive Single Domain Generalization (C2SDG) for joint optic cup (OC)
and optic disc (OD) segmentation on fundus images. In C2SDG, the shallower
features of each image and its style-augmented counterpart are extracted and
used for contrastive training, resulting in the disentangled style representations
and structure representations. The segmentation is performed based solely on the
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Share Parameters

S
h

ar
e 

P
ar

am
et

er
s

ℒ𝑠𝑒𝑔
𝑎

ℒ𝑠𝑒𝑔
𝑠

{𝑥𝑛
𝑠}𝑛=1
𝑁𝐵

A
u

g
m

en
t

{𝑥𝑛
𝑎}𝑛=1

𝑁𝐵

𝑓𝑠

𝑓𝑠𝑡𝑟
𝑎

𝑓𝑎

𝑓𝑠𝑡𝑦
𝑎

𝑓𝑠𝑡𝑟
𝑠

𝑓𝑠𝑡𝑦
𝑠

ℒ𝑠𝑡𝑟

ℒ𝑠𝑡𝑦

ℙ𝑠𝑡𝑟

ℙ𝑠𝑡𝑟

(a) Style 
Augmentation

(b) Contrastive Feature 
Disentanglement

𝜃𝑐

𝜃𝑐

𝜃𝑠𝑒𝑔

𝜃𝑠𝑒𝑔

{෪𝑦𝑛
𝑠}𝑛=1
𝑁𝐵

{෪𝑦𝑛
𝑎}𝑛=1

𝑁𝐵

{𝑦𝑛
𝑠}𝑛=1
𝑁𝐵

Fig. 2. Diagram of our C2SDG. The rectangles in blue and green represent the convolu-
tional layer and the segmentation backbone, respectively. The cubes represent different
features. The projectors with parameters θp in (b) are omitted for simplicity.

structure representations. This method has been evaluated against other SDG
methods on a public dataset and improved performance has been achieved. Our
main contributions are three-fold: (1) we propose a novel contrastive perspec-
tive for SDG, enabling contrastive feature disentanglement using the data from
only a single domain; (2) we disentangle the style representations and structure
representations explicitly and channel-wisely, and then diminish the impact of
style-sensitive ‘devil’ channels; and (3) our C2SDG outperforms the baseline and
six state-of-the-art SDG methods on the joint OC/OD segmentation benchmark.

2 Method

2.1 Problem Definition and Method Overview

Let the source domain be denoted by Ds = {xs
i , y

s
i }

Ns
i=1, where xs

i is the i-th
source domain image, and ysi is its segmentation mask. Our goal is to train a
segmentation model Fθ : x → y on Ds, which can generalize well to an unseen
target domain Dt = {xt

i}
Nt
i=1. The proposed C2SDG mainly consists of a segmen-

tation backbone, a style augmentation (StyleAug) module, and a contrastive fea-
ture disentanglement (CFD) module. For each image xs, the StyleAug module
generates its style-augmented counterpart xa, which shares the same structure
but different style to xs. Then a convolutional layer extracts high-dimensional
representations fs and fa from xs and xa. After that, fs and fa are fed to
the CFD module to perform contrastive training, resulting in the disentangled
style representations fsty and structure representations fstr. The segmentation
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backbone only takes fstr as its input and generates the segmentation prediction
ỹ. Note that, although we take a U-shape network [5] as the backbone for this
study, both StyleAug and CFD modules are modularly designed and can be in-
corporated into most segmentation backbones. The diagram of our C2SDG is
shown in Fig. 2. We now delve into its details.

2.2 Style Augmentation

Given a batch of source domain data {xs
n}

NB
n=1, we adopt a series of style-related

data augmentation approaches, i.e., gamma correction and noise addition in Bi-
gAug [21], and Bezier curve transformation in SLAug [15], to generate {xBA

n }NB
n=1

and {xSL
n }NB

n=1.
Additionally, to fully utilize the style diversity inside single domain data, we

also adopt low-frequency components replacement [20] within a batch of source
domain images. Specifically, We reverse {xs

n}
NB
n=1 to match xs

n with xs
r, where

r = NB+1−n to ensure xs
r provides a different reference style. Then we transform

xs
n and xs

r to the frequency domain and exchange their low-frequency components
Low(Amp(xs);β) in the amplitude map, where β is the cut-off ratio between low
and high-frequency components and is randomly selected from (0.05, 0.15]. After
that, we recover all low-frequency exchanged images to generate {xFR

n }NB
n=1.

The style-augmented images batch {xa
n}

NB
n=1 is set to {xBA

n }NB
n=1, {xSL

n }NB
n=1,

and {xFR
n }NB

n=1 in turn to perform contrastive training and segmentation.

2.3 Contrastive Feature Disentanglement

Given xs and xa, we use a convolutional layer with parameter θc to generate
their shallow features fs and fa, which are 64-channel feature maps for this
study.

Then we use a channel mask prompt P ∈ R2×64 to disentangle each shallow
feature map f into style representation fsty and structure representation fstr
explicitly channel-wisely{

fsty = f × Psty = f × SM( Pτ )1
fstr = f × Pstr = f × SM( Pτ )2,

(1)

where SM(·) is a softmax function, the subscript i denotes i-th channel, and
τ = 0.1 is a temperature factor that encourages Psty and Pstr to be binary-
element vectors, i.e., approximately belonging to {0, 1}64.

After channel-wise feature disentanglement, we have {fs
sty, f

s
str} from xs and

{fa
sty, f

a
str} from xa. It is expected that (a) fs

sty and fa
sty are different since we

want to identify them as the style-sensitive ‘devil’ channels, and (b) fs
str and

fa
str are the same since we want to identify them as the style-irrelevant channels

and xs and xa share the same structure. Therefore, we design two contrastive
loss functions Lsty and Lstr{

Lstr =
∑

|Proj(fs
str)− Proj(fa

str)|
Lsty = −

∑
|Proj(fs

sty)− Proj(fa
sty)|,

(2)
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where the Proj(·) with parameters θp reduces the dimension of fstr and fsty.
Only fs

str and fa
str are fed to the segmentation backbone with parameters

θseg to generate the segmentation predictions ỹs and ỹa.

2.4 Training and Inference

Training. For the segmentation task, we treat OC/OD segmentation as two bi-
nary segmentation tasks and adopt the binary cross-entropy loss as our objective

Lce(y, ỹ) = −(ỹ log y + (1− ỹ) log (1− y)) (3)

where y represents the segmentation ground truth and ỹ is the prediction. The
total segmentation loss can be calculated as

Lseg = Ls
seg + La

seg = Lce(y
s, ỹs) + Lce(y

s, ỹa). (4)

During training, we alternately minimize Lseg to optimize {θc,P, θseg}, and
minimize Lstr + Lsty to optimize {P, θp}.
Inference. Given a test image xt, its shallow feature map f t can be extracted by
the first convolutional layer. Based on f t, the optimized channel mask prompt P
can separate it into f t

sty and f t
str. Only f t

str is fed to the segmentation backbone
to generate the segmentation prediction ỹt.

3 Experiments and Results

Materials and Evaluation Metrics. The multi-domain joint OC/OD seg-
mentation dataset RIGA+ [8,4,1] was used for this study. It contains annotated
fundus images from five domains, including 195 images from BinRushed, 95 im-
ages from Magrabia, 173 images from BASE1, 148 images from BASE2, and
133 images from BASE3. Each image was annotated by six raters, and only the
first rater’s annotations were used in our experiments. We chose BinRushed and
Magrabia, respectively, as the source domain to train the segmentation model,
and evaluated the model on the other three (target) domains. We adopted the
Dice Similarity Coefficient (D, %) to measure the segmentation performance.
Implementation Details. The images were center-cropped and normalized
by subtracting the mean and dividing by the standard deviation. The input
batch contains eight images of size 512 × 512. The U-shape segmentation net-
work, whose encoder is a modified ResNet-34, was adopted as the segmentation
backbone of our C2SDG and all competing methods for a fair comparison. The
projector in our CFD module contains a convolutional layer followed by a batch
normalization layer, a max pooling layer, and a fully connected layer to convert
fsty and fstr to 1024-dimensional vectors. The SGD algorithm with a momen-
tum of 0.99 was adopted as the optimizer. The initial learning rate was set to
lr0 = 0.01 and decayed according to lr = lr0×(1−e/E)0.9, where e is the current
epoch and E = 100 is the maximum epoch. All experiments were implemented
using the PyTorch framework and performed with one NVIDIA 2080Ti GPU.
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Table 1. Average performance of three trials of our C2SDG and six competing methods
in joint OC/OD segmentation using BinRushed (row 2 ∼ row 9) and Magrabia (row
10 ∼ row 17) as source domain, respectively. Their standard deviations are reported as
subscripts. The performance of ‘Intra-Domain’ and ‘w/o SDG’ is displayed for reference.
The best results except for ‘Intra-Domain’ are highlighted in blue.

Methods BASE1 BASE2 BASE3 Average
DOD DOC DOD DOC DOD DOC DOD DOC

Intra-Domain 94.710.07 84.070.35 94.840.18 86.320.14 95.400.05 87.340.11 94.98 85.91
w/o SDG 91.820.54 77.710.88 79.782.10 65.183.24 88.832.15 75.293.23 86.81 72.73
BigAug [23] 94.010.34 81.510.58 85.810.68 71.121.64 92.190.51 79.751.44 90.67 77.46
CISDG [13] 93.560.13 81.001.01 94.380.23 83.790.58 93.870.03 83.750.89 93.93 82.85
ADS [19] 94.070.29 79.605.06 94.290.38 81.173.72 93.640.28 81.084.97 94.00 80.62
MaxStyle [2] 94.280.14 82.610.67 86.650.76 74.712.07 92.360.39 82.331.24 91.09 79.88
SLAug [15] 95.280.12 83.311.10 95.490.16 81.362.51 95.570.06 84.381.39 95.45 83.02
Dual-Norm [23] 94.570.10 81.810.76 93.670.11 79.161.80 94.820.28 83.670.60 94.35 81.55
Ours 95.730.08 86.130.07 95.730.09 86.820.58 95.450.04 86.770.19 95.64 86.57
w/o SDG 89.980.54 77.211.15 85.321.79 73.510.67 90.030.27 80.710.63 88.44 77.15
BigAug [23] 92.320.13 79.680.38 88.240.82 76.690.37 91.350.14 81.430.78 90.64 79.27
CISDG [13] 89.670.76 75.393.22 87.971.04 76.443.48 89.910.64 81.352.81 89.18 77.73
ADS [19] 90.752.42 77.784.23 90.372.07 79.603.34 90.342.93 79.994.02 90.48 79.12
MaxStyle [2] 91.630.12 78.741.95 90.610.45 80.120.90 91.220.07 81.901.14 91.15 80.25
SLAug [15] 93.080.17 80.700.35 92.700.12 80.150.43 92.230.16 80.890.14 92.67 80.58
Dual-Norm [23] 92.350.37 79.020.39 91.230.29 80.060.26 92.090.28 79.870.25 91.89 79.65
Ours 94.780.03 84.940.36 95.160.09 85.680.28 95.000.09 85.980.29 94.98 85.53

Comparative Experiments. We compared our C2SDG with two baselines,
including ‘Intra-Domain’ (i.e., training and testing on the data from the same
target domain using 3-fold cross-validation) and ‘w/o SDG’ (i.e., training on
the source domain and testing on the target domain), and six SDG methods,
including BigAug [21], CISDG [13], ADS [19], MaxStyle [2], SLAug [15], and
Dual-Norm [23]. In each experiment, only one source domain is used for training,
ensuring that only the data from a single source domain can be accessed during
training. For a fair comparison, all competing methods are re-implemented using
the same backbone as our C2SDG based on their published code and paper. The
results of C2SDG and its competitors were given in Table 1. It shows that C2SDG
improves the performance of ‘w/o SDG’ with a large margin and outperforms
all competing SDG methods. We also visualize the segmentation predictions
generated by our C2SDG and six competing methods in Fig. 3. It reveals that
our C2SDG can produce the most accurate segmentation map.

Ablation Analysis. To evaluate the effectiveness of low-frequency components
replacement (FR) in StyleAug and CFD, we conducted ablation experiments
using BinRushed and Magrabia as the source domain, respectively. The average
performance is shown in Table 2. The performance of using both BigAug and
SLAug is displayed as ‘Baseline’. It reveals that both FR and CFD contribute
to performance gains.
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Image MaxStyleGT Ours BigAug CISDG ADS SLAug Dual-Norm

Fig. 3. Visualization of segmentation masks predicted by our C2SDG and six compet-
ing methods, together with ground truth.

Analysis of CFD. Our CFD is modularly designed and can be incorporated
into other SDG methods. We inserted our CFD to ADS [19] and SLAug [15], re-
spectively. The performance of these two approaches and their variants, denoted
as C2-ADS and C2-SLAug, was shown in Table 3. It reveals that our CFD mod-
ule can boost their ability to disentangle structure representations and improve
the segmentation performance on the target domain effectively. We also adopted
‘Ours w/o CFD’ as ‘Baseline’ and compared the channel-level contrastive feature
disentanglement strategy with the adversarial training strategy and channel-level
dropout (see Table 4). It shows that the adversarial training strategy fails to per-
form channel-level feature disentanglement, due to the limited training data [3]
for SDG. Nonetheless, our channel-level contrastive learning strategy achieves
the best performance compared to other strategies, further confirming the effec-
tiveness of our CFD module.

Table 2. Average perfor-
mance of our C2SDG and
three variants.

Methods Average
DOD DOC

Baseline 94.13 81.62
w/o FR 95.07 84.90
w/o CFD 95.07 84.83
Ours 95.31 86.05

Table 3. Average perfor-
mance of ADS, SLAug, and
their two variants.

Methods Average
DOD DOC

ADS [19] 92.24 79.87
C2-ADS 93.76 81.35
SLAug [15] 94.06 81.80
C2-SLAug 94.24 83.68

Table 4. Average perfor-
mance of using contrastive
and other strategies.

Methods Average
DOD DOC

Baseline 95.07 84.83
Dropout 95.14 84.95
Adversarial 90.27 78.47
Ours 95.31 86.05

4 Conclusion

In this paper, we propose a novel SDG method called C2SDG for medical im-
age segmentation. In C2SDG, the StyleAug module generates style-augmented
counterpart of each source domain image and enables contrastive learning, the
CFD module performs channel-level style and structure representations disen-
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tanglement via optimizing a channel prompt P, and the segmentation is per-
formed based solely on structure representations. Our results on a multi-domain
joint OC/OD segmentation benchmark indicate the effectiveness of StyleAug
and CFD and also suggest that our C2SDG outperforms the baselines and six
completing SDG methods with a large margin.
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2022YFC2009900, in part by the Natural Science Foundation of Ningbo City,
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Table 1. Average performance of the combination of different data augmenta-
tion methods. ‘SDAug’ represents structure-destroyed augmentation, such as rotation,
elastic transform, and scaling. ‘BigAug’ contains Gaussian noise addition, Gamma
transform, and Gaussian blur transform. ‘SLAug’ represents Bezier curve transform.
‘FRAug’ denotes low-frequency component replacement.

Augmentation Methods BinRusheda Magrabia Average
SDAug BigAug SLAug FRAug DOD DOC DOD DOC DOD DOC

83.45 69.17 88.76 77.39 86.11 73.28
✓ 86.81 72.73 88.44 77.15 87.63 74.94
✓ ✓ 90.67 77.46 90.64 79.27 90.66 78.37
✓ ✓ ✓ 94.90 82.67 93.36 80.56 94.13 81.62
✓ ✓ ✓ 94.17 83.28 93.71 82.20 93.94 82.74
✓ ✓ ✓ ✓ 95.73 85.39 94.40 84.27 95.07 84.83

Table 2. Performance of our C2SDG when using different channel prompt initializa-
tion methods (the first block) and using different projectors (the second block).

Methods BinRusheda Magrabia Average
DOD DOC DOD DOC DOD DOC

Prompt Initialization 1-0 Initialization 95.92 85.79 95.01 85.09 95.47 85.44
Random 95.64 86.57 94.98 85.53 95.31 86.05

Projector No Projector 95.15 84.58 94.94 85.42 95.05 85.00
Our design 95.64 86.57 94.98 85.53 95.31 86.05
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Image SDAug BigAug SLAug FRAug

Fig. 1. Illustration of the augmented images of different augmentation methods.
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Fig. 2. The average segmentation performance of the model for (a) OD and (b) OC
on the unseen target domain (BASE2). The impact of adding a specific channel in fsty
on C2SDG’s segmentation performance is illustrated by ‘AASC’. The performance of
our C2SDG is displayed as ‘Ours’. Feature visualizations for the 1st and 3rd channels
when fed three target images and their style-augmented counterparts are shown in (c)
and (d). The optimized Pstr is illustrated in (e).
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