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Abstract. Medical image segmentation is a challenging task with in-
herent ambiguity and high uncertainty, attributed to factors such as
unclear tumor boundaries and multiple plausible annotations. The accu-
racy and diversity of segmentation masks are both crucial for providing
valuable references to radiologists in clinical practice. While existing dif-
fusion models have shown strong capacities in various visual generation
tasks, it is still challenging to deal with discrete masks in segmentation.
To achieve accurate and diverse medical image segmentation masks, we
propose a novel conditional Bernoulli Diffusion model for medical im-
age segmentation (BerDiff). Instead of using the Gaussian noise, we first
propose to use the Bernoulli noise as the diffusion kernel to enhance the
capacity of the diffusion model for binary segmentation tasks, resulting in
more accurate segmentation masks. Second, by leveraging the stochastic
nature of the diffusion model, our BerDiff randomly samples the initial
Bernoulli noise and intermediate latent variables multiple times to pro-
duce a range of diverse segmentation masks, which can highlight salient
regions of interest that can serve as valuable references for radiologists.
In addition, our BerDiff can efficiently sample sub-sequences from the
overall trajectory of the reverse diffusion, thereby speeding up the seg-
mentation process. Extensive experimental results on two medical image
segmentation datasets with different modalities demonstrate that our
BerDiff outperforms other recently published state-of-the-art methods.
Our results suggest diffusion models could serve as a strong backbone
for medical image segmentation.

Keywords: Conditional diffusion · Bernoulli noise · Medical image seg-
mentation.

1 Introduction

Medical image segmentation plays a crucial role in enabling better diagnosis,
surgical planning, and image-guided surgery [8]. The inherent ambiguity and
high uncertainty of medical images pose significant challenges [5] for accurate
segmentation, attributed to factors such as unclear tumor boundaries in brain
Magnetic resonance imaging (MRI) images and multiple plausible annotations in
lung nodule Computed Tomography (CT) images. Existing medical image seg-
mentation works typically provide a single, deterministic, most likely hypothesis
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mask, which may lead to misdiagnosis or sub-optimal treatment. Therefore, pro-
viding accurate and diverse segmentation masks as valuable references [16] for
radiologists is crucial in clinical practice.

Recently, diffusion models [10] have shown strong capacities in various visual
generation tasks [19,20]. However, how to better integrate with discrete segmen-
tation tasks needs further consideration. Although many researches [1,24] have
combined diffusion model with segmentation tasks and made some modifications,
these methods do not take full account of the discrete characteristic of segmen-
tation task and still use Gaussian noise as their diffusion kernel. To achieve
accurate and diverse segmentation, we propose a novel Conditional Bernoulli
Diffusion model for medical image segmentation (BerDiff). Instead of using
the Gaussian noise, we first propose to use the Bernoulli noise as the diffusion
kernel to enhance the capacity of the diffusion model for segmentation, resulting
in more accurate segmentation masks. Moreover, by leveraging the stochastic na-
ture of the diffusion model, our BerDiff randomly samples the initial Bernoulli
noise and intermediate latent variables multiple times to produce a range of di-
verse segmentation masks, which can highlight salient regions of interest (ROI)
that can serve as a valuable reference for radiologists. In addition, our BerDiff
can efficiently sample sub-sequences from the overall trajectory of the reverse
diffusion based on the rationale behind the Denoising Diffusion Implicit Models
(DDIM) [23], thereby speeding up the segmentation process.

The contributions of this work are summarized as follows. 1) Instead of using
the Gaussian noise, we propose a novel conditional diffusion model based on
the Bernoulli noise for discrete binary segmentation tasks, achieving accurate
and diverse medical image segmentation masks. 2) Our BerDiff can efficiently
sample sub-sequences from the overall trajectory of the reverse diffusion, thereby
speeding up the segmentation process. 3) Experimental results on two medical
images, CT and MRI, specifically the LIDC-IDRI and BRATS 2021 datasets,
demonstrate that our BerDiff outperforms other state-of-the-art methods.

2 Methodology

In this section, we first describe the problem definitions, then demonstrate the
Bernoulli forward and diverse reverse processes of our BerDiff, as shown in
Fig. 1. Finally, we provide an overview of the training and sampling procedures.

2.1 Problem definition

Let us assume that x ∈ RH×W×C denotes the input medical image with a spa-
tial resolution of H×W and C number of channels. The ground-truth mask is
represented as y0∈{0, 1}H×W , where 0 represents background while 1 ROI. In-
spired by diffusion-based models such as denoising diffusion probabilistic model
(DDPM) and DDIM, we propose a novel conditional Bernoulli diffusion model,
which can be represented as pθ(y0|x) :=

∫
pθ(y0:T |x)dy1:T , where y1, . . . ,yT are

latent variables of the same size as the mask y0. For medical binary segmentation
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Fig. 1. Illustration of Bernoulli forward and diverse reverse processes of our BerDiff.

tasks, the diverse reverse process of our BerDiff starts from the initial Bernoulli
noise yT ∼ B(yT ; 1

2 ·1) and progresses through intermediate latent variables con-
strained by the input medical image x to produce segmentation masks, where 1
denotes an all-ones matrix of the size H×W .

2.2 Bernoulli forward process

In previous generation-related diffusion models, Gaussian noise is progressively
added with increasing timestep t. However, for segmentation tasks, the ground-
truth masks are represented by discrete values. To address this, our BerDiff
gradually adds more Bernoulli noise using a noise schedule β1, . . . , βT , as shown
in Fig. 1. The Bernoulli forward process q(y1:T |y0) of our BerDiff is a Markov
chain, which can be represented as:

q (y1:T | y0) :=
∏T

t=1
q (yt | yt−1) , (1)

q (yt | yt−1) :=B(yt; (1− βt)yt−1 + βt/2), (2)

where B denotes the Bernoulli distribution with the probability parameters (1−
βt)yt−1 + βt/2. Using the notation αt = 1 − βt and ᾱt =

∏t
τ=1ατ , we can

efficiently sample yt at an arbitrary timestep t as follows:

q (yt | y0) = B(yt; ᾱty0 + (1− ᾱt)/2)). (3)

To ensure that the objective function described in Sec. 2.4 is tractable and
easy to compute, we use the sampled Bernoulli noise ε∼B(ε; 1−ᾱt

2 ·1) to reparam-
eterize yt of Eq. (3) as y0⊕ε, where ⊕ denotes the logical operation of “exclusive
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Algorithm 1 Training
repeat

(x,y0) ∼ q (x,y0)
t ∼ Uniform({1, . . . , T})
ε ∼ B(ε; (1− ᾱt)/2)
yt = y0 ⊕ ε
Calculate Eq. (4)
Estimate ε̂(yt, t,x)
Calculate Eq. (6)
Take gradient descent on ∇θ(LTotal)

until converged

Algorithm 2 Sampling
yT ∼ B(yT ; 1

2
· 1)

for t = T to 1 do
µ̂(yt, t,x) = FC(yt, ε̂(yt, t,x))
For DDPM:
yt−1∼B(yt−1; µ̂(yt, t,x))
For DDIM:
yt−1∼B(yt−1;σtyt+(ᾱt−1−σtᾱt)|yt−

ε̂(yt, t,x)|+ ((1− ᾱt−1)− (1− ᾱt)σt)/2)
end for
return y0

or (XOR)”. Additionally, let � denote elementwise product, and Norm(·) denote
normalizing the input data along the channel dimension and then returning the
second channel. The concrete Bernoulli posterior can be represented as:

q(yt−1 | yt,y0) = B(yt−1; θpost (yt,y0)). (4)

where θpost (yt,y0) = Norm([αt[1−yt,yt] + 1−αt

2 ]� [ᾱt−1[1−y0,y0] + 1−ᾱt−1

2 ]).

2.3 Diverse reverse process

The diverse reverse process pθ(y0:T ) can be also viewed as a Markov chain that
starts from the Bernoulli noise yT ∼ B(yT ; 1

2 · 1) and progresses through inter-
mediate latent variables constrained by the input medical image x to produce
diverse segmentation masks, as shown in Fig. 1. The concrete diverse reverse
process of our BerDiff can be represented as:

pθ(y0:T | x) := p(yT )
∏T

t=1
pθ(yt−1 | yt,x), (5)

pθ(yt−1 | yt,x) := B(yt−1; µ̂(yt, t,x)). (6)

Specifically, we utilize the estimated Bernoulli noise ε̂(yt, t,x) of yt to pa-
rameterize µ̂(yt, t,x) via a calibration function FC , as follows:

µ̂(yt, t,x) = FC(yt, ε̂(yt, t,x)) = θpost(yt, |yt − ε̂(yt, t,x)|), (7)

where | · | denotes the absolute value operation.

2.4 Detailed procedure

Here, we provide an overview of the training and sampling procedure in Algo-
rithms 1 and 2. During the training phase, given an image and mask data pair
{x,y0}, we sample a random timestep t from a uniform distribution {1, . . . , T},
which is used to sample the Bernoulli noise ε.
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We then use ε to sample yt from q(yt | y0), which allows us to obtain
the Bernoulli posterior q(yt−1 | yt,y0). We pass the estimated Bernoulli noise
ε̂(yt, t,x) through the calibration function FC to parameterize pθ(yt−1 |yt,x).
Based on the variational upper bound on the negative log-likelihood in previ-
ous diffusion models [3], we adopt Kullback-Leibler (KL) divergence and binary
cross-entropy (BCE) loss to optimize our BerDiff as follows:

LKL = Eq(x,y0)Eq(yt|y0)[DKL[q(yt−1 | yt,y0)‖pθ(yt−1 | yt,x)]], (8)

LBCE = −E(ε,ε̂)

∑H,W
i,j [εi,j log ε̂i,j + (1− εi,j) log (1− ε̂i,j)]. (9)

Finally, the overall objective function is presented as:

LTotal = LKL + λBCELBCE, (10)

where λBCE is set to 1 in our experiments.
During the sampling phase, our BerDiff first samples the initial latent vari-

able yT , followed by iterative calculation of the probability parameters of yt−1

for different t. In Algorithm 2, we present two different sampling strategies from
DDPM and DDIM for the latent variable yt−1. Finally, our BerDiff is capable
of producing diverse segmentation masks. By taking the mean of these masks,
we can further obtain a saliency segmentation mask to highlight salient ROI
that can serve as a valuable reference for radiologists. Note that our BerDiff
proposes a novel parameterization technology, i.e. calibration function, to esti-
mate the Bernoulli noise of yt, which is different from previous discrete state
diffusion-based models [3,11,22].

3 Experiment

3.1 Experimental setup

Dataset and preprocessing The data used in this experiment are obtained
from LIDC-IDRI [2,7] and BRATS 2021 [4] datasets. LIDC-IDRI contains 1,018
lung CT scans with plausible segmentation masks annotated by four radiologists.
We adopt a standard preprocessing pipeline for lung CT scans and the train-
validation-test partition as in previous work [5,14,21]. BRATS 2021 consists of
four different sequence (T1, T2, FlAIR, T1CE) MRI images for each patient.
All 3D scans are sliced into axial slices and discarded the bottom 80 and top
26 slices. Note that we treat the original four types of brain tumors as one type
following previous work [23], converting the multi-target segmentation problem
into binary. Our training set includes 55,174 2D images scanned from 1,126
patients, and the test set comprises 3,991 2D images scanned from 125 patients.
Finally, the images from LIDC-IDRI and BRAST 2021 are resized to 128× 128
and 224× 224, respectively.
Implementation Details We implement all the methods with the PyTorch
library and train the models on NVIDIA V100 GPUs. All the networks are
trained using the AdamW [17] optimizer with a batch size of 32. The initial
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Table 1. Ablation results of hyperparameters on LIDC-IDRI.

Loss Estimation GED HM-IoU
Target 16 8 4 1 16

LKL Bernoulli noise 0.332 0.365 0.430 0.825 0.517
LBCE Bernoulli noise 0.251 0.287 0.359 0.785 0.566
LBCE + LKL Bernoulli noise 0.249 0.287 0.358 0.775 0.575
LBCE + LKL Ground-truth mask 0.277 0.317 0.396 0.866 0.509

Table 2. Ablation results of diffusion kernel on LIDC-IDRI

Training Diffusion GED HM-IoU
Iteration Kernel 16 8 4 1 16

21,000 Gaussian 0.671 0.732 0.852 1.573 0.020
Bernoulli 0.252 0.287 0.358 0.775 0.575

86,500 Gaussian 0.251 0.282 0.345 0.719 0.587
Bernoulli 0.238 0.271 0.340 0.748 0.596

learning rate is set to 1 × 10−4 for BRATS 2021 and 5 × 10−5 for LIDC-IDRI.
The Bernoulli noise estimation U-net network in Fig. 1 of our BerDiff is the
same as previous diffusion-based models [18]. We employ a linear noise schedule
for T = 1000 timesteps for all the diffusion models. And we use the sub-sequence
sampling strategy of DDIM to accelerate the segmentation process. During mini-
batch training of LIDC-IDRI, our BerDiff learn diverse expertise by randomly
sampling one from four annotated segmentation masks for each image. Three
metrics are used for performance evaluation, including Generalized Energy Dis-
tance (GED), Hungarian-matched Intersection over Union (HM-IoU), and Dice
coefficient. We compute GED using a varying number of segmentation samples
(1, 4, 8, and 16), HM-IoU using 16 samples.

3.2 Ablation study

We start by conducting ablation experiments to demonstrate the effectiveness
of different losses and estimation targets, as shown in Table 1. All experiments
are trained for 21,000 training iterations on LIDC-IDRI. We first conduct the
ablation study of different losses while estimating Bernoulli noise in the top
three rows. We find that the combination of KL divergence and BCE loss can
achieve the best performance. Then, we conduct an ablation study of selecting
estimation target in the bottom two rows. We observe that estimating Bernoulli
noise, instead of directly estimating the ground-truth mask, is more suitable for
our binary segmentation task. All of these findings are consistent with previ-
ous works [3,10]. Please refer to Appendix A for extra ablation studies on the
sampling strategy and sampled timesteps.

Here, we conduct ablation experiments on our BerDiff with Gaussian or
Bernoulli noise, and the results are shown in Table 2. For discrete segmentation
tasks, we find that using Bernoulli noise can produce favorable results when
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Table 3. Results on LIDC-IDRI.

Methods GED
16

HM-IoU
16

Prob.U-net [14] 0.320±0.03 0.500±0.03

Hprob.U-net [15] 0.270±0.01 0.530±0.01

CAR [13] 0.264±0.00 0.592±0.01

JPro.U-net [26] 0.260±0.00 0.585±0.00

PixelSeg [25] 0.260±0.00 0.587±0.01

SegDiff [1] 0.248±0.01 0.585±0.00

MedSegDiff [24] 0.420±0.03 0.413±0.03

BerDiff (ours) 0.238±0.01 0.596±0.00

Table 4. Results on BRATS 2021.

Methods Dice

nnU-net [12] 88.2
TransU-net [6] 88.6
Swin UNETR [9] 89.0
U-net] 89.2
SegDiff [1] 89.3
BerDiff (ours) 89.7
] The U-net has the same architecture as the
noise estimation network in our BerDiff and pre-
vious diffusion-based models.

Hpro.U-net

CAR

SegDiff

MedSegDiff

BerDiff
(Gaussian)

BerDiff
(Bernoulli)

Ground
Truth

Ground
Truth

Saliency
Mask

Saliency
Mask

Saliency
Mask

Fig. 2. Diverse segmentation masks and the corresponding saliency mask of
two lung nodules randomly selected in LIDC-IDRI. xi0 and xigt refer to the
i-th generated and ground-truth segmentation masks, respectively. Saliency Mask is
the mean of diverse segmentation masks.

training iterations are limited (e.g. 21,000 iterations), and even outperform using
Gaussian noise when training iterations are sufficient (e.g. 86,500 iterations).
We also provide a more detailed performance comparison between Bernoulli-
and Gaussian-based diffusion models over training iterations in Appendix B. In
addition, we present a toy example to demonstrate the superiority of Bernoulli
diffusion over Gaussian diffusion in Appendix C.

3.3 Comparison to other state-of-the-art methods

Results on LIDC-IDRI Here, we present the quantitative comparison results
of LIDC-IDRI in Table 3, and find that our BerDiff perform well for discrete
segmentation tasks. Probabilistic U-net (Prob.U-net), Hierarchical Prob.U-net
(Hprob.U-net), and Joint Prob.U-net (JPro.U-net) use conditional variational
autoencoder (cVAE) to accomplish segmentation tasks. Calibrated Adversar-
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BerDiff 
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(Bernoulli) U-netTransU-net SegDiffSwin UNETRGround

TruthT1 MRI
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SegDiff
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Ground
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Fig. 3. Segmentation masks of four MRI images randomly selected in
BRATS 2021. The segmentation masks of diffusion-based models (SegDiff and ours)
presented here are saliency segmentation masks.

ial Refinement (CAR) employs generative adversarial networks (GAN) to refine
segmentation. PixelSeg is based on autoregressive models, while SegDiff and
MedSegDiff are diffusion-based models. We have the following two observations:
1) diffusion-based methods have demonstrated significant superiority over tradi-
tional approaches based on VAE, GAN, and autoregression models for discrete
segmentation tasks; and 2) our BerDiff has outperformed other diffusion-based
models that use Gaussian noise as the diffusion kernel. At the same time, we
present comparison segmentation results in Fig. 2. Compared to other models,
our BerDiff can effectively learn diverse expertise, resulting in more diverse
and accurate segmentation masks. Especially for small nodules that can create
ambiguity, such as the lung nodule on the left, our BerDiff approach produces
segmentation masks that are more in line with the ground-truth masks.
Results on BRATS 2021 Here, we present the quantitative and qualita-
tive comparison results of BRATS 2021 in Table 4 and Fig. 3, respectively.
We conducted a comparative analysis of our BerDiff with other models such
as nnU-net, transformer-based models like TransU-net and Swin UNETR, as
well as diffusion-based methods like SegDiff. First, we find that diffusion-based
methods have shown superior performance compared to traditional U-net and
transformer-based approaches. Besides, the high performance achieved by U-net,
which shares the same architecture as our noise estimation network, highlights
the effectiveness of the backbone design in diffusion-based models. Moreover,
our proposed BerDiff surpasses other diffusion-based models that use Gaus-
sian noise as the diffusion kernel. Finally, from Fig. 3, we find that our BerDiff
segments more accurately on parts that are difficult to recognize by the human
eye, such as the tumor in the 3rd row. At the same time, we can also generate
diverse plausible segmentation masks to produce a saliency segmentation mask.
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We note that some of these masks may be false positives as shown in the 1st
row, but they can be filtered out due to low saliency. Please refer to Appendix D
for more examples of diverse segmentation masks generated by our BerDiff.

4 Conclusion

We first propose to use the Bernoulli noise as the diffusion kernel to enhance the
capacity of the diffusion model for binary segmentation tasks, achieving accurate
and diverse medical image segmentation results. Our BerDiff only focuses on
binary segmentation tasks and takes much time during the iterative sampling
process as other diffusion-based models; e.g. our BerDiff takes 0.4s to segment
one medical image, which is ten times of traditional U-net. In the future, we will
extend our BerDiff to the multi-target segmentation problem and implement
additional strategies for speeding up the segmentation process.
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Appendix

A Ablation study on sampling strategy and timestep

Our BerDiff is compatible with various sampling strategies, and here, we com-
pare the performance of BerDiff using DDPM’s and DDIM’s sampling strate-
gies. The concrete sampling algorithms can be found in Algorithm 2. Our results
in Table A1 indicate that for binary segmentation tasks, BerDiff using DDIM’s
sampling strategy achieves better performance compared to using DDPM’s.
Furthermore, to attain satisfactory performance with limited computational re-
sources, we uniformly sample 10 timesteps from the complete trajectory in all
other experiments.

Table A1. Ablation results of sampling strategy and timestep on LIDC-
IDRI. The model utilized in this study was trained for 21,000 training iterations.

Configuration Sampled GED HM-IoU
Timestep 16 8 4 1 16

BerDiff
+

DDPM’s sampling strategy

2 0.441 0.483 0.568 1.076 0.303
10 0.266 0.302 0.377 0.824 0.533
100 0.258 0.296 0.372 0.829 0.539
1000 0.254 0.293 0.369 0.832 0.539

BerDiff
+

DDIM’s sampling strategy

2 0.432 0.481 0.579 1.167 0.341
10 0.252 0.287 0.358 0.775 0.575
100 0.250 0.284 0.351 0.759 0.582
1000 0.247 0.280 0.348 0.758 0.585

B Performance curves

Here we present a detailed performance comparison between Bernoulli- and
Gaussian-based diffusion models over training iterations in Fig. A1. Results show
that employing Bernoulli noise leads to faster convergence and higher perfor-
mance in contrast to Gaussian noise.

C Toy example

We provide intuitive insight into why Bernoulli diffusion outperforms Gaus-
sian diffusion by designing and conducting experiments on two simple one-
dimensional binary classification tasks. To create the datasets, we apply a pre-
defined conditional probability function, as shown in the first row of Fig. A2,
to map an input x ∈ [0, 1] to an output y ∈ {0, 1}, which serves as the Ground
Truth. For each data configuration, we use a 4-layer MLP for the noise estima-
tion network. We train all runs using a learning rate of 1e-3. During inference,
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Fig.A1. Performance curves over training iterations for Gaussian- and
Bernoulli-based diffusion models on LIDC-IDRI.

Task 1 Task 2

Fig.A2. 1D binary classification tasks.
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we uniformly sample 1000 points from [0, 1] and generate 100 samples using the
diffusion model for each point. We take the mean of the 100 samples as the
estimated probability parameter and evaluate performance using mean-squared
error (MSE) between the estimated and ground truth probability parameters.
Fig. A2 shows that Bernoulli diffusion offers superior training stability, faster
convergence, and better fitting of the conditional distribution compared to Gaus-
sian diffusion.

D More examples of diverse segmentation masks

In this section, we provide additional examples of diverse segmentation masks
generated by our BerDiff for LIDC-IDRI and BRATS 2021, as shown in Figs. A3
and A4, respectively.

Saliency
Mask

Saliency
Mask

Fig.A3. More segmentation masks generated by our BerDiff on LIDC-IDRI.
x represents the input medical image. yi0 and yigt refer to the i-th generated and
ground-truth segmentation masks, respectively. Saliency Mask is the mean of diverse
segmentation masks.
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Saliency
Mask

Variance

Fig.A4. More segmentation masks generated by our BerDiff on
BRATS 2021. x represents the input medical image, while ygt denotes the corre-
sponding ground-truth segmentation mask. yi0 refers to the i-th generated segmenta-
tion mask. Saliency Mask is obtained by calculating the mean of diverse segmentation
masks. Note that the variance of the generated segmentation masks is presented in the
last row.
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