Skip to main content

Learning Reliability of Multi-modality Medical Images for Tumor Segmentation via Evidence-Identified Denoising Diffusion Probabilistic Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

Abstract

Denoising diffusion probabilistic models (DDPM) for medical image segmentation are still a challenging task due to the lack of the ability to parse the reliability of multi-modality medical images. In this paper, we propose a novel evidence-identified DDPM (EI-DDPM) with contextual discounting for tumor segmentation by integrating multi-modality medical images. Advanced compared to previous work, the EI-DDPM deploys the DDPM-based framework for segmentation tasks under the condition of multi-modality medical images and parses the reliability of multi-modality medical images through contextual discounted evidence theory. We apply EI-DDPM on a BraTS 2021 dataset with 1251 subjects and a liver MRI dataset with 238 subjects. The extensive experiment proved the superiority of EI-DDPM, which outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://braintumorsegmentation.org/.

References

  1. Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Balogh, J., et al.: Hepatocellular carcinoma: a review. Journal of hepatocellular carcinoma, pp. 41–53 (2016)

    Google Scholar 

  4. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  5. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approximate Reasoning 113, 287–302 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  8. Huang, L., Ruan, S., Decazes, P., Denœux, T.: Lymphoma segmentation from 3d PET-CT images using a deep evidential network. Int. J. Approximate Reasoning 149, 39–60 (2022)

    Article  MATH  Google Scholar 

  9. Kim, B., Oh, Y., Ye, J.C.: Diffusion adversarial representation learning for self-supervised vessel segmentation. arXiv preprint arXiv:2209.14566 (2022)

  10. Lian, C., Ruan, S., Denoeux, T., Li, H., Vera, P.: Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions. IEEE Trans. Image Process. 28(2), 755–766 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lim, K.Y., Mandava, R.: A multi-phase semi-automatic approach for multisequence brain tumor image segmentation. Expert Syst. Appl. 112, 288–300 (2018)

    Article  Google Scholar 

  12. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  13. Mercier, D., Quost, B., Denœux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Inf. Fusion 9(2), 246–258 (2008)

    Article  Google Scholar 

  14. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  15. Qu, T., et al.: M3net: a multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention. Med. Image Anal. 75, 102232 (2022)

    Article  Google Scholar 

  16. Raju, A., et al.: Co-heterogeneous and adaptive segmentation from multi-source and multi-phase ct imaging data: a study on pathological liver and lesion segmentation. In: European Conference on Computer Vision. pp. 448–465. Springer (2020)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Shafer, G.: A mathematical theory of evidence, vol. 42. Princeton University Press (1976)

    Google Scholar 

  19. Wang, J., et al.: Tensor-based sparse representations of multi-phase medical images for classification of focal liver lesions. Pattern Recogn. Lett. 130, 207–215 (2020)

    Article  Google Scholar 

  20. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: International Conference on Medical Imaging with Deep Learning, pp. 1336–1348. PMLR (2022)

    Google Scholar 

  21. Zhang, L., et al.: Robust pancreatic ductal adenocarcinoma segmentation with multi-institutional multi-phase partially-annotated CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 491–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_48

    Chapter  Google Scholar 

  22. Zhao, J., et al.: United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI. Med. Image Anal. 73, 102154 (2021)

    Article  Google Scholar 

  23. Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the China Scholarship Council (No. 202008370191)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Li, S. (2023). Learning Reliability of Multi-modality Medical Images for Tumor Segmentation via Evidence-Identified Denoising Diffusion Probabilistic Models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics