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Abstract. Recently, deep learning methods have been widely used for
tumor segmentation of multimodal medical images with promising re-
sults. However, most existing methods are limited by insufficient rep-
resentational ability, specific modality number and high computational
complexity. In this paper, we propose a hybrid densely connected net-
work for tumor segmentation, named H-DenseFormer, which combines
the representational power of the Convolutional Neural Network (CNN)
and the Transformer structures. Specifically, H-DenseFormer integrates a
Transformer-based Multi-path Parallel Embedding (MPE) module that
can take an arbitrary number of modalities as input to extract the fusion
features from different modalities. Then, the multimodal fusion features
are delivered to different levels of the encoder to enhance multimodal
learning representation. Besides, we design a lightweight Densely Con-
nected Transformer (DCT) block to replace the standard Transformer
block, thus significantly reducing computational complexity. We con-
duct extensive experiments on two public multimodal datasets, HECK-
TOR21 and PI-CAI22. The experimental results show that our pro-
posed method outperforms the existing state-of-the-art methods while
having lower computational complexity. The source code is available at
https://github.com/shijun18/H-DenseFormer.

Keywords: Tumor segmentation · Multimodal medical image · Trans-
former · Deep learning.

1 Introduction

Accurate tumor segmentation from medical images is essential for quantitative
assessment of cancer progression and preoperative treatment planning [3]. Tumor
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tissues usually present different features in different imaging modalities. For ex-
ample, Computed Tomography (CT) and Positron Emission Tomography (PET)
are beneficial to represent morphological and metabolic information of tumors,
respectively. In clinical practice, multimodal registered images, such as PET-CT
images and Magnetic Resonance (MR) images with different sequences, are often
utilized to delineate tumors to improve accuracy. However, manual delineation
is time-consuming and error-prone, with a low inter-professional agreement [12].
These have prompted the demand for intelligent applications that can automat-
ically segment tumors from multimodal images to optimize clinical procedures.

Recently, multimodal tumor segmentation has attracted the interest of many
researchers. With the emergence of multimodal datasets (e.g., BRATS [25] and
HECKTOR [1]), various deep-learning-based multimodal image segmentation
methods have been proposed [3,10,27,13,29,31]. Overall, large efforts have been
made on effectively fusing image features of different modalities to improve seg-
mentation accuracy. According to the way of feature fusion, the existing methods
can be roughly divided into three categories [36,15]: input-level fusion, decision-
level fusion, and layer-level fusion. As a typical approach, input-level fusion
[26,8,20,34,31] refers to concatenating multimodal images in the channel dimen-
sion as network input during the data processing or augmentation stage. This
approach is suitable for most existing end-to-end models [32,6], such as U-Net
[28] and U-Net++ [37]. However, the shallow fusion entangles the low-level fea-
tures from different modalities, preventing the effective extraction of high-level
semantics and resulting in limited performance gains. In contrast, [35] and [21]
propose a solution based on decision-level fusion. The core idea is to train an
independent segmentation network for each data modality and fuse the results
in a specific way. These approaches can bring much extra computation at the
same time, as the number of networks is positively correlated with the number
of modalities. As a compromise alternative, layer-level fusion methods such as
HyperDense-Net [10] advocate the cross-fusion of the multimodal features in the
middle layer of the network.

In addition to the progress on the fusion of multimodal features, improving
the model representation ability is also an effective way to boost segmentation
performance. In the past few years, Transformer structure [30,11,24], centered on
the multi-head attention mechanism, has been introduced to multimodal image
segmentation tasks. Extensive studies [14,4,16,2] have shown that the Trans-
former can effectively model global context to enhance semantic representations
and facilitate pixel-level prediction. Wang et al. [31] proposed TransBTS, a form
of input-level fusion with a U-like structure, to segment brain tumors from mul-
timodal MR images. TransBTS employs the Transformer as a bottleneck layer
to wrap the features generated by the encoder, outperforming the traditional
end-to-end models. Saeed et al. [29] adopted a similar structure in which the
Transformer serves as the encoder rather than a wrapper, also achieving promis-
ing performance. Other works like [9] and [33], which combine the Transformer
with the multimodal feature fusion approaches mentioned above, further demon-
strate the potential of this idea for multimodal tumor segmentation.
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Although remarkable performance has been accomplished with these efforts,
there still exist several challenges to be resolved. Most existing methods are
either limited to specific modality numbers due to the design of asymmetric
connections or suffer from large computational complexity because of the huge
amount of model parameters. Therefore, how to improve model ability while
ensuring computational efficiency is the main focus of this paper.

To this end, we propose an efficient multimodal tumor segmentation so-
lution named Hybrid Densely Connected Network (H-DenseFormer). First,
our method leverages Transformer to enhance the global contextual information
of different modalities. Second, H-DenseFormer integrates a Transformer-based
Multi-path Parallel Embedding (MPE) module, which can extract and fuse mul-
timodal image features as a complement to naive input-level fusion structure.
Specifically, MPE assigns an independent encoding path to each modality, then
merges the semantic features of all paths and feeds them to the encoder of the
segmentation network. This decouples the feature representations of different
modalities while relaxing the input constraint on the specific number of modal-
ities. Finally, we design a lightweight, Densely Connected Transformer (DCT)
module to replace the standard Transformer to ensure performance and com-
putational efficiency. Extensive experimental results on two publicly available
datasets demonstrate the effectiveness of our proposed method.

2 Method

2.1 Overall Architecture of H-DenseFormer

Fig. 1. Overall architecture of our proposed H-DenseFormer.

Fig. 1 illustrates the overall architecture of our method. H-DenseFormer com-
prises a Multi-path Parallel Embedding (MPE) module and a U-shaped seg-
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mentation backbone network in form of input-level fusion. The former serves as
the auxiliary extractor of multimodal fusion features, while the latter is used
to generate predictions. Specifically, given a multimodal image input X3D ∈
RC×H×W×D or X2D ∈ RC×H×W with a spatial resolution of H ×W , the depth
dimension of D (number of slices) and C channels (number of modalities), we
first utilize MPE to extract and fuse multimodal image features. Then, the ob-
tained features are progressively upsampled and delivered to the encoder of the
segmentation network to enhance the semantic representation. Finally, the seg-
mentation network generates multi-scale outputs, which are used to calculate
deep supervision loss as the optimization target.

2.2 Multi-path Parallel Embedding

Many methods [10,15,5] have proved that decoupling the feature representation
of different modalities facilitates the extraction of high-quality multimodal fea-
tures. Inspired by this, we design a Multip-path Parallel Embedding (MPE)
module to enhance the representational ability of the network. As shown in Fig.
1, each modality has an independent encoding path consisting of a patch em-
bedding module, stacked Densely Connected Transformer (DCT) modules, and a
reshape operation. The independence of the different paths allows MPE to han-
dle an arbitrary number of input modalities. Besides, the introduction of the
Transformer provides the ability to model global contextual information. Given
the input X3D, after convolutional embedding and tokenization, the obtained
feature of the i-th path is Fi ∈ Rl×H

p ×W
p ×D

p , where i ∈ [1, 2, ..., C] , p = 16
and l = 128 denote the path size and embedding feature length respectively.
First, we concatenate the features of all modalities and entangle them using a
convolution operation. Then, interpolation upsampling is performed to obtain
the multimodal fusion feature Fout ∈ Rk×H

8 ×W
8 ×D

8 , where k = 128 refers to the
channel dimension. Finally, Fout is progressively upsampled to multiple scales
and delivered to different encoder stages to enhance the learned representation.

2.3 Densely Connected Transformer

Standard Transformer structures [11] typically consist of dense linear layers with
a computational complexity proportional to the feature dimension. Therefore,
integrating the Transformer could lead to a mass of additional computation and
memory requirements. Shortening the feature length can effectively reduce com-
putation, but it also weakens the representation capability meanwhile. To address
this problem, we propose the Densely Connected Transformer (DCT) module
inspired by DenseNet [17] to balance computational cost and representation ca-
pability. Fig. 1 details the DCT module, which consists of four Transformer
layers and a feedforward layer. Each Transformer layer has a linear projection
layer that reduces the input feature dimension to g = 32 to save computation.
Different Transformer layers are connected densely to preserve representational
power with lower feature dimensions. The feedforward layer at the end generates
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the fusion features of the different layers. Specifically, the output zj of the j-th
(j ∈ [1, 2, 3, 4]) Transformer layer can be calculated by:

z̃j−1 = p(cat([z0; z1; ...; zj−1])), (1)

z̃j = att(norm(z̃j−1)) + z̃j−1, (2)

zj = f(norm(z̃j)), (3)

where z0 represents the original input, cat(·) and p(·) denote the concatenation
operator and the linear layer, respectively. The norm(·), att(·), f(·) are the reg-
ular layer normalization, multi-head self-attention mechanism, and feedforward
layer. The output of DCT is zout = f(cat([z0; z1; ...; z4])). Table 1 shows that
the stacked DCT has lower parameters and computational complexity than a
standard Transformer structure with the same number of layers.

Table 1. Comparison of the computational complexity between the standard 12-layer
Transformer structure and the stacked 3 (= 12/4) DCT modules.

Feature Dimension Resolution Transformer Stacked DCT (×3)
GFLOPs ↓ Params ↓ GFLOPs ↓ Params ↓

256 (512,512) 6.837 6.382M 2.671 1.435M
512 (512,512) 26.256 25.347M 3.544 2.290M

2.4 Segmentation Backbone Network

The H-DenseFormer adopts a U-shaped encoder-decoder structure as its back-
bone. As shown in Fig. 1, the encoder extracts features and reduces their resolu-
tion progressively. To preserve more details, we set the maximum downsampling
factor to 8. The multi-level multimodal features from MPE are fused in a bitwise
addition way to enrich the semantic information. The decoder is used to restore
the resolution of the features, consisting of deconvolutional and convolutional
layers with skip connections to the encoder. In particular, we employ Deep Su-
pervision (DS) loss to improve convergence, which means that the multiscale
output of the decoder is involved in the final loss computation.

Deep Supervision Loss. During training, the decoder has four outputs;
for example, the i-th output of 2D H-DenseFormer is Oi ∈ Rc× H

2i
×W

2i , where
i ∈ [0, 1, 2, 3], and c = 2 (tumor and background) represents the number of seg-
mentation classes. To mitigate the pixel imbalance problem, we use a combined
loss of Focal loss [23] and Dice loss as the optimization target, defined as follows:

ζFD = 1−
2
∑N

t=1 ptqt∑N
t=1 pt + qt

+
1

N

N∑
t=1

−(1− pt)
γ log(pt), (4)
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where N refers to the total number of pixels, pt and qt denote the predicted
probability and ground truth of the t-th pixel, respectively, and r = 2 is the
modulation factor. Thus, DS loss can be calculated as follows:

ζDS =
∑

αi · ζFD(Oi,Gi), αi = 2−i. (5)

Where Gi represents the ground truth after resizing and has the same size as
Oi. α is a weighting factor to control the proportion of loss corresponding to
the output at different scales. This approach can improve the convergence speed
and performance of the network.

3 Experiments

3.1 Dataset and Metrics

To validate the effectiveness of our proposed method, we performed exten-
sive experiments on HECKTOR21 [1] and PI-CAI22 1. HECKTOR21 is a
dual-modality dataset for head and neck tumor segmentation, containing 224
PET-CT image pairs. Each PET-CT pair is registered and cropped to a fixed
size of (144,144,144). PI-CAI22 provides multimodal MR images of 220 pa-
tients with prostate cancer, including T2-Weighted imaging (T2W), high b-value
Diffusion-Weighted imaging (DWI), and Apparent Diffusion Coefficient (ADC)
maps. After standard resampling and center cropping, all images have a size of
(24,384,384). We randomly select 180 samples for each dataset as the training
set and the rest as the independent test set (44 cases for HECKTOR21 and 40
cases for PI-CAI22). Specifically, the training set is further randomly divided
into five folds for cross-validation. For quantitative analysis, we use the Dice
Similarity Coefficient (DSC), the Jaccard Index (JI), and the 95% Hausdorff
Distance (HD95) as evaluation metrics for segmentation performance. A better
segmentation will have a smaller HD95 and larger values for DSC and JI. We
also conduct holistic t-tests of the overall performance for our method and all
baseline models with the two-tailed p < 0.05.

3.2 Implementation Details

We use Pytorch to implement our proposed method and the baselines. For a
fair comparison, all models are trained from scratch using two NVIDIA A100
GPUs and all comparison methods are implemented with open-source codes,
following their original configurations. In particular, we evaluate the 3D and
2D H-DenseFormer on HECKTOR21 and PI-CAI22, respectively. During the
training phase, the Adam optimizer is employed to minimize the loss with an
initial learning rate of 10−3 and a weight decay of 10−4. We use the PolyLR
strategy [19] to control the learning rate change. We also use an early stopping
strategy with a tolerance of 30 epochs to find the best model within 100 epochs.
Online data augmentation, including random rotation and flipping, is performed
to alleviate the overfitting problem.
1https://pi-cai.grand-challenge.org/

https://pi-cai.grand-challenge.org/
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3.3 Overall Performance

Table 2. Comparison with existing methods on independent test set. We show the
mean±std (standard deviation) scores of averaged over the 5 folds.

Methods (Year) Params↓ GFLOPs↓ DSC(%) ↑ HD95(mm) ↓ JI(%) ↑
HECKTOR21, two modalities (CT and PET)

3D U-Net (2016) [7] 12.95M 629.07 68.8±1.4 14.9±2.2 58.0±1.4
UNETR (2022) [16] 95.76M 282.19 59.6±2.5 23.7±3.4 48.2±2.6

Iantsen et al. (2021) [18] 38.66M 1119.75 72.4±0.8 9.6±1.0 60.5±1.1
TransBTS (2021) [31] 30.62M 372.80 64.8±1.0 20.9±3.9 52.9±1.2
3D H-DenseFormer 3.64M 242.96 73.9±0.5 8.1±0.6 62.5±0.5

PI-CAI22, three modalities (T2W, DWI and ADC)
Deeplabv3+ (2018) [6] 12.33M 10.35 47.4±1.9 48.4±14.3 35.4±1.7
U-Net++ (2019) [37] 15.97M 36.08 49.7 ±3.9 38.5±6.7 36.9±3.3
ITUNet (2022) [22] 18.13M 32.67 42.1±2.3 67.6±10.3 31.3±1.6
Transunet (2021) [4] 93.23M 72.62 44.8±3.0 59.3±14.8 33.2±2.5

2D H-DenseFormer 4.25M 31.46 49.9±1.2 35.9±8.2 37.1±1.2

Table 2 compares the performance and computational complexity of our pro-
posed method with the existing state-of-the-art methods on the independent test
sets. For HECKTOR21, 3D H-DenseFormer achieves a DSC of 73.9%, HD95 of
8.1mm, and JI of 62.5%, which is a significant improvement (p < 0.01) over 3D
U-Net [7], UNETR [16], and TransBTS [31]. It is worth noting that the per-
formance of hybrid models such as UNETR is not as good as expected, even
worse than 3D U-Net, perhaps due to the small size of the dataset. Moreover,
compared to the champion solution of HECKTOR20 proposed by Iantsen et al.
[18], our method has higher accuracy and about 10 and 5 times lower amount of
network parameters and computational cost, respectively. For PI-CAI22, the 2D
variant of H-DenseFormer also outperforms existing methods (p < 0.05), achiev-
ing a DSC of 49.9%, HD95 of 35.9mm, and JI of 37.1%. Overall, H-DenseFormer
reaches an effective balance of performance and computational cost compared to
existing CNNs and hybrid structures. For qualitative analysis, we show a visual
comparison of the different methods. It is evident from Fig. 2 that our approach
can describe tumor contours more accurately while providing better segmenta-
tion accuracy for small-volume targets. These results further demonstrate the
effectiveness of our proposed method in multimodal tumor segmentation tasks.

3.4 Parameter Sensitivity and Ablation Study

Impact of DCT Depth. As illustrated in Table 3, the network performance
varies with the change in DCT depth. H-DenseFormer achieves the best perfor-
mance at the DCT depth of 6. An interesting finding is that although the depth
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Fig. 2. Visualizations of different models on HECKTOR21 (left) and PI-CAI22 (right).

Table 3. Parameter sensitivity analysis on DCT depth.

DCT Depth Params↓ GFLOPs↓ DSC(%) ↑ HD95(mm) ↓ JI(%) ↑
3 3.25M 242.38 73.5±1.4 8.4±0.7 62.2±1.6
6 3.64M 242.96 73.9±0.5 8.1±0.6 62.5±0.5
9 4.03M 243.55 72.7±1.2 8.7±0.6 61.2±1.3

of the DCT has increased from 3 to 9, the performance does not improve or even
worsen. We suspect that the reason is over-fitting due to over-parameterization.
Therefore, choosing a proper DCT depth is crucial to improve accuracy.

Impact of Different Modules. The above results demonstrate the supe-
riority of our method, but it is unclear which module plays a more critical role
in performance improvement. Therefore, we perform ablation experiments on
MPE, DCT and DS loss. Specifically, w/o MPE refers to keeping one embed-
ding path, w/o DCT signifies using a standard 12-layer Transformer, and w/o
DS loss denotes removing the deep supervision mechanism. As shown in Table
4, the performance decreases with varying degrees when removing them sep-
arately, which means all the modules are critical for H-DenseFormer. We can
observe that DCT has a greater impact on overall performance than the oth-
ers, further demonstrating its effectiveness. In particular, the degradation after
removing the MPE also confirms that decoupling the feature expression of dif-

Table 4. Ablation study of 3D H-DenseFormer, w/o denotes without.

Method DSC(%) ↑ HD95(mm) ↓ JI(%) ↑
3D H-DenseFormer w/o MPE 72.1±0.8 10.8±1.1 60.4±0.8
3D H-DenseFormer w/o DCT 70.7±1.8 11.9±1.9 58.6±2.1
3D H-DenseFormer w/o DS loss 72.2±0.9 10.2±1.0 60.1±1.2
3D H-DenseFormer 73.9±0.5 8.1±0.6 62.5±0.5
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ferent modalities helps obtain higher-quality multimodal features and improve
segmentation performance.

4 Conclusion

In this paper, we proposed an efficient hybrid model (H-DenseFormer) that com-
bines Transformer and CNN for multimodal tumor segmentation. Concretely, a
Multi-path Parallel Embedding module and a Densely Connected Transformer
block were developed and integrated to balance accuracy and computational
complexity. Extensive experimental results demonstrated the effectiveness and
superiority of our proposed H-DenseFormer. In future work, we will extend our
method to more tasks and explore more efficient multimodal feature fusion meth-
ods to further improve computational efficiency and segmentation performance.
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