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Abstract. Accurately localizing and identifying vertebra from CT im-
ages is crucial for various clinical applications. However, most existing
efforts are performed on 3D with cropping patch operation, suffering from
the large computation costs and limited global information. In this paper,
we propose a multi-view vertebra localization and identification from CT
images, converting the 3D problem into a 2D localization and identifica-
tion task on different views. Without the limitation of the 3D cropped
patch, our method can learn the multi-view global information naturally.
Moreover, to better capture the anatomical structure information from
different view perspectives, a multi-view contrastive learning strategy is
developed to pre-train the backbone. Additionally, we further propose a
Sequence Loss to maintain the sequential structure embedded along the
vertebrae. Evaluation results demonstrate that, with only two 2D net-
works, our method can localize and identify vertebrae in CT images ac-
curately, and outperforms the state-of-the-art methods consistently. Our
code is available at https://github.com/ShanghaiTech-IMPACT/Multi-
View-Vertebra-Localization-and-Identification-from-CT-Images.

Keywords: Vertebra localization and identification · Contrastive learn-
ing · Sequence Loss.

1 Introduction

Automatic Localization and identification of vertebra from CT images are cru-
cial in clinical practice, particularly for surgical planning, pathological diagnosis,
and post-operative evaluation[1,9,10]. However, the process is challenging due to
the significant shape variations of vertebrae with different categories, such as
lumbar and thoracic, and also the close shape resemblance of neighboring ver-
tebrae. Apart from these intrinsic challenges, the arbitrary field-of-view (FOV)
of different CT scans and the presence of metal implant artifacts also introduce
additional difficulties to this task.

With the advance of deep learning, many methods are devoted to tackling
these challenges. For example, Lessmann et al. [11] employed a one-stage seg-
mentation method to segment vertebrae with different labels for localization and
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identification. It is intuitive but usually involves many segmentation artifacts.
Building upon this method, Masuzawa et al.[12] proposed an instance memory
module to capture the neighboring information, but the long-term sequential in-
formation is not well studied. Recently, two or multi-stage methods[4,5,13,14,15],
that first localize the vertebra and further classify the detected vertebra patches,
are proposed to achieve the state-of-the-art performance. And some additional
modules, such as attention mechanism[5], graph optimization[13], and LSTM[15],
are integrated to capture the sequential information of adjacent vertebrae. How-
ever, all these methods are performed on 3D patches, where the global infor-
mation of the CT scan is destroyed and cannot be well-captured. Moreover,
due to the lack of pre-trained models in 3D medical imaging, networks trained
from scratch using a small dataset often lead to severe overfitting problems with
inferior performance.

In this paper, to tackle the aforementioned challenges, we present a novel
framework that converts the 3D vertebra labeling problem into a multi-view
2D vertebra localization and identification task. Without the 3D patch limi-
tation, our network can learn 2D global information naturally from different
view perspectives, as well as leverage the pre-trained models from ImageNet[6].
Specifically, given a 3D CT image, we first generate multi-view 2D Digitally
Reconstructed Radiograph (DRR) projection images. Then, a multi-view con-
trastive learning strategy is designed to further pre-train the network on this
specific task. For vertebra localization, we predict the centroid of each vertebra
in all DRR images and map the 2D detected centroids of different views back
into the 3D CT scan using a least-squares algorithm. As for vertebra identifica-
tion, we formulate it as a 2D segmentation task that generates vertebra labels
around vertebra centroids. Particularly, a Sequence Loss, based on dynamic pro-
gramming, is introduced to maintain the sequential information along the spine
vertebrae in the training stage, which also serves as a weight to vote the multi-
view 2D identification results into the 3D CT image for more reliable results. Our
proposed method is validated on a public challenging dataset[17] and achieved
the state-of-the-art performance both in vertebra localization and identification.
Moreover, more evaluation results on a large-scale in-house dataset collected in
real-world clinics (with 500 CT images) are provided in the supplementary ma-
terials, further demonstrating the effectiveness and robustness of our framework.

2 Methodology

An overview of our proposed method for vertebra localization and identification
using multi-view DRR from CT scans is shown in Fig. 1, which mainly consists
of three steps. Step 1 is to generate DRR images, followed by a multi-view
contrastive learning strategy to pre-train the backbone. Step 2 aims to finish
2D single-view vertebra localization and identification, and step 3 is to map the
2D results back to 3D with a multi-view fusion strategy. We will elaborate our
framework in this section.
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Fig. 1. An overview of the proposed method, including (a) DRR Generation, (b) DRR
multi-view contrastive learning, (c) single-view vertebra localization and identification,
(d) multi-view localization fusion, and (e) multi-view identification voting. The imple-
mentation of Sequence Loss is also illustrated.

2.1 DRR Multi-View Contrastive Learning

DRR Generation. To accurately localize and identify each vertebra in CT im-
ages, we convert the 3D task into 2D, where global information can be naturally
captured from different views, avoiding the large computation of 3D models. To
achieve this, DRR (Digitally Reconstructed Radiograph) technique, a simulation
procedure for generating a radiograph similar to conventional X-ray image, is
performed by projecting a CT image onto a virtual detector plane with a virtual
X-ray source. In this way, we can generate K DRR projection images of a CT
image for every 360/K degree. The 3D labeling problem can then be formulated
as a multi-view localization and identification task in a 2D manner. Specifically,
the 2D ground-truth are generated by projecting the 3D centroids and labels
onto the 2D image following the DRR projection settings.

DRR Multi-View Contrastive Learning. After DRR generation, our goal
is to localize and identify the vertebra on DRR images. However, as the dataset
for the vertebra task is relatively small due to time-consuming manual annota-
tion, we design a new multi-view contrastive learning strategy to better learn the
vertebrae representation from various views. Unlike previous contrastive learn-
ing methods, where the pretext is learned from numerous augmented negative
and positive samples[2,3,7,8], e.g., random crop, image flip, rotation and resize,
the multi-view DRR images generated from the same CT image share consis-
tent anatomical information, which are natural positive samples. Based on this
insight, we pre-train our network backbone using the Simsiam [3] approach to
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tion, we design a new multi-view contrastive learning strategy to better learn the
vertebrae representation from various views. Unlike previous contrastive learn-
ing methods, where the pretext is learned from numerous augmented negative
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the multi-view DRR images generated from the same CT image share consis-
tent anatomical information, which are natural positive samples. Based on this
insight, we pre-train our network backbone using the Simsiam [3] approach to
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encode two random views from the same CT image as a key and query, as shown
in Fig. 1 (b), in the aims of learning the invariant vertebrae representation from
different views.

2.2 Single-View Vertebra Localization

With multi-view DRR images, the 3D vertebra localization problem is converted
into a 2D vertebra centroid detection task, followed by a multi-view fusion strat-
egy (as introduced in Sec. 2.4) that transforms the 2D results to 3D. To achieve
this, we utilize the commonly-used heatmap regression strategy for 2D vertebra
centroid detection. Specifically, for each vertebra in a DRR image, our model is
trained to learn the contextual heatmap defined on the ground-truth 2D cen-
troid using a Gaussian kernel. During inference, we apply a fast peak search
clustering method [16] to localize the density peaks on the regressed heatmap
as the predicted centroid. Benefiting from the pre-trained models from multi-
view contrastive learning, our method can capture more representative features
from different views. Further, compared to existing 3D methods, our approach
performs vertebra localization on several DRR images with a fusion strategy,
making it more robust to the situation of missing detection in certain views.

2.3 Single-View Vertebra Identification

After the vertebrae localization, we further predict the label of each vertebra
using an identification network on multi-view DRR images. Unlike other 3D
methods that require cropping vertebra patches for classification, our identifi-
cation network performs on 2D, allowing us to feed the entire DRR image into
the network, which can naturally capture the global information. Specifically,
we use a segmentation model to predict the vertebra labels around the detected
vertebra centroids, i.e., a 22mm×22mm square centered at the centroid. During
the inference of single-view, we analyze the pixel-wise labels in each square and
identify the corresponding vertebra with the majority number of labels.

Sequence Loss. In the identification task, we observe that the vertebra labels
are always in a monotonically increasing order along the spine, which implies the
presence of sequential information. To better exploit this property and enhance
our model to capture such sequential information, we propose a Sequence Loss as
an additional network supervision, ensuring the probability distribution along
the spine follows a good sequential order. Specifically, as shown in Fig. 1, we
compute a probability map P ∈ Rn×c for each DRR image by averaging the
predicted pixel-wise possibilities in each square around the vertebra centroid
from the identification network. Here, n is the number of vertebrae contained in
this DRR image, and c indicates the number of vertebra categories (i.e., from C1
to L6). Due to the sequential nature of the vertebra identification problem, the
optimal distribution of P is that the index of the largest probability in each row is
in ascending order (green line in Fig. 1). To formalize this notion, we compute the
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largest accumulated probability in ascending order, starting from each category
in the first row and ending at the last row, using dynamic programming. The
higher accumulated probability, the better sequential structure presented by this
distribution. We set this accumulated probability as target profit, and aim to
maximize it to enable our model to better capture the sequential structure in this
DRR image. The optimal solution (OPT ) based on the dynamic programming
algorithm is as:

OPT [i, j] =

{
P [i, j] if j = 1 or i = 1

OPT [i− 1, j − 1] +D otherwise

D = max(αP [i, j − 1], βP [i, j], αP [i, j + 1]),

(1)

where i ∈ [1, n] and j ∈ [1, c]. Here, α and β are two parameters that are designed
to alleviate the influence of wrong-identified vertebra. Sequence Loss (Ls) is then
defined as:

Ls = 1− max(OPT [n, :])

βn
. (2)

The overall loss function Lid for our identification network is:

Lid = Lce + γLs, (3)

where Lce and Ls refer to the Cross-Entropy loss and Sequence Loss, respectively.
γ is a parameter to control the relative weights of the two losses.

2.4 Multi-View Fusion

Localization Multi-View Fusion. After locating all the vertebrae in each
DRR image, we fuse and map the 2D centroids back to 3D space by a least-
squares algorithm, as illustrated in Fig. 1 (d). For a vertebra located in K views,
we can track K target lines from the source points in DRR technique to the
detected centroid on the DRR images. Ideally, the K lines should intersect at
a unique point in the 3D space, but due to localization errors, this is always
unachievable in practice. Hence, instead of finding a unique intersection point,
we employ the least-squares algorithm to minimize the sum of perpendicular
distances from the optimal intersection point to all the K lines, given by:

D(p;A,N) =

K∑

k=1

D(p;ak,nk) =

K∑

k=1

(ak − p)T (I − nkn
T
k )(ak − p), (4)

where p denotes the 3D coordinate of the optimal intersection point, ak and nk

represent the point on the kth target line and the corresponding direction vector.
By taking derivatives with respect to p, we get a linear equation of p as shown
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in Eq. (5), where the optimal intersection point can be obtained by achieving
the minimum distance to the K lines.

∂D

∂p
=

K∑

k=1

−2(I − nkn
T
k )(ak − p) = 0 ⇒ Sp = q,

S =
K∑

k=1

(I − nkn
T
k ), q =

K∑

k=1

(I − nkn
T
k )ak.

(5)

Identification Multi-View Voting. The Sequence Loss evaluates the quality
of the predicted vertebra labels in terms of their sequential property. During
inference, we further use this Sequence Loss of each view as weights to fuse
the probability maps obtained from different views. We obtain the final voted
identification map V of K views as:

V =
K∑

k=1

WkPk, Wk =
(1− Lk

s)∑K
a=1(1− La

s)
. (6)

For each vertebra, the naive solution for obtaining vertebra labels is to ex-
tract the largest probability from each row in voted identification map V . Despite
the promising performance of the identification network, we still find some erro-
neous predictions. To address this issue, we leverage the dynamic programming
(described in Eq. (1)) again to correct the predicted vertebra labels in this voted
identification map V . Specifically, we identify the index of the largest accumu-
lated probability in the last row as the last vertebra category and utilize it as a
reference to correct any inconsistencies in the prediction.

3 Experiments and Results

3.1 Dataset and Evaluation Metric

We extensively evaluate our method on the publicly available MICCAI VerSe19
Challenge dataset [17], which consists of 160 spinal CT with ground truth anno-
tations. Specifically, following the public challenge settings, we utilize 80 scans
for training, 40 scans for testing, and 40 scans as hidden data. To evaluate the
performance of our method, we use the mean localization error (L-Error) and
identification rate (Id-Rate) as the evaluation metrics, which are also adopted in
the challenge. The L-Error is calculated as the average Euclidean distance be-
tween the ground-truth and predicted vertebral centers. The Id-Rate is defined
as the ratio of correctly identified vertebrae to the total number of vertebrae.

3.2 Implementation Details

All CT scans are resampled to an isotropic resolution of 1 mm. For DRR Multi-
View Contrastive Learning, we use ResNet50 as encoder and apply the SGD
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Table 1. Results on the VerSe19 challenge dataset.

Method Test Dataset Hidden Dataset
Id-Rate(%) L-Error(mm) Id-Rate(%) L-Error(mm)

Payer C.[17] 95.65 4.27 94.25 4.80
Lessmann N.[17] 89.86 14.12 90.42 7.04
Chen M. [17] 96.94 4.43 86.73 7.13
Sekuboyina A.[18] 89.97 5.17 87.66 6.56
Ours 98.12 1.79 96.45 2.17

optimizer with an initial learning rate of 0.0125, which follows the cosine decay
schedule. The weight decay, SGD momentum, batch size and loss function are
set to 0.0001, 0.9, 64, and cosine similarity respectively. We employ U-Net for
both the localization and identification networks, using the pre-trained ResNet50
from our contrastive learning as backbone. Adam optimizer is set with an initial
learning rate of 0.001, which is divided by 10 every 4000 iterations. Both networks
are trained for 15k iterations. We empirically set α = 0.1, β = 0.8, γ = 1. All
methods were implemented in Python using PyTorch framework and trained on
an Nvidia Tesla A100 GPU with 40GB memory.

3.3 Comparison with SOTA Methods

We train our method on 70 CT images and tune the hyperparameter on the rest
10 CT images from the training data. We then evaluate it on both testing and
hidden datasets, following the same setting as the challenge. In the comparison,
our method is compared with four methods which are the first four positions
in the benchmark of this challenge[17]. The experimental results are presented
in Table 1. Our method achieves Id-Rate of 98.12% and L-Error of 1.79 mm on
the test dataset, and Id-Rate of 96.45% and L-Error of 2.17 mm on the hidden
dataset, which achieves the leading performance both in localization and identifi-
cation tasks with just two 2D networks. Compared to these methods performed
on 3D with random cropping or patch-wise method (Payer C.[17], Lessmann
N.[17] and Chen M.[17]), our 2D strategy can capture more reliable global and
sequential information in all 2D projection images which can improve the la-
beling performance, especially the localization error. Compared to those using
2D MIP(Sekuboyina A.[18]), our DRR multi-view projection and fusion strategy
can provide superior performance by analyzing more views and introducing the
geometry information carried by varied DRR projections naturally.

3.4 Ablation Study

Ablation Study of Key Components. We conduct an ablation study on the
VerSe19 dataset to demonstrate the effectiveness of each component. As pre-
sented in Table 2, we build the basic network for the vertebra localization and
identification with a bagging strategy, where for each vertebra, we opt for the ID
that is predicted by the majority of views, when not using weighted voting, and
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Table 2. Ablation study results of key components.

Baseline Pre-train Sequence Loss Voting Id-Rate(%)
Test Dataset Hidden dataset

✓ 84.00 83.45
✓ ✓ 85.58 86.52
✓ ✓ ✓ 89.41 90.54
✓ ✓ ✓ ✓ 98.12 96.45

(a) (b)

Fig. 2. (a) The Id-Rate and L-Error of different K. (b) Comparison between different
K from the final predicted CT scan on limited FOV and metal artifacts cases (red for
ground truth and green for predictions).

K = 10, denoted as Baseline. Pre-train, Sequence Loss, and voting in Table 2
represent the addition of the multi-view contrastive learning, Sequence Loss, and
multi-view voting one by one. Pre-trained from ImageNet is used when not uti-
lizing our contrastive learning pre-trained parameters. Specifically, the Baseline
achieves Id-Rate of 84.00% and 83.54% on two datasets. With the contrastive
learning pre-trained parameters, we achieve 1.88% and 2.98% improvements over
the ImageNet pre-trained, respectively. This shows the pre-trained parameters of
the backbone obtained from our contrastive learning can effectively facilitate the
network to learn more discriminative features for identification than the model
learning from scratch. Sequence Loss provides extra supervision for sequential
information, and results in 3.53% and 4.02% increase, illustrating the signifi-
cance of capturing the sequential information in the identification task. Finally,
multi-view weighted voting yields the best results with 98.12% and 96.45% on
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the two datasets, indicating the robustness of our multi-view voting when the
identification errors occurred in a small number of DRR images can be corrected
by other DRR prediction results.

Ablation Study of Projection Number. We also conduct an ablation study
on the same dataset to further evaluate the impact of the projection number
K. The results are presented in Fig. 2, indicating a clear trend of performance
improvements as the number of projections K increases from 5 to 10. How-
ever, when K increases to 20, the performance is just comparable to that of 10.
We analyze that using too few views may result in inadequate and unreliable
anatomical structure representation, leading to unsatisfactory results. On the
other hand, too many views may provide redundant information, resulting in
comparable results but with higher computation cost. Therefore, K is set to 10
as a trade-off between accuracy and efficiency.

4 Conclusion

In this paper, we propose a novel multi-view method for vertebra localization
and identification in CT images. The 3D labeling problem is converted into a
multi-view 2D localization and identification task, followed by a fusion strategy.
In particular, we propose a multi-view contrastive learning strategy to better
learn the invariant anatomical structure information from different views. And
a Sequence Loss is further introduced to enhance the framework to better cap-
ture sequential structure embedded in vertebrae both in training and inference.
Evaluation results on a public dataset demonstrate the advantage of our method.
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Table 1. Evaluation results on a large-scale in-house dataset collected from the prac-
tical clinics with 500 CT scans divided into 300 for training, 100 for testing, and 100
for validation. We train the model on the training dataset, and further evaluate it on
the test and validation dataset with K set to 10.

Test dataset Validation dataset
Id-Rate(%) L-Error(mm) Id-Rate(%) L-Error(mm)

Cer. 99.67 1.31 99.55 1.51
Tho. 98.24 1.34 99.00 1.48
Lum. 99.31 1.35 99.54 1.50
All 98.62 1.34 99.04 1.49

Fig. 1. Qualitative results on typical challenging cases: large field of view(1, 6), metal
artifacts (2, 3), pathological spines (4), and limited field of view (5).(Green for predic-
tion and red for ground truth.)
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