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Abstract. Modern medical image segmentation methods primarily use
discrete representations in the form of rasterized masks to learn features
and generate predictions. Although effective, this paradigm is spatially
inflexible, scales poorly to higher-resolution images, and lacks direct un-
derstanding of object shapes. To address these limitations, some recent
works utilized implicit neural representations (INRs) to learn continuous
representations for segmentation. However, these methods often directly
adopted components designed for 3D shape reconstruction. More im-
portantly, these formulations were also constrained to either point-based
or global contexts, lacking contextual understanding or local fine-grained
details, respectively—both critical for accurate segmentation. To remedy
this, we propose a novel approach, SWIPE (Segmentation with Implicit
Patch Embeddings), that leverages the advantages of INRs and predicts
shapes at the patch level—rather than at the point level or image level—
to enable both accurate local boundary delineation and global shape
coherence. Extensive evaluations on two tasks (2D polyp segmentation
and 3D abdominal organ segmentation) show that SwIPE significantly
improves over recent implicit approaches and outperforms state-of-the-
art discrete methods with over 10x fewer parameters. Our method also
demonstrates superior data efficiency and improved robustness to data
shifts across image resolutions and datasets. Code is available on Github.

Keywords: Medical Image Segmentation - Deep Implicit Shape Repre-
sentations - Patch Embeddings - Implicit Shape Regularization

1 Introduction

Segmentation is a critical task in medical image analysis. Known approaches
mainly utilize discrete data representations (e.g., rasterized label masks) with
convolutional neural networks (CNNs) [12,6,26,8] or Transformers [10,9] to clas-
sify image entities in a bottom-up manner. While undeniably effective, this
paradigm suffers from two primary limitations. (1) These approaches have lim-
ited spatial flexibility and poor computational scaling. Retrieving predictions
at higher resolutions would require either increasing the input size, which de-
creases performance and incurs quadratic or cubic memory increases, or inter-
polating output predictions, which introduces discretization artifacts. (2) Per-
pixel or voxel learning inadequately models object shapes/boundaries, which
are central to both robust computer vision methods and our own visual cortical
pathways [23]. This often results in predictions with unrealistic object shapes
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and locations [24], especially in settings with limited annotations and out-of-
distribution data.

Instead of segmenting structures with discrete grids, we explore the use of
Implicit Neural Representations (INRs) which employ continuous representa-
tions to compactly capture coordinate-based signals (e.g., objects in images).
INRs represent object shapes with a parameterized function fp : (p,z) — [0, 1]
that maps continuous spatial coordinates p = (z,y, 2), ,y,z € [—1,1] and a
shape embedding vector z to occupancy scores. This formulation enables direct
modeling of object contours as the decision boundary of fy, superior memory
efficiency [5], and smooth predictions at arbitrary resolutions that are invari-
ant to input size. INRs have been adopted in the vision community for shape
reconstruction [4,22,19,3], texture synthesis [21], novel view synthesis [20], and
segmentation [11]. Medical imaging studies have also used INRs to learn organ
templates [31], synthesize cell shapes [29], and reconstruct radiology images [27].

The adoption of INRs for medical image segmentation, however, has been
limited where most existing approaches directly apply pipelines designed for
3D reconstruction to images. These works emphasize either global embeddings
z or point-wise ones. OSSNet [25] encodes a global embedding from an entire
volume and an auxiliary local image patch to guide voxel-wise occupancy pre-
diction. Although global shape embeddings facilitate overall shape coherence,
they neglect the fine-grained details needed to delineate local boundaries. The
local patches partially address this issue but lack contextual understanding be-
yond the patches and neglect mid-scale information. In an effort to enhance
local acuity and contextual modeling, IFA [11], IOSNet [16], and NUDF [2§]
each extract a separate embedding for every input coordinate by concatenating
point-wise features from multi-scale CNN feature maps. Although more expres-
sive, point-wise features still lack sufficient global contextual understanding and
suffer from the same unconstrained prediction issues observed in discrete seg-
mentation methods. Moreover, these methods use components designed for shape
reconstruction—a domain where synthetic data is abundant and the modeling
of texture, multi-class discrimination, and multi-scale contexts are less crucial.

To address these limitations, we propose SWIPE (Segmentation with
Implicit Patch Embeddings) which learns continuous representations of fore-
ground shapes at the patch level. By decomposing objects into parts (i.e., patches),
we aim to enable both accurate local boundary delineation and global shape co-
herence. This also improves model generalizability and training efficiency since
local curvatures often reoccur across classes or images. SwWIPE first encodes an
image into descriptive patch embeddings and then decodes the point-wise oc-
cupancies using these embeddings. To avoid polarization of patch embeddings
toward either local or global features in the encoding step, we introduce a con-
text aggregation mechanism that fuses multi-scale feature maps and propose a
Multi-stage Embedding Attention (MEA) module to dynamically extract
relevant features from all scales. This is driven by the insight that different object
parts necessitate variable focus on either global/abstract (important for object
interiors) or local/fine-grained information (essential around object boundaries).
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Fig. 1. At a high level, SWIPE first encodes an input image into patch z¥ and image
z' shape embeddings, and then employs these embeddings along with coordinate infor-
mation p to predict class occupancy scores via the patch DF and image D' decoders.

To enhance global shape coherence across patches in the decoding step, we aug-
ment local embeddings with global information and propose Stochastic Patch
Overreach (SPO) to improve continuity around patch boundaries. Compre-
hensive evaluations are conducted on two tasks (2D polyp and 3D abdominal
organ segmentation) across four datasets. SWIPE outperforms the best-known
implicit methods (+6.7% & +4.5% F1 on polyp and abdominal, resp.) and beats
task-specific discrete approaches (+2.5% F1 on polyp) with 10x fewer parame-
ters. We also demonstrate SwIPE’s superior model & data efficiency in terms of
network size & annotation budgets, and greater robustness to data shifts across
image resolutions and datasets. Our main contributions are as follows.

1. Away from discrete representations, we are the first to showcase the merits of
patch-based implicit neural representations for medical image segmentation.

2. We propose a new efficient attention mechanism, Multi-stage Embedding At-
tention (MEA), to improve contextual understanding during the encoding
step, and Stochastic Patch Overreach (SPO) to address boundary continu-
ities during occupancy decoding.

3. We perform detailed evaluations of SWIPE and its components on two tasks
(2D polyp segmentation and 3D abdominal organ segmentation). We not
only outperform state-of-the-art implicit and discrete methods, but also yield
improved data & model efficiency and better robustness to data shifts.

2 Methodology

The core idea of SWIPE (overviewed in Fig. 1) is to use patch-wise INRs for
semantic segmentation. To formulate this, we first discuss the shift from discrete
to implicit segmentation, then delineate the intermediate representations needed
for such segmentation, and overview the major components involved in obtaining
these representations. Note that for the remainder of the paper, we present
formulations for 2D data but the descriptions are conceptually congruous in 3D.

In a typical discrete segmentation setting with C' classes, an input image X
is mapped to class probabilities with the same resolution f : X € REXWx3 _
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Y € REXWxC, Segmentation with INRs, on the other hand, maps an image X
and a continuous image coordinate p; = (z,¥), z,y € [—1, 1], to the coordinate’s
class-wise occupancy probability 6; € R, yielding fj : (p;, X) — 6;, where fy
is parameterized by a neural network with weights 6. As a result, predictions of
arbitrary resolutions can be obtained by modulating the spatial granularity of
the input coordinates. This formulation also enables the direct use of discrete
pixel-wise losses like Cross Entropy or Dice with the added benefit of bound-
ary modeling. Object boundaries are represented as the zero-isosurface in fy’s
prediction space or, more elegantly, fy’s decision boundary.

SwIPE builds on the INR segmentation setting (e.g., in [16]), but operates
on patches rather than on points or global embeddings (see Tab. 1 & left of
Tab. 3 for empirical justifications) to better enable both local boundary details
and global shape coherence. This involves two main steps: (1) encode shape
embeddings from an image, and (2) decode occupancies for each point while
conditioning on its corresponding embedding(s). In our case, fy includes an en-
coder E} (or backbone) that extracts multi-scale feature maps from an input
image, a context aggregation module F,, (or neck) that aggregates the feature
maps into vector embeddings for each patch, and MLP decoders D¥ (decoder for
local patches where P is for patch) & D' (decoder for entire images where I is for
image) that output smoothly-varying occupancy predictions given embedding &
coordinate pairs. To encode patch embeddings in step (1), Ej and E,, map an in-
put image X to a global image embedding z' and a matrix zF containing a local
patch embedding z* at each planar position. For occupancy decoding in step (2),
DF decodes the patch-wise class occupancies of using relevant local and global
inputs while D' predicts occupancies o} for the entire image using only image
coordinates p; and the image embedding z'. Below, we detail the encoding of
image & patch embeddings (Sec. ), the point-wise decoding process (Sec.

), and the training procedure for SWIPE (Sec. ).

2.1 Image Encoding and Patch Embeddings

The encoding process utilizes the backbone Ej and neck FE,, to obtain a global
image embedding z' and a matrix Z¥ of patch embeddings. We define an image
patch as an isotropic grid cell (i.e., a square in 2D or a cube with identical
spacing in 3D) of length S from non-overlapping grid cells over an image. Thus,
an image X € RF>XWx3 with a patch size S will produce [%W . (%1 patches.
For simplicity, we assume that the image dimensions are evenly divisible by S.

A fully convolutional encoder backbone Ej, (e.g., Res2Net-50 [7]) is em-
ployed to generate multi-scale features from image X. The entire image is pro-
cessed as opposed to individual crops [15,3,25] to leverage larger receptive fields
and integrate intra-patch information. Transformers [9] also model cross-patch
relations and naturally operate on patch embeddings, but are data-hungry and

lack helpful spatial inductive biases (we affirm this in Sec. ). E} outputs four
multi-scale feature maps from the last four stages, {F,}>_, (F,, € RC»>XHnxWn

The encoder neck E, aggregates Ej’s multi-scale outputs {F,}>_, to
produce z' (the shape embedding for the entire image) and ZF (the grid of
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shape embeddings for patches). The feature maps are initially fed into a mod-
ified Receptive Field Block [17] (dubbed RFB-L or RFB-Lite) that replaces
symmetric convolutions with a series of efficient asymmetric convolutions (e.g.,
(3x3) = (3x 1)+ (1x3)). The context-enriched feature maps are then fed
through multiple cascaded aggregation and downsampling operations (see E,, in
Fig. 1) to obtain four multi-stage intermediate embeddings with identical shapes,
{F), )5 € R334,

To convert the intermediate embeddings {F’ }>_, to patch embeddings Z*,
we first resize them to ZP’s final shape via linear interpolation to produce
{FI'}5 _,, which contain low-level (F3) to high-level (F7) information. Resiz-
ing enables flexibility in designing appropriate patch coverage, which may differ
across tasks due to varying structure sizes and shape complexities. Note that
this is different from the interpolative sampling in [16] and more similar to [11],
except the embeddings’ spatial coverage in SWIPE are larger and adjustable.
To prevent the polarization of embeddings toward either local or global scopes,
we propose a multi-stage embedding attention (MEA) module to enhance
representational power and enable dynamic focus on the most relevant abstrac-
tion level for each patch. Given four intermediate embedding vectors {e,}>_,
from corresponding positions in {F,}>_, we compute the attention weights
via W = Softmax(M LP;(cat(MLPy(ez), MLPy(es), MLPy(es), MLPy(e5)))),
where W € R?* is a weight vector, cat indicates concatenation, and MLP,
is followed by a ReLU activation. The final patch embedding is obtained by
zZF = MLPQ(ZfL:2 e, + 2222 Wp—2 - €,), where w; is the ith weight of W.
Compared to other spatial attention mechanisms like CBAM [30], our module
separately aggregates features at each position across multiple inputs and pre-
dicts a proper probability distribution in W instead of an unconstrained score.
The output patch embedding matrix ZF is populated with z” at each position
and models shape information centered at the corresponding patch in the input
image (e.g., if S = 32, Z*[0,0] encodes shape information of the top left patch
of size 32 x 32 in X). Finally, z! is obtained by average-pooling Ff into a vector.

2.2 Implicit Patch Decoding
Given an image coordinate p; and its corresponding patch embedding z!, the
patch-wise occupancy can be decoded with decoder DF : (p]f,z]f) — 6]?, where
DF is a small MLP and p! is the patch coordinate with respect to the patch
center ¢; associated with z¢ and is obtained by pf = p} — ¢;. But, this design
leads to poor global shape predictions and discontinuities around patch borders.
To encourage better global shape coherence, we also incorporate a global
image-level decoder D'. This image decoder, D' : (pg,zﬂ) — 6%, predicts oc-
cupancies for the entire input image. To distill higher-level shape information
into patch-based predictions, we also condition D¥’s predictions on p} and z'.
Furthermore, we find that providing the source coordinate gives additional
spatial context for making location-coherent predictions. In a typical segmenta-
tion pipeline, the input image X is a resized crop from a source image and we find
that giving the coordinate pS (S for source) from the original uncropped image
improves performance on 3D tasks since the additional positional information
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Table 1. Overall results versus the state-of-the-art. Starred™ items indicate a
state-of-the-art discrete method for each task. The Dice columns report foreground-
averaged scores and standard deviations (+) across 6 runs (6 different seeds were used
while train/val/test splits were kept consistent).

2D Polyp Sessile 3D CT BCV

Method Params (M) FLOPs (G) Dice (%) || Method Params (M) FLOPs (G) Dice (%)
Discrete Approaches

U-Netis  [26] 7.9 83.3 63.89+1.30 || U-Nety5  [26] 16.3 800.9 74.47+1.57
PraNets, [6] 30.5 15.7 82.56+1.08 || UNETR3, [10] 92.6 72.6 81.14:0.85
Res2UNeto; [7] 25.4 17.8 81.62+0.97 || Res2UNeto1 7] 38.3 44.2 79.23+0.66
Implicit Approaches

OSSNeta: [25] 5.2 6.4 76.11+1.14 || OSSNeta; [25] 7.6 55.1 73.38+1.65
IOSNetas [16] 4.1 5.9 78.37+0.76 || IOSNetao [16] 6.2 46.2 76.75+1.37
SwIPE (ours) 2.7 10.2 85.05+0.82 || SWIPE (ours) 4.4 71.6 81.214+0.94

may be useful for predicting recurring structures Our enhanced formulation for
patch decoding can be described as DF : (pf,z}, pl, 2!, p¥) — o, .

To address discontinuities at patch boundaries, we propose a training tech-
nique called Stochastic Patch Overreach (SPO) which forces patch embed-
dings to make predictions for coordinates in neighboring patches For each patch
point and embedding pair (pf,z!), we create a new pair (p:’,z.’) by randomly
selecting a neighboring patch embedding and updating the local pomt to be rela-
tive to the new patch center. This regularization is modulated by the set of valid
choices to select a neighboring patch (connectivity, or con) and the number of
perturbed points to sample per batch point (occurrence, or Ngpo). con=4 means
all adjoining patches are neighbors while con=8 includes corner patches as well.
Note that SPO differs from the regularization in [3] since no construction of a
KD-Tree is required and we introduce a tunable stochastic component which
further helps with regularization under limited-data settings.

2.3 Training SwIPE

To optimize the parameters of fy, we first sample a set of point and occupancy
pairs {pzs, 0, }ie7 for each source image, where Z is the index set for the selected
points. We obtain an equal number of points for each foreground class using
Latin Hypercube sampling with 50% of each class’s points sampled within 10
pixels of the class object boundaries. The point-wise occupancy loss, writ-
ten as Locc(04,0;) = 0.5+ Leo(0;,6;) + 0.5 - Lyc(04,0;), is an equally weighted
sum of Cross Entropy loss Lee(0i,0;) = —logd¢ and Dice loss Lyc(0;,0;) =

- Z ) > O 61—;21 —1» Where 67 is the predicted probability for the target occu-
pancy with class label c. Note that in practice, these losses are computed in their
vectorized forms; for example, the Dice loss is applied with multiple points per
image instead of an individual point (similar to computing the Dice loss between
a flattened image and its flattened mask). The loss for patch and image de-
coder predictions is Lpy(0;, 6?, 65) = aLloce(04, OP) + (1 — a)Locc(0;, 65), where
« is a local-global balancing coefficient. Slmllarly, the loss for the SPO occu-
pancy prediction 6] is Lspo(0;,0;) = Locc(04, 6;). Finally, the overall loss for a
coordinate is formulated as £ = Lp; + BLspo + A(||2E |3 +||Z||3), where 3 scales
SPO and the last term (scaled by A) regularizes the patch & image embeddings,
respectively.
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3 Experiments and Results

This section presents quantitative results from four main studies, analyzing
overall performance, robustness to data shifts, model & data efficiency, and ab-
lation & component studies. For more implementation details, experimental set-
tings, and qualitative results, we refer readers to the Supplementary Material.

3.1 Datasets, Implementations, and Baselines

We evaluate performance on two tasks: 2D binary polyp segmentation and 3D
multi-class abdominal organ segmentation. For polyp segmentation, we train on
the challenging Kvasir-Sessile dataset [13] (196 colored images of small sessile
polyps), and use CVC-ClinicDB [2] to test model robustness. For 3D organ
segmentation, we train on BCV [1] (30 CT scans, 13 annotated organs), and
use the diverse CT images in AMOS [14] (200 training CTs, the same setting
used in [32]) to evaluate model robustness. All the datasets are split with a
60:20:20 train:validation:test ratio. For each image in Sessile [in BCV, resp.],
we obtain 4000 [20,000] background points and sample 2000 [4000] foreground
points for each class with half of every class’ foreground points lying within 10
pixels [voxels] of the boundary.

2D Sessile Polyp training uses a modified Res2Net [7] backbone with 28 layers,
[256, 256, 256| latent MLP dimensions for D¥, [256, 128| latent dimensions for
D' d =128, S = 32, and con = 8. 3D BCV training uses a Res2Net-50 backbone,
[256, 256, 256, 256] latent MLP dimensions for DF, [256, 256, 128] latent MLP
dimensions for D', d = 512, S = 8, and con = 6 (all adjoining patches in
3D). The losses for both tasks are optimized with AdamW [18] and use a=0.5,
£=0.1, and A=0.0001. For inference, we adopt MISE like prior works [19,16,25]
and evaluate on a reconstructed prediction mask equal in size to the input image.
DP segments boundaries better than D', and is used to produce final predictions.

For fair comparisons, all the methods are trained using the same equally-
weighted Dice and Cross Entropy loss for 30,000 and 50,000 iterations on 2D
Sessile and 3D BCV, resp. The test score at the best validation epoch is reported.
Image input sizes were 384 x 384 for Sessile and 96 x 96 x 96 for BCV. All
the implicit methods utilize the same pre-sampled points for each image. For
IOSNet [16], both 2D and 3D backbones were upgraded from three downsampling
stages to five for fair comparisons and empirically confirmed to outperform the
original. We omit comparisons against IFA [11] to focus on medical imaging
approaches; plus, IFA did not outperform IOSNet [16] on either task.

3.2 Study 1: Performance Comparisons

The results for 2D Polyp Sessile and 3D CT BCV organ segmentation are pre-
sented in Table 1. FLOPs are reported from the forward pass on a single image
during training.

On the smaller polyp dataset, we observe notable improvements over the best-
known implicit approaches (4+6.7% Dice) and discrete methods (+2.5% Dice)
with much fewer parameters (9% of PraNet [6] and 66% of IOSNet [16]). For
BCV, the performance gains are more muted; however, we still marginally out-
perform UNETR [10] with over 20x fewer parameters and comparable FLOPs.
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Table 2. Left and Middle: Robustness to data shifts. Right: Efficiency studies.

Model Depth

84 / 8505 g
Across Resolutions e 5”45138256
Method ’ Size Dice Across Datasets 5% Bos 78.37
N 781 77.25 : 71.98
Varying Output Size Method ‘ Dice 2 78 50
] umber of Backbone Layers
1 PraNet [6] |128) 72.64 Polyp Sessile — CVC ! " dBI width Ly
3 odel 1
2 TOSNet [16] | 128] 76.18 1 PraNet [6] | 6837 & f@*ﬁ?sa
e 83.93
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4 PraNet [6] | 8961 74.95 3 SwIPE 70.10 g 7965 s 77,65 _
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7 PraNet [6] |128) 68.79 6 SWIPE 82.81 570 M/;/ 74.16
8 PraNet [6] |8961 43.92 < 60/58: ¢ SwiPE
O —e— PraNet
03951, —o— 10SNet
40 41.95

10 25 50 100
% of Training Annotation

3.3 Study 2: Robustness to Data Shifts

In this study, we explore the robustness of various methods to specified target
resolutions and dataset shifts. The left-most table in Table 2 contains results for
the former study conducted on 2D Sessile, where we first analyze the effect of
directly resizing outputs (Tab. 2 left, rows 1 to 6) when given an input image that
is standard during training (384 x 384). The discrete method, PraNet, outputs
384 x 384 predictions which are interpolated to the target size (Tab. 2 left,
rows 1 & 4). This causes more performance drop-offs than the implicit methods
which can naturally vary the output size by changing the resolution of the input
coordinates. We also vary the input size so that no manipulations of predictions
are required (Tab. 2 left, rows 7 & 8), which results in steep accuracy drops.
The results for the dataset shift study are given in the middle of Table 2,
where CVC is another binary poly segmentation task and the liver class is eval-
uated on all CT scans in AMOS. Both discrete methods outperform IOSNet,
which may indicate that point-based features are more prone to overfitting due
to a lack of contextual regularization. Also, we highlight our method’s consistent
outperformance over both discrete methods and IOSNet in all of the settings.

3.4 Study 3: Model Efficiency and Data Efficiency

To analyze the model efficiency (the right-most column of charts in Table 2), we
report on 2D Sessile and vary the backbone size in terms of depth and width.
For data efficiency, we train using 10%, 25%, 50%, and 100% of annotations. Not
only do we observe outperformance across the board in model sizes & annotation
amounts, but the performance drop-off is more tapered with our method.

3.5 Study 4: Component Studies and Ablations

The left side of Table 3 presents our ablation studies, showing the benefits en-
abled by context aggregation within F,,, global information conditioning, and
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Table 3. Left: Ablation studies. Right: Design choice experiments.

Alternative Designs

Ablation Studies on 2D Sessile Description | Dice (%)
Component Incorporation Backbone
E, RFB-Lite S v v v v v 1 ceT [9) 78.30
E, Cascade Y Y Y Y 2 U-Net [26] o
MEA Replacements for Feature Fusion
En.  MEA v v v v v 3 Addition 84.19
D' Zp' v v v/ v 4 Concat. + 1x1 Conv 83.58
DF zl, pH v v v 5 Self-Attention 68.23
D* pt VR po
oF SPO v 6 No=0 83.75
7 No=4,Con=4 83.71
Dice (%) 76.44 76.57 78.19 80.33 80.92 82.28 83.75 85.05 8 N,=4,Con=8 83.94
9 N,=8,Con=4 84.43

adoption of MEA & SPO. We also explore alternative designs on the right side of
Table 3 for our three key components, and affirm their contributions on achieving
superior performance.

4 Conclusions

SwIPE represents a notable departure from conventional discrete segmentation
approaches and directly models object shapes instead of pixels and utilizes con-
tinuous rather than discrete representations. By adopting both patch and image
embeddings, our approach enables accurate local geometric descriptions and im-
proved shape coherence. Experimental results show the superiority of SwIPE
over state-of-the-art approaches in terms of segmentation accuracy, efficiency,
and robustness. The use of local INRs represents a new direction for medical
image segmentation, and we hope to inspire further research in this direction.
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