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Abstract. Classification of heterogeneous diseases is challenging due to
their complexity, variability of symptoms and imaging findings. Chronic
Obstructive Pulmonary Disease (COPD) is a prime example, being un-
derdiagnosed despite being the third leading cause of death. Its sparse,
diffuse and heterogeneous appearance on computed tomography chal-
lenges supervised binary classification. We reformulate COPD binary
classification as an anomaly detection task, proposing cOOpD: hetero-
geneous pathological regions are detected as Out-of-Distribution (OOD)
from normal homogeneous lung regions. To this end, we learn represen-
tations of unlabeled lung regions employing a self-supervised contrastive
pretext model, potentially capturing specific characteristics of diseased
and healthy unlabeled regions. A generative model then learns the distri-
bution of healthy representations and identifies abnormalities (stemming
from COPD) as deviations. Patient-level scores are obtained by aggre-
gating region OOD scores. We show that cOOpD achieves the best per-
formance on two public datasets, with an increase of 8.2% and 7.7% in
terms of AUROC compared to the previous supervised state-of-the-art.
Additionally, cOOpD yields well-interpretable spatial anomaly maps and
patient-level scores which we show to be of additional value in identifying
individuals in the early stage of progression. Experiments in artificially
designed real-world prevalence settings further support that anomaly de-
tection is a powerful way of tackling COPD classification.

* These authors contributed equally to this work
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1 Introduction

By virtue of the human body’s complexity, most diseases present phenotypic vari-
ability in terms of symptoms, rate of progression and imaging findings, which
challenges diagnostic criteria. Among many hard to diagnose diseases, Chronic
Obstructive Pulmonary Disease (COPD) stands out, as it is extensively under-
and misdiagnosed [20], despite being the 3rd leading cause of death worldwide,
with an estimated global prevalence of 10.3% [3]. Its pathological manifestations
in the lung range from emphysema to airway disease, leading to a sparse, dif-
fuse, and heterogeneous appearance, as shown in Fig. 1a. Appropriate and earlier
diagnosis that accounts for all of its manifestations is therefore of paramount im-
portance for public health [1].
Considering the limitations of spirometry as the standard diagnostic method [1],
computed tomography (CT) has emerged as a complementary tool for COPD
characterization. Initial efforts focused on identifying typical intensity and texture-
level imaging features from either inspiration or expiration CT scans [4]. With
the advent of deep learning (DL), more complex supervised approaches have
been proposed to tackle binary classification of COPD. In this context, due to
GPU memory constraints and large size of the images, different strategies to
parcel a single 3D image as 2D slices [9,23] or 3D patches [19] have been pur-
sued by supervised DL methods. Significant emphasis has been put on multiple
instance learning (MIL) approaches [8,25,22], considering the spatial heterogene-
ity of COPD and that only a binary label is needed in case-finding scenarios.
Typically, for a supervised model to learn good decision boundaries, the labeled
training dataset needs good coverage of the appearances of all classes. However,
good coverage of the diseased class can be difficult for low prevalence and het-
erogeneous diseases, making supervised models susceptible to fail on novel data
points [13](Fig. 1b). COPD fits exactly in this scenario, as its manifestations in
the lung are diverse, in contrast to healthy individuals whose lungs are gener-
ally more uniform in appearance. This raises questions about the suitability of
supervised models for COPD classification.
Instead of attempting to learn all possible complex manifestations of the disease,
we ask: Could COPD be more accurately detected if considered as an anomaly
from the distribution of healthy lungs?
As previously reported for anomaly detection [17,26], modeling the distribution
of normal samples in the latent space, instead of in the voxel space, has shown to
be both feasible and desirable. With this in mind, our contribution is two-fold:

1. We show the benefit of reformulating COPD prediction as an anomaly de-
tection task. Inspired by [16], we develop a generative model operating on
the self-supervised representation space (Fig. 1c), learning the distribution
of labeled healthy features and identifying unknown abnormal ones (stem-
ming from COPD) as Out-of-Distribution (cOOpD). cOOpD outperforms
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all compared DL-based supervised methods on two distinct public datasets,
whilst maintaining performance in a scenario using a simulated real-world
prevalence training dataset.

2. We highlight the benefit of moving from voxels to representation space
through a supervised method that leverages contrastive representations of
lower dimensionality than voxels and outperforms voxel-based classifiers.

To the best of our knowledge, this work is the first to investigate anomaly de-
tection in the context of a heterogeneous lung disease classification and has the
potential to be applied to a wide range of diffuse diseases affecting large body
areas.
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Fig. 1. (a) Unbalanced prevalence of heterogeneous diseases in the population. (b) In
the feature space, traditional classification methods may struggle with rare cases, while
anomaly detection might lead to improved decision boundaries. (c) Self-supervised
contrastive learning extracts meaningful representations from unlabeled lung patches,
transitioning from voxels to features. (d) cOOpD during inference: paired CT scans are
pre-processed, then patches are extracted and representations are obtained. Anomaly
scores are assigned per patch, based on the distribution of healthy representations,
which are then aggregated by patient.

2 Method

Our proposed method cOOpD aims at reformulating COPD classification as
anomaly detection. It is a self-supervised anomaly detection framework, in-
spired by the strategy of [16], optimized for diffuse lung diseases covering 3D
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multi-channel inputs, suitable augmentation strategies and patient-level aggre-
gation of patch-level scores. During inference (Fig. 1d), a sequence of B 3D
lung patches {xi}Bi=1 from a single or paired CT scan X is extracted. Then,
for each patch, a representation is obtained using a trained self-supervised con-
trastive encoder zi = f(xi) (Sec. 2.1). Having learned the distribution of healthy
patch-representations (Sec. 2.2), the patch-level latent representation is given to
a generative model p(z), being attributed an anomaly score defined as the neg-
ative log-likelihood: s(xi) = −log(p(f(xi))). Several aggregation strategies S(x)
of these scores to patient-level were tested (Suppl.) including the mean, which
was found to be the best performing and most conceptually meaningful strategy,
as outlined in eq. 1.

S(X) =
B∑

i=1

s(xi)/B = − log

(
B∏

i=1

p (f(xi))
1/B

)
(1)

2.1 Patch-Level Representations using Contrastive Learning

The latent representations of the encoder are learned with a self-supervised con-
trastive task, creating clusters based on semantic information. For this, we fol-
low the contrastive training described in [16] based on SimCLR [7] with specific
changes for medical images by providing more adequate mechanisms for 3D
medical imaging. Context and spatial information were covered by enabling 3D
multi-channel patches as input, where each patch is then used as a singular
sample for the contrastive task (Fig. 1c). Our augmentation strategy follows the
approach of [27] with the following transformations: Non-linear transformation
based on the Bézier curve, local-pixel shuffling and in- and out-painting. These
were specifically designed for diffuse lung diseases and should force the encoder
to learn patch representations capturing shape, texture, boundaries and context
information. Preliminary experiments found that using all patches available per
patient can introduce redundancy and substantially increase the computational
cost (Suppl.). Therefore, a maximum of 100 patches per patient was set for
training the self-supervised contrastive task. As an encoder, different 3D ResNet
configurations (18 and 34) were tested.

2.2 Generative Models operating on Representation Space

Once having extracted the latent representations, the distribution of normal rep-
resentations is modeled, by fitting a generative model p(z) on the representations
of purely normal patches. Patch normality is defined by %emphysema < 1% strictly
applied to normal individuals, a very restrictive bound to guarantee that no in-
tensity alterations could be present in the definition of normality. %emphysema is
defined as the percentage of low attenuation areas less than a threshold of -950
Hounsfield units [4]. As generative models, Gaussian Mixture Model (GMM)
and Normalizing Flow (NF) are employed. While both are density estimation
methods used to model p(z), GMMs model the probability density function of
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the data as a weighted sum of Gaussian distributions, whereas our NF model
uses the change of variable formula with a Gaussian prior. The implementation
of the NF is identical to [16] consisting of fully connected affine coupling blocks
and permutations based on the RealNVP architecture. We fit several GMM with
κ ∈ 1, 2, 4, 8 and a NF on representations of the encoder from the purely normal
patches of healthy patients from the training dataset without any transforma-
tions. The best performing generative model is selected based on the validation
set performance.

3 Experiment Setup

Dataset & Preprocessing: Paired inspiratory and expiratory volumetric CT
images were used from two nationwide multi-center studies (COPDGene [18] 8

and COSYCONET [12]), from which 5244 and 484 unique individuals were ran-
domly selected, respectively (Suppl.). Binary classes were defined based on the
Global Initiative for Chronic Obstructive Lung Disease (GOLD), a discrete score
between 0–4. The negative class (healthy) included never-smokers and individ-
uals with a GOLD score of 0, while the positive class (diseased) included those
with a GOLD score of 1 or higher. This resulted in the prevalence of the positive
class being 57% for COPDGene and 85% for COSYCONET. All trainings were
performed on COPDGene which was split randomly into training (50%), valida-
tion (25%) and test (25%) sets on the patient-level. COSYCONET was entirely
used as an external test dataset. The data preparation process is illustrated in
Fig. 1d and comprises the following sequential steps:

Spatial alignment of paired inspiratory and expiratory CT images: Considering
the potential of adding the expiratory scan as an extra channel as an indirect
measure of gas trapping [4], the paired images were geometrically aligned. Having
the inspiratory image as the fixed image, an adaptation of [21] was performed.
Lung parenchyma segmentation for patch extraction: Lung masks were gener-
ated on the inspiratory image space using a nnU-Net model [11] on YACTA [2]
segmentation masks, a validated intensity-based method.

Intensity normalization: Inter-scanner variability was addressed by normalizing
the intensity values to a scale between 0 (air) and 1 (tissue) [14]. Mean intensity
values for air and tissue were derived from segmented tracheal and aortic regions,
respectively, obtained using a pre-trained nnU-Net model (Task 055 SegTHOR).
Additionally, all images were resampled to an isotropic resolution of 0.5 mm.

Patch extraction: Volumetric patches (503 voxels) containing > 70% of the lung
were extracted from the lung parenchyma of aligned inspiratory and expiratory
CT images. The chosen size covered the secondary pulmonary lobule, the ba-
sic unit of lung structure [24]. Two different patch overlapping strategies were

8 The COPDGene study (dbGaP #28978) was funded by NIH grants U01HL089856
and U01 HL089897 and also supported by the COPD Foundation through contri-
butions made by an Industry Advisory Board comprised of Pfizer, AstraZeneca,
Boehringer Ingelheim, Novartis, and Sunovion.
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implemented (0% and 20%) on inspiratory (1-channel) and inspiratory + regis-
tered expiratory (2-channels) images. Thus, four different configurations of input
patches were tested.
Baselines: State-of-the-art (SotA) baselines were applied to 2D slices and 3D
patches. A 2D-CNN [9] was employed at the patient-level. An end-to-end 3D
patch classifier with score aggregation (PatClass), an MIL approach with a Re-
current Neural Network as aggregation (MIL+RNN ) [5] and an Attention-based
MIL (MIL+Att) (similar to [22], adapted from [10]) were employed at the patch-
level. Implementation was performed as described in the original works, with
adaptations to 3D, when required (Suppl.).
Contrastive representations ablation: The contrastive latent representa-
tions’ usefulness was evaluated with a supervised method (ReContrastive) that
maps the latent representations back to their position in the original image,
producing a 4D image, where the 4th dimension is the length of the latent repre-
sentation vector (Suppl). The produced image is then used as input for a CNN
classifier. Training was performed for 500 epochs using the SGD Optimizer, a
learning rate of 1e-2, Cosine Annealing [15] and a weight decay of 3e-5. A com-
bination of random cropping, random scaling, random mirroring, rotations, and
Gaussian blurring was employed as transformations.
Evaluation metrics: We used Area Under Receiver Operator Curve (AUROC)
and Area Under Precision Recall Curve (AUPRC) as the default multi-threshold
metric for classification. AUROC is used as the main evaluation metric since it
is less sensitive to class balance changes.
Final method configurations: These were chosen based on the highest AU-
ROC on three experiment runs on the validation set. The best patch extraction
configuration for all tested 3D methods was two-channel (inspiratory and reg-
istered expiratory) with 20% patch overlap. The best performance was always
achieved with a ResNet34. For our proposed cOOpD method, GMM with κ = 4
was found to be the best performing generative model.
Real-world prevalence ablation: Given the global prevalence of COPD at
10.3% [3], we further evaluated the top two performing approaches in scenarios
designed to approximate this real world prevalence. To better reflect these con-
ditions, the diseased class in the COPDGene training set was undersampled to
5%, 10.3% and 15% while keeping all samples from the normal class, limiting
the diversity of the diseased class in the training set (instead of oversampling
the normal class).

4 Results

As shown in Tab. 1, cOOpD outperforms all SotA supervised methods, achieving
statistically significant improvements in terms of AUROC of 8.2% compared to
the best method on COPDGene (PatClass+RNN), and 7.7% on COSYCONET
(MIL+RNN). ReContrastive, as a supervised ablation for assessing the advan-
tage of using representations, also outperformed all the other voxel-based super-
vised strategies on the internal test set, by an AUROC difference of 3.8% but
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Table 1. Mean ± standard deviation in % of 3 independent runs on the internal
(COPDGene) and external (COSYCONET) test sets. Levels of statistical significance
are denoted by (p<0.05*/0.01**) in comparison to the proposed method cOOpD (paired
samples t-test).

Input Methods COPDGene COSYCONET
AUROC AUPRC AUROC AUPRC

2D image 2D-CNN [9] 55.6±2.5** 72.0±1.5** 57.0±8.0** 84.6±1.4**

3D patch

PatClass + RNN 76.1±0.2** 86.3±0.1** 56.2±0.7** 95.3±0.1*

MIL + RNN [5] 73.0±0.6** 84.5±0.5** 60.2±4.2* 95.7±0.4*

MIL + Att [10,22] 65.8±1.2** 80.9±0.8** 57.7±1.3** 95.1±0.2*

ReContrastive (ours) 79.9±0.3** 88.5±0.2* 53.3±0.1** 95.0±0.1**

cOOpD (ours) 84.3±0.3 89.7±0.2 67.9±0.7 96.5±0.4

shows a large performance drop leading to the worst AUROC on the external
test set. In the real-world ablation, as seen in Fig. 2a, the best performing su-
pervised method (ReContrastive) performance decreases with the diseased class
prevalence, reaching a drop of 6.5% compared to cOOpD.
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Fig. 2. (a) Real world AUROC (5%, 10.3% and 15% of diseased class prevalence) for the
top two performing methods compared to the baseline (50%). (b) Patient distribution
by mean aggregated scores from cOOpD, colored by the function risk score (GOLD),
for COPDGene and COSYCONET. (c) Coronal view of the cOOpD score map on three
subjects with different degrees of severity. Min-max normalization was applied to patch
scores, corresponding to the 5th - 95th percentiles of the internal testset.
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5 Discussion

Final method configurations: The best working method configurations re-
flect the following properties of the task: Using both inspiratory and expiratory
images provides information about pulmonary vascular alterations and airway
wall thickness not visible on the inspiratory scan alone, as in line with [6]. Finer
grained information is captured using overlapping patches, which tended to work
better in conjunction with deeper encoders. Regarding our proposed method
cOOpD, we note the following: We hypothesize that the latent space’s complex-
ity level is low, being easily covered with a simple generative model. As for the
aggregation strategy, considering the spatial distribution of COPD, it can hap-
pen that only a small part of the lung is diseased. As the negative-log-likelihood
has a lower bound but not an upper bound, a single patch having a high score
leads to a high overall score when using mean aggregation, which is the desired
behavior.
Should COPD binary classification be formulated as anomaly detec-
tion? cOOpD performance shows to be significantly superior compared to all
tested methods, on the COPDGene (internal) and COSYCONET (independent
external) test sets. The lower performance in the external test set was consis-
tent with all other methods. There are several potential explanations for this.
Besides being a highly imbalanced dataset, all patients in COSYCONET have
a diagnosis of COPD and only 15% are categorized into GOLD 0 due to normal
lung function. We hypothesize that these 15% ”healthy” individuals have early
signs of disease that are not captured by voxel-based methods but are being en-
coded by the latent representations. Considering that cOOpD was trained only
on healthy representations from the COPDGene dataset, whose normal class
consisted of never-smokers and GOLD 0 subjects, it can still outperform all the
other methods, since the unseen traits of the disease are seen as anomalies. The
advantage of solely modeling the healthy distribution is further highlighted by
the real-world experiments (Fig. 2a), where cOOpD performance remains unaf-
fected, when compared to the supervised ablation (ReContrastive). Identifying
people at risk for disease worsening is paramount for COPD management. The
anomaly score per patient fulfills this risk assessment need, by exhibiting a clear
relation to the exact GOLD stage (Fig. 2b), even though it was never explicitly
given the GOLD stage as a multi-class label. Further, the lung region scores
enable spatial localization of anomalies, giving interpretability to the method
(Fig. 2c). These findings support our approach of reformulating COPD binary
classification as an anomaly detection task.
Are self-supervised patch-level latent representations advantageous to
voxels? Both methods working on the representation space (cOOpD and ReCon-
trastive) outperform all voxel-based baselines on the internal test set. Although
for ReContrastive this improvement is no longer seen for the external test set,
being the worst performing method, the early signs of disease for the healthy
class of COSYCONET are likely being encoded by the latent representations, as
mentioned earlier. We hypothesize that this performance drop stems from the
problem of supervised models depicted in Fig. 1b. Combined with the cOOpD
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findings, this still supports the hypothesis that patch-level latent representations
provide meaningful information and reduce the complexity of the problem.

6 Conclusion

Our proposed reformulation of COPD binary classification into an anomaly de-
tection task (cOOpD) demonstrated superior performance compared to SotA
methods. Additionally, the advantage of using latent representations was demon-
strated. The cOOpD approach also demonstrated stability in performance when
trained on datasets with simulated real-world class imbalance. Future work
should focus on further validation on larger and more diverse datasets, longi-
tudinal evaluation, and exploring its application to other heterogeneous diseases
where annotated diseased data is scarce and access to healthy data is abundant.
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Table 1. Demographic and clinical characteristics of the two datasetsM(IQR), median,
interquartile range; GOLD, Global Initiative for Chronic Obstructive Lung Disease

Demographic characteristics COPDGene COSYCONET

Age, Years, M (IQR) 63 (56 - 69) 66 (42 - 71)
Sex, % male (n) 54.1 (2836) 60.4 (278)
BMI, mean (SD) 28.5 (5.8) 26.6 (4.8)
%GOLD ≥ 1, % (n) 56.9 (2986) 85.2 (392)
Number of patches per patient, M (IQR)
0% config 319 (267 - 382) 308 (250 - 363)
20% config 5622 (523 - 745) 635 (521 - 747)
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Fig. 1. Pre-processed unlabeled patches are extracted and fed to a self-supervised con-
trastive task. Output representations value is address with ReContrastive, that maps
the representations back to the original image and feeds it to a supervised classifier,
whereas cOOpD allows for a reformulation of the task as anomaly detection.

All experiments were implemented in Pytorch and Pytorch-Lightning, using a
NVIDIA GeForce RTX 2080 Ti GPU.
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Table 2. Influence of setting a maximum number of patches per patient (PpP) (N=100,
200, maximum available) on training the contrastive task (Section 2.1), evaluated in
the ReContrastive ablation. For comparable results, a maximum number of steps was
set to 200000 and the validation data was set to fixed 300 patches. For simplicity,
inspiratory images with 0% patch overlap were used as input. Our results show that
the higher the number of patches, the higher the pretext task training loss. Regarding
the evaluation on the downstream task, the highest performance is achieved for the
experiment with the least amount of patches (N=100). ACC : accuracy

Max. # of
PpP

ACC AUROC Precision Recall Val loss
pretext

100 79.7 79.5 86.6 69.1 0.476
200 78.0 77.8 89.5 62.8 0.512
all 75.4 75.4 87.4 59.3 0.618

Table 3. This end-to-end supervised patch binary classifier (PatClass) receives a 3D
patch as input, which label corresponds to the patient label (0 or 1), and outputs
a patch probability. Patient-level classification is obtained by aggregating the patch
probabilities with a Recurrent Neural Network (RNN) as described in [5] which showed
to be the best performing method on the validation set.

Network & Hyperparameters Value

Architecture 3D-ResNet34
Batch size 64
N epochs 100
Optimization Adam optimizer, learning rate 1e-4 and Cosine Annealing,

weight decay 1e-5
Loss Cross Entropy Loss
Transformations and probability 5% elastic deformation, rotation, scaling, random crop,

mirroring, gaussian noise and gaussian blur

Table 4. MIL + RNN implementation details. Implementation was as described in [5],
except for the bellow hyperparameters. In our case, a slide corresponds to a patient
and a tile to 3D patch.

Network & Hyperparameters Batch size N epochs

MIL (3D-ResNet34) 480 200
RNN-10 128 200

Table 5. Mean ± standard deviation of the AUROC in % of 3 runs on the internal
(COPDGene) validation set for the best configuration (ResNet34 with 20% patch-
overlap on the inspiratory + registered inspiratory). Best aggregation result is high-
lighted in bold and was then the only tested on the internal and external testsets.

Gen.
Model

Aggregation

Mean Median Q3 P95 P99 Max Sum95 Sum99

GMM 1 85.8±0.0 85.1±0.0 85.4±0.0 85.7±0.0 85.8±0.0 85.0±0.0 84.1±0.0 83.8±0.1
GMM 2 86.0±0.5 85.2±0.3 86.0±0.1 84.7±0.7 79.5±3.7 71.8±10.1 80.4±3.9 75.4±7.9
GMM 4 86.2±0.5 84.4±0.9 85.8±0.8 85.5±0.7 83.3±2.0 72.8±5.0 84.1±1.8 79.6±4.5
GMM 8 85.9±0.4 83.5±2.0 84.0±0.9 84.2±0.7 81.3±1.4 71.0±1.6 82.8±1.1 77.8±1.9

NF 82.9±0.1 82.8±0.4 83.5±0.2 78.8±0.3 74.2±0.2 70.0±0.9 54.2±0.3 56.4±0.9


