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Abstract. Intracerebral hemorrhage (ICH) is the second most common
and deadliest form of stroke. Despite medical advances, predicting treat-
ment outcomes for ICH remains a challenge. This paper proposes a novel
prognostic model that utilizes both imaging and tabular data to pre-
dict treatment outcome for ICH. Our model is trained on observational
data collected from non-randomized controlled trials, providing reliable
predictions of treatment success. Specifically, we propose to employ a
variational autoencoder model to generate a low-dimensional prognostic
score, which can effectively address the selection bias resulting from the
non-randomized controlled trials. Importantly, we develop a variational
distributions combination module that combines the information from
imaging data, non-imaging clinical data, and treatment assignment to
accurately generate the prognostic score. We conducted extensive exper-
iments on a real-world clinical dataset of intracerebral hemorrhage. Our
proposed method demonstrates a substantial improvement in treatment
outcome prediction compared to existing state-of-the-art approaches.
Code is available at https://github.com/med-air/TOP-GPM.
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1 Introduction

Intracerebral Hemorrhage (ICH) is a bleeding into the brain parenchyma, which
has the second-highest incidence of stroke (accounts for more than 10% of
strokes) and remains the deadliest type of stroke with mortality more than 40%
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[3,5,6]. Timely and proper treatments are crucial in reducing mortality [15], as
well as improving functional outcomes, which is clinically deemed more valuable
for prognostic model [2]. However, the treatment decision-making of ICH still
remains problematic despite progression of clinical practice [20]. It is widely ac-
cepted that there is currently no effective approach in clinical practice to aid
in decision-making regarding the evaluation of risks and benefits of a treatment
[7,9,30]. Thus, there is an urgent need for reliable treatment recommendation
model in clinical practice. Unfortunately, existing works of ICH treatment out-
come prediction can either predict the outcome under a certain type of treatment
[11,14,29], or consider treatment assignment as an input variable but ignore po-
tential differences in outcomes due to varying treatment assignments [7,10,18],
making it still challenging to determine from data which treatment would yield
better outcomes. For this reason, we seek to provide a treatment recommendation
model that outputs the reliable outcomes of all potential treatment assignments
and focuses on the effect of different treatments.

One of the major challenges in treatment effect estimation is missing coun-
terfactual outcome [19,24]. This means that we can only observe the outcomes
of the actual treatment decision made for an individual. As a consequence, the
counterfactuals, that are, the outcomes that would have resulted from treatment
decisions not given to the patient are missing. Another challenge is selection bias
brought by non-randomized controlled trials [1], that the treatment assignments
may highly depend on patients’ characteristics. For instance, for the ICH patients
with a Glasgow Coma Scale (GCS) score 9–12 [31], early surgery is generally pre-
ferred over conservative treatment [30]. This selection bias can thus make the
model unreliable in predicting the outcome of conservative treatment for pa-
tients with GCS 9-12 due to lack of observational data. These factors lead to
inaccurate comparisons of treatment effects, as we can only get reliable outcome
on one side (i.e., early surgery or conservative treatment).

To handle these challenges, some related works were based on the concept of
balanced representation learning, which proposes to use additional loss to miti-
gate the aforementioned selection bias in the representation space [19,26,27,35].
Other approaches attempted to tackle this issue by utilizing generative models,
such as variational autoencoder (VAE) [23,34] and generative adversarial net-
work (GAN) [36], which utilize the favorable characteristics of generative models
to generate either hidden unobserved variables, balanced latent variable, or un-
certainties of counterfactual outcomes. These mentioned works have only shown
encouraging results in estimating treatment effects from single-modality data.
In practical scenarios, however, doctors routinely integrate both imaging and
non-imaging data when making prognoses, and the interpretation of imaging
data is substantially impacted by clinical information [17]. In this regard, we
consider two key ingredients. Firstly, the selection bias commonly exists in clin-
ical scenarios, and the sysematic imbalance brought by this bias is amplified in
high-dimensional data, as the higher number of covariates makes it more chal-
lenging to establish and verify overlap [4]. Therefore, it would be significant if we
could map imbalanced high-dimensional data into a balanced low-dimensional
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Fig. 1. (a) Overview of proposed generative prognostic model. (b) Illustrative example:
dimension reduction can increase the overlap between representation spaces of training
samples with T = 0 (blue points) and T = 1 (red points), so that improves outcome
prediction reliability for all treatment assignments (e.g., test data fall within the over-
lap). (c) Variational distribution combination (VDC) module; PoE denotes using the
product-of-experts to generate joint distributions from different means and covariances.

representation. We thus seek to generate the distribution of low-dimensional
prognostic score [12], which we will explain in Section 2 later. Secondly, mo-
tivated by the existing multi-modality VAE models [21,22,28,33], we can fuse
multi-modality distributions into a joint distribution with reasonable feasibility,
which can be leveraged to construct a multi-modality model for prognosis.

In this paper, we propose a novel prognostic model that leverages both imag-
ing and tabular data to achieve accurate treatment outcome prediction. This
model is intended to be trained on observational data obtained from the non-
randomized controlled trials. Specifically, to increase the reliability of the model,
we employ a variational autoencoder model to generate a low-dimensional prog-
nostic score that alleviates the problem of selection bias. Moreover, we introduce
a variational distributions combination module that integrate information from
imaging data and non-imaging clinical data to generate the aforementioned prog-
nostic score. We evaluate our proposed model on a clinical dataset of intracere-
bral hemorrhage and demonstrate a significant improvement in treatment out-
come prediction compared to existing treatment effect estimation techniques.

2 Method

2.1 Formulation and Motivation

We aim to predict the individualized treatment outcome based on a set of obser-
vations that include the actual treatment T , observed covariates X, and factual
outcome Y . In this paper, we study the one-year functional outcome of patient
who underwent either conservative treatment (T = 0) or surgery (T = 1). For
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each individual, let t ∈ {0, 1} denote the treatment assignment, x = (ximg
,

x
tab) represent the observed covariates comprising imaging data x

img
and non-

imaging tabular data x
tab

, and y indicate the factual outcome. In this study,
the treatment outcome was assessed using 1-year modified Rankin Scale (mRS)
[32]. Our objective is to estimate E[Y ∣ X = x, T = t].

The non-randomized controlled trials impacted by treatment preference can
lead to selection bias, rendering the model unreliable due to potential encounters
with unobserved scenarios during training. To address this issue, our model is
inspired by the approach commonly used by doctors in clinical practice: using a
combination of imaging data and non-imaging biomarkers to generate a prognos-
tic score (e.g., GCS score) that predicts the likelihood of good or poor condition
after treatment. In this study, a prognostic score is defined as any function
fT (X) of X and T that Markov separates Y and X, such that Y ⫫ X∣fT (X).
The insight is that a patient’s health status can be effectively captured by a low-
dimensional score Z = fT (X), which is a form of dimension reduction that is
sufficient for causal inference and can naturally mitigate the problem brought by
non-randomized controlled trials. This is because, as illustrated in Fig. 1 (b), the
difficulty of establishing and verifying overlap (between samples with T = 0 and
samples with T = 1) increases in high-dimensional feature space compared to
low-dimensional feature space [4]. We consider utilizing a VAE-based model for
generating a prognostic score, due to two key ingredients: On the one hand, mod-
eling score through a conditional distribution instead of a deterministic function
offers greater flexibility [34]. On the other hand, VAE is a good model for di-
mension reduction, compared with vanilla encoder and other generative models.
It has also been proved to be effective for treatment effect estimation.

2.2 Generative Prognostic Model

Architecture. As can be seen in Fig. 1 (a), we first use two parallel networks
to generate latent variables of imaging data and non-imaging tabular data, re-
spectively. For the imaging data, we employ a 3D ResNet-34 [13] as our feature
extraction network and modify the final fully connected layers. We then generate
the features conditioned on different treatments by concatenating the extracted
features with their respective treatment assignments t and forwarding them to

a shared fully connected layer (FC layer) , yielding Φ
img
0 and Φ

img
1 respectively.

This allows us to incorporate treatment assignment information and generate the
prognostic score more effectively. For the non-imaging tabular data, we employ
three blocks of a FC layer, followed by a Batch Normalization layer, and a ReLU

activation function to generate the features Φ
tab
0 and Φ

tab
1 . These features are

then forwarded to a variational distribution combination (VDC) module, which
we will describe in detail later. Through the VDC module, we can estimate the
prior distribution p(z ∣ x, t) of the prognostic score z = (z0, z1). In addition,
during the training phase, the true posterior distribution q(z ∣ x, y, t) can be
approximated, which is additionally conditioned on y and can help the model
learn how to estimate an accurate prior distribution. The prognostic score z0, z1
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are then concatenated with treatment t = 1 and t = 0 respectively and are passed
through a decoder consisting of a shared FC layer, to output the predicted po-
tential outcomes with different treatment assignments, i.e, ŷ0 and ŷ1. Notably,
during the inference phase, we use the prior distribution p(z ∣ x, t) to gener-
ate z. In contrast, during the training phase, we use the posterior distribution
q(z ∣ x, y, t) to generate z and predict the outcomes.

Training scheme. The evidence lower bound (ELBO) of our model is given
by:

ELBO = Ez∼q log p(y ∣ z, t) − βDKL (q(z ∣ x, y, t)∥p(z ∣ x, t)) , (1)

where DKL (q(z ∣ x, y, t)∥p(z ∣ x, t)) is the Kullback-Leibler (KL) divergence
between distributions q(z ∣ x, y, t) and p(z ∣ x, t), and β is the weight balancing
the terms in the ELBO. Note that the first term of Eq. 1 corresponds the clas-
sification error, which is minimized by the cross entropy loss. The second term
of Eq. 1 uses KL divergence to encourage convergence of the prior distribution
towards the posterior distribution. The training objective is to maximize the
ELBO given the observational data, so that the model can be optimized.

2.3 Variational Distributions Combination

Once the features of imaging and non-imaging tabular data have been extracted,
the primary challenge is to effectively integrate the multi-modal information.
One approach that is immediately apparent is to train a single encoder network
that takes all modalities as input, which can explicitly parameterize the joint
distribution. Another commonly used method called Mixture-of-Experts (MoE)
proposes to fuse the distributions from different modalities by weighting [28].
However, for this study, we generate the distribution of each modality sepa-
rately and then use the Product-of-Experts (PoE) method to combine the two
distributions into a single one [22,33]. As can be seen in Fig. 1 (c), assuming

that we have generated distributions of two modalities with the means µ
img
t and

µ
tab
t , and covariances Σ

img
t and Σ

tab
t respectively from the prior network, we

can use PoE to generate the joint distributions p(zt ∣ x, t) = N (µt,Σt) by:

µt = (µpri
t /Σpri

t + µ
img
t /Σimg

t + µ
tab
t /Σtab

t )Σt, (2)

Σt = (1/Σpri
t + 1/Σimg

t + 1/Σtab
t )−1 , (3)

where µ
pri
t and Σ

pri
t are mean and covariance of universal prior expert, which is

typically a spherical Gaussian (N (0, 1)). For posterior distribution q(zt ∣ x, y, t),
we first additionally concatenate the features and y together, and then generate
the joint distribution by the same way. The PoE for generating joint distributions
offers several advantages over the aforementioned approaches. Compared with
the approaches that simply combing the features and then generating the joint
distributions, PoE not only can effectively address the potential issue of predic-
tion outcomes being overly influenced by the modality with a more abundant
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feature [17], but also is more flexible and has the potential to handle missing
modalities. Compared to that using a mixture-of-experts, it can produce sharper
distributions [16,22], which is desirable for our multi-modality data with com-
plementary or unevenly distributed information.

3 Experiment

3.1 Dataset and Experimental Setup

Datasets. We utilized an in-house dataset of intracerebral hemorrhage cases ob-
tained from the Hong Kong Hospital Authority. The dataset comprises 504 cases
who underwent head CT scans and were diagnosed with ICH. Among them, 364
cases received conservative treatment, and 140 cases underwent surgery treat-
ment. For each case, we collected both CT imaging and non-imaging clinical
data. The non-imaging data have 17 clinical characteristics which have been
proved to be potentially associated with the treatment outcome in clinical prac-
tice [18], including gender, age, admission type, GCS, the history of smoking
and drinking, hypertension, diabetes mellitus, hyperlipidemia, history of atrial
fibrillation, coronary heart disease, history of stroke, pre-admission anticoag-
ulation, pre-admission antiplatelet, pre-admission statin, small-vessel vascular
disease and lower cholesterol. To address the selection bias resulting from the
non-randomized controlled trials, we intentionally increased the imbalance of
the dataset. Specifically, we selected 50 out of 68 cases who had IVH (another
subtype of brain hemorrhage which can be infered from the CT image) and were
treated conservatively, and 50 out of 61 cases who had a GCS score below 9 and
underwent surgery. We used these samples for testing and reserved the remaining
cases for training our model. As a result, the dataset is systematically imbal-
anced, which presents challenges for the model in producing reliable outcomes
on test set. We also conducted additional experiments with different setting, as
shown in the supplementary. A favorable outcome was defined as an mRS score
of 0 to 3 (247 cases in total), while an unfavorable outcome was defined as an
mRS score of 4 to 6 (257 cases in total) [8,11,29].

Evaluation metrics. We employed three evaluation metrics that are com-
monly used in treatment effect estimation and outcome prediction in our exper-
iments, including the policy risk (PROL), the accuracy (Acc) and the area under
the ROC curve (AUC). PROL measures the average loss incurred when utilizing
the treatment predicted by the treatment outcome estimator [26], which is a
lower-is-better metric. Besides, we calculate Acc0/AUC0 for samples factually
treated with T = 0 and Acc1/AUC1 for samples factually treated with T = 1.

Implementation details. In preprocessing the imaging data, raw image
intensity values were truncated to [−20, 100], normalized to have zero mean and
unit variance, and slices were uniformly resized to 224×224 in the axial plane.
We implemented our model using PyTorch and executed it on an NVIDIA A100
SXM4 card. For training, we used the Adam optimizer, a weight decay of 5×10−3,
and an initial learning rate of 5× 10

−3
. The training process lasted for a total of
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Table 1. Comparison with state-of-the-art methods on the ICH dataset.

Method
Evaluation metrics

RPOL ↓ AUC0 ↑ AUC1 ↑ Acc0 ↑ Acc1 ↑

BNN [19] .581 ± .028 .770 ± .032 .724 ± .018 .720 ± .035 .720 ± .053
CFR-WASS [26] .568 ± .020 .792 ± .013 .743 ± .013 .747 ± .012 .727 ± .046

SITE [35] .536 ± .040 .789 ± .022 .741 ± .022 .733 ± .012 .740 ± .020
β-Intact-VAE [34] .533 ± .044 .797 ± .020 .774 ± .012 .773 ± .011 .753 ± .023

DAFT [25] .575 ± .023 .782 ± .021 .732 ± .024 .740 ± .020 .733 ± .031
Ours .502 ± .023 .820 ± .019 .801 ± .018 .793 ± .012 .780 ± .040

2 hours, consisting of 1000 epochs with a batch size of 128. Our reported results
are the average and standard deviation obtained from three independent runs.

3.2 Experiment results

Comparison with state-of-the-art methods. We benchmarked our method
against state-of-the-art approaches for treatment effect estimation, which are rec-
ognized as strong competitors in this field. These approaches include BNN [19],
which is a representative work that balances the distribution of different treat-
ment groups by discrepancy distance minimization,CFR-WASS [26], which use
separate heads to estimate the treatment effect and use Wasserstein Distance to
balance the distribution, SITE [35], which prioritizes hard samples to preserve
local similarity while also balancing the distribution of data, and β-Intact-VAE
[34], which proposes to use a novel VAE model to generate low-dimensional rep-
resentation conditioned on both covariates and treatment assignments to handle
the selection bias problem. These methods were primarily developed for esti-
mating treatment effects on single-modality data. To apply these methods to
our multi-modality data, we utilized the same feature extraction architectures
as our approach. The features extracted from these networks are concatenated.
The fused features are then forwarded to the specific networks described in these
papers. Moreover, we compared our method with DAFT [25], which designs a
block to suppress high-level concepts from 3D images while considering both
image and tabular data, making it great for processing multi-modal data.

Table. 1 shows a comparison of results from different methods for estimating
treatment outcomes in ICH. Our proposed method demonstrated a significant
improvement in model performance compared to other methods, as evaluated
using all five metrics. Compared with the classic methods based on balanced
presentation learning, β-Intact-VAE seeks to generate balanced latent variable
so that is more effective and can achieve more accurate performance in our exper-
iment setting. However, this strategy lacks the ability to extract complementary
information as it does not include a specially designed module for combining the
distributions extracted from different modalities. Instead of simply concatenat-
ing features and generating a low-dimensional representation, our model utilizes
the PoE technique to combine two low-dimensional distributions generated from
two distinct modalities, which can effectively mitigate the risk of prediction
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(a) Contribution of VAE structure in our method 

(b) Analytic studies of multi-modality distributions combination 
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Fig. 2. Ablation analysis of each component of our method.

outcomes being disproportionately influenced by the more feature-rich modality
[17]. For these reasons, our proposed method improved performances by 3.1% on
RPOL, 2.3%/2.7% on AUC0/AUC1, and 2.0%/2.7% on Acc0/Acc1, respectively.

Ablation analysis. We then conducted comprehensive ablation studies. Ini-
tially, we studied the necessity of using a VAE structure for obtaining a low-
dimensional prognostic score instead of a vanilla encoder. As shown in Fig. 2
(a), we systematically changed the degree of selection bias by varying the num-
ber of cases with IVH who underwent conservative treatment (68 in total) in the
training set and test set. The ratios of training set/test set were: 68/0 (Degree
1), 48/20 (Degree 2), 18/50 (Degree 3) and 0/68 (Degree 4). When there are
fewer cases in the training set, the selection bias increases, leading to a reduced
ability of the model to predict such cases in the test set. The experiment showed
that as the selection bias increased in the training set (ranging from Degree 1 to
Degree 3), the difference between using a VAE structure and a vanilla encoder
became more prominent. This is due to the VAE’s effective dimension reduction.
When there were no cases related to the outcome of interest (Degree 4) in the
training set, further increases were stopped. This is expected since in such situ-
ations, there are no related cases that the model can learn from, thus rendering
the advantages of dimension reduction ineffective.

Next, we studied the contributions of multi-modality distribution combina-
tion. As can be seen in Fig. 2 (b), despite using the proposed generative prognos-
tic model, satisfactory performance cannot be achieved by simply using a single
modality. Furthermore, compared to other commonly used approaches for inte-
grating two generated distributions, such as simply combining the feature maps
before generating the prognostic score (Multi-modality w/o VDC) and Mixture-
of-Experts (Multi-modality w/ MoE), our proposed model (Multi-modality w/
PoE) achieved better performance. This highlights the effectiveness of distri-
bution combination via PoE. Additionally, in Fig.2 (c) and (d), we compared
the performance of the model trained with different dimensions of generated
prognostic score and the values of β in Eq.1. The dimension of the generated
prognostic score is a trade-off between the degree of eliminating selection bias
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and the amount of accessible information. The results demonstrate that the op-
timal choice of dimension is 10. Moreover, note that β controls the trade-off be-
tween outcome reconstruction and prognostic score recovery. Fig.2 (d) suggests
β should be 0.5 for low imbalance degree and 1.0 for high imbalance degree.

4 Conclusion

This paper introduces a novel generative prognostic model for predicting ICH
treatment outcomes using imaging and non-imaging data. The model is designed
to be trained on data collected from non-randomized controlled trials, address-
ing the imbalance problem with a VAE model and integrating multi-modality
information using a variational distribution combination module. The model was
evaluated on a large-scale dataset, confirming its effectiveness.
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