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Abstract. There is a growing interest in single-class modelling and
out-of-distribution detection as fully supervised machine learning mod-
els cannot reliably identify classes not included in their training. The
long tail of infinitely many out-of-distribution classes in real-world sce-
narios, e.g., for screening, triage, and quality control, means that it is
often necessary to train single-class models that represent an expected
feature distribution, e.g., from only strictly healthy volunteer data. Con-
ventional supervised machine learning would require the collection of
datasets that contain enough samples of all possible diseases in every
imaging modality, which is not realistic. Self-supervised learning meth-
ods with synthetic anomalies are currently amongst the most promising
approaches, alongside generative auto-encoders that analyse the residual
reconstruction error. However, all methods suffer from a lack of struc-
tured validation, which makes calibration for deployment difficult and
dataset-dependant. Our method alleviates this by making use of multi-
ple visually-distinct synthetic anomaly learning tasks for both training
and validation. This enables more robust training and generalisation.
With our approach we can readily outperform state-of-the-art methods,
which we demonstrate on exemplars in brain MRI and chest X-rays.
Code is available at https://github.com/matt-baugh/many-tasks-make-
light-work.

1 Introduction

In recent years, the workload of radiologists has grown drastically, quadrupling
from 2006 to 2020 in Western Europe [4]. This huge increase in pressure has led to
long patient-waiting times and fatigued radiologists who make more mistakes [3].
The most common of these errors is underreading and missing anomalies (42%);
followed by missing additional anomalies when concluding their search after an
initial finding (22%) [10]. Interestingly, despite the challenging work environ-
ment, only 9% of errors reviewed in [10] were due to mistakes in the clinicians’
reasoning. Therefore, there is a need for automated second-reader capabilities,
which brings any kind of anomalies to the attention of radiologists. For such
a tool to be useful, its ability to detect rare or unusual cases is particularly
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important. Traditional supervised models would not be appropriate, as acquir-
ing sufficient training data to identify such a broad range of pathologies is not
feasible. Unsupervised or self-supervised methods to model an expected feature
distribution, e.g., of healthy tissue, is therefore a more natural path, as they
are geared towards identifying any deviation from the normal distribution of
samples, rather than a particular type of pathology.

There has been rising interest in using end-to-end self-supervised methods for
anomaly detection. Their success is most evident at the MICCAI Medical Out-
of-Distribution Analysis (MOOD) Challenge [31], where all winning methods
have followed this paradigm so far (2020-2022). These methods use the varia-
tion within normal samples to generate diverse anomalies through sample mixing
[24,25,7,23]. However all these methods lack a key component: structured valida-
tion. This creates uncertainty around the choice of hyperparameters for training.
For example, selecting the right training duration is crucial to avoid overfitting
to proxy tasks. Yet, in practice, training time is often chosen arbitrarily, reducing
reproducibility and potentially sacrificing generalisation to real anomalies.
Contribution: We propose a cross-validation framework, using separate self-
supervision tasks to minimise overfitting on the synthetic anomalies that are used
for training. To make this work effectively we introduce a number of non-trivial
and seamlessly-integrated synthetic tasks, each with a distinct feature set so
that during validation they can be used to approximate generalisation to unseen,
real-world anomalies. To the best of our knowledge, this is the first work to train
models to directly identify anomalies on tasks that are deformation-based, tasks
that use Poisson blending with patches extracted from external datasets, and
tasks that perform efficient Poisson image blending in 3D volumes, which is in
itself a new contribution of our work. We also introduce a synthetic anomaly
labelling function which takes into account the natural noise and variation in
medical images. Together our method achieves an average precision score of
76.2 for localising glioma and 78.4 for identifying pathological chest X-rays, thus
setting the state-of-the-art in self-supervised anomaly detection.
Related Work: The most prevalent methods for self-supervised anomaly de-
tection are based on generative auto-encoders that analyse the residual error
from reconstructing a test sample. This is built on the assumption that a recon-
struction model will only be able to correctly reproduce data that is similar to
the instances it has been trained on, e.g. only healthy samples. Theoretically, at
test time, the residual reconstruction error should be low for healthy tissues but
high for anomalous features. This is an active area of research with several recent
improvements upon the initial idea [22], e.g., [21] applied a diffusion model to
a VQ-VAE [27] to resample the unlikely latent codes and [30] gradually transi-
tion from a U-Net architecture to an autoencoder over the training process in
order to improve the reconstruction of finer details. Several other methods aim
to ensure that the model will not reproduce anomalous regions by training it to
restore samples altered by augmentations such as masking out regions [32], in-
terpolating heavily augmented textures [29] or adding coarse noise [9]. [5] sought
to identify more meaningful errors in image reconstructions by comparing the
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reconstructions of models trained on only healthy data against those trained on
all available data.

However, the general assumption that reconstruction error is a good basis
for an anomaly scoring function has recently been challenged. Auto-encoders
are unable to identify anomalies with extreme textures [16], are reliant on em-
pirical post-processing to reduce false-positives in healthy regions [2] and can be
outperformed by trivial approaches like thresholding of FLAIR MRI [15].

Self-supervised methods take a more direct approach, training a model to
directly predict an anomaly score using synthetic anomalies. Foreign patch in-
terpolation (FPI) [24] was the first to do this at a pixel-level, by linearly in-
terpolating patches extracted from other samples and predicting the interpo-
lation factor as the anomaly score. Similar to CutPaste [11], [7] fully replaces
3D patches with data extracted from elsewhere in the same sample, but then
trains the model to segment the patches. Poisson image interpolation (PII) [25]
seamlessly integrates sample patches into training images, preventing the mod-
els from learning to identify the anomalies by their discontinuous boundaries.
Natural synthetic anomalies (NSA) [23] relaxes patch extraction to random lo-
cations in other samples and introduces an anomaly labelling function based on
the changes introduced by the anomaly.

Some approaches combine self-supervised and reconstruction-based methods
by training a discriminator to compute more exact segmentations from recon-
struction model errors [29,6]. Other approaches have also explored contrasting
self-supervised learning for anomaly detection [12,26].

2 Method

The core idea of our method is to use synthetic tasks for both training and
validation. This allows us to monitor performance and prevent overfitting, all
without the need for real anomalous data. Each self-supervised task involves in-
troducing a synthetic anomaly into otherwise normal data whilst also producing
the corresponding label. Since the relevant pathologies are unknown a priori,
we avoid simulating any specific pathological features. Instead, we use a wide
range of subtle and well-integrated anomalies to help the model detect many
different kinds of deviations, ideally including real unforeseen anomalies. In our
experiments, we use five tasks, but more could be used as long as each one is suf-
ficiently unique. Distinct tasks are vital because we want to use these validation
tasks to estimate the model’s generalisation to unseen classes of anomalies. If the
training and validation tasks are too similar, the performance on the validation
set may be an overly optimistic estimate of how the model would perform on
unseen real-world anomalies.

When performing cross-validation over all synthetic tasks and data partitions
independently, the number of possible train/validation splits increases signifi-
cantly, requiring us to train F · (TNCT ) independent models, where TN is the
total number of tasks, T is the number of tasks used to train each model and F is
the number of data folds, which is computationally expensive. Instead, as in our
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case TN=F=5, we opt to associate each task with a single fold of the training
data (Figure 1). We then apply 5CT -fold cross-validation over each combina-
tion. In each iteration, the corresponding data folds are collected and used for
training or validation, depending on which partition forms the majority.

Training
Dataset

Synthetic
tasks

Cross-validation training

Training

Validation

Compare
sizes
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Data subset a)

Task subset a)

Task subset b)

Data subset b)

Data Fold 0

Data Fold 1

Data Fold 2

Data Fold 3

Data Fold 4

Task 0

Task 1

Task 2

Task 3

Task 4

Fig. 1: Our pipeline per-
forms cross-validation over
the synthetic task and data
fold pairs.
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Fig. 2: Examples of changes introduced by syn-
thetic anomalies, showing the before (grey) and
after (green) of a 1D slice across the affected
area. ⋆ - deformation centre for sink/source.

Synthetic Tasks: Figure 2 shows examples of our self-supervised tasks viewed
in both one and two dimensions. Although each task produces visually distinct
anomalies, they fall into three overall categories, based on blending, deforma-
tion, or intensity variation. Also, all tasks share a common recipe: the target
anomaly mask Mh is always a randomly sized and rotated ellipse or rectangle
(ellipsoids/cuboids in 3D); all anomalies are positioned such that at least 50%
of the mask intersects with the foreground of the image; and after one augmen-
tation is applied, the process is randomly repeated (based on a fair coin toss,
p = 0.5), for up to a maximum of 4 anomalies per image.
The intra-dataset blending task Poisson image blending is the current state-
of-the-art for synthetic anomaly tasks [25,23], but it does not scale naturally to
more than two dimensions or non-convex interpolation regions [17]. Therefore,
we extend [20] and propose a D-dimensional variant of Poisson image editing
following earlier ideas by [17].

Poisson image editing [20] uses the image gradient to seamlessly blend a
patch into an image. It does this by combining the target gradient with Dirichlet
boundary conditions to define a minimisation problem minfin

∫∫
h
|∇fin − v|2

with fin|∂h = fout|∂h, and fin representing the intensity values within the patch
h. The goal is to find intensity values of fin that will match the surrounding
values, fout, of the destination image xi, along the border of the patch and

follow the image gradient, v = ∇· =
(

∂·
∂x ,

∂·
∂y

)
, of the source image xj . Its

solution is the Poisson equation ∆fin = divv over h with fin |∂h = fout|∂h. Note
that the divergence of v is equal to the Laplacian of the source image ∆xj .
Also, by defining h as the axis-aligned bounding box of Mh, we can ensure the
boundaries coincide with coordinate lines. This enables us to use the Fourier
transform method to solve this partial differential equation [17], which yields
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a direct relationship between Fourier coefficients of ∆fin and v after padding
to a symmetric image. To simplify for our use case, an image with shape N0 ×
· · ·×ND−1, we replace the Fourier transformation with a discrete sine transform

(DST) f̂u =
∑D−1

d=0

∑Nd−1
n=0 n sin

[
π(n+1)(ud+1)

Nd+1

]
. This follows as a DST is equivalent

to a discrete Fourier transform of a real sequence that is odd around the zero-
th and middle points, scaled by 0.5, which can be established for our images.
With this, the Poisson equation becomes congruent to a relationship of the

coefficients,

(∑D−1
d=0

(
π(ud+1)
Nd+1

)2
)
f̂u ∼=

∑D−1
d=0

(
π(ud+1)
Nd+1

)
v̂d where v=(v0, ...,vD−1)

and v̂ is the DST of each component. The solution for f̂u can then be computed
in DST space by dividing the right side through the terms on the left side
and the destination image can be obtained through xi = DST−1(f̂u). Because
this approach uses a frequency transform-based solution, it may slightly alter
areas outside of Mh (where image gradients are explicitly edited) in order to
ensure the changes are seamlessly integrated. We refer to this blending process
as x̃ = PoissonBlend(xi, xj ,Mh) in the following. The intra-dataset blending
task therefore results from x̃intra = PoissonBlend(x, x′,Mh) with x, x′ ∈ D with
samples from a common dataset D and is therefore similar to the self-supervision
task used in [23] for 2D images.
The inter-dataset blending task follows the same process as intra-dataset
blending but uses patches extracted from an external dataset D′, allowing for a
greater variety of structures. Therefore, samples from this task can be defined
as x̃inter = PoissonBlend(x, x′,Mh) with x ∈ D, x′ ∈ D′.
The sink/source tasks shift all points in relation to a randomly selected de-
formation centre c. For a given point p, we resample intensities from a new
location p̃. To create a smooth displacement centred on c, we consider the dis-
tance ∥p − c∥2 in relation to the radius of the mask (along this direction), d.
The extent of this displacement is controlled by the exponential factor f > 1.
For example, the sink task (Eqn. 1) with a factor of f = 2 would take the in-
tensity at 0.75d and place it at 0.5d, effectively pulling these intensities closer
to the centre. Note that unlike the sink equation in [24] this formulation cannot
sample outside of the boundaries of PMh

meaning it seamlessly blends into the
surrounding area. The source task (Eqn. 2) performs the reverse, appearing to
push the pixels away from the centre by sampling intensities towards it.

x̃p = xp̃, p̃ = c+d
p− c

∥p− c∥2

(
1−

(
1− ∥p− c∥2

d

)f
)
, c ∈ PMh

, ∀ p ∈ PMh
(1)

x̃p = xp̃, p̃ = c+ d
p− c

∥p− c∥2

(
∥p− c∥2

d

)f

, c ∈ PMh
, ∀ p ∈ PMh

(2)

The smooth intensity change task aims to either add or subtract an intensity
over the entire anomaly mask. To avoid sharp discontinuities at the boundaries,
this intensity change is gradually dampened for pixels within a certain margin of
the boundary. This smoothing starts at a random distance from the boundary,
ds, and the change is modulated by dp/ds.
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Anomaly labelling: In order to train and validate with multiple tasks simul-
taneously we use the same anomaly labelling function across all of our tasks.
The scaled logistic function, used in NSA [23], helps to translate raw intensity
changes into more semantic labels. But, it also rounds imperceptible differences
up to a minimum score of about 0.1. This sudden and arbitrary jump creates
noisy labels and can lead to unstable training. We correct this semantic discon-

tinuity by computing labels as y = 1 − pX(x)
pX(0) with X ∼ N (0, σ2), instead of

y = 1
1+e−k(x−x0) [23]. This flipped Gaussian shape is C1 continuous and smoothly

approaches zero, providing consistent labels even for smaller changes.

3 Experiments and Results

Data: We evaluate our method on T2-weighted brain MR and chest X-ray
datasets to provide direct comparisons to state-of-the-art methods over a wide
range of real anomalies. For brain MRI we train on the Human Connectome
Project (HCP) dataset [28] which consists of 1113 MRI scans of healthy, young
adults acquired as part of a scientific study. To evaluate, we use the Brain Tumor
Segmentation Challenge 2017 (BraTS) dataset [1], containing 285 cases with
either high or low grade glioma, and the ischemic stroke lesion segmentation
challenge 2015 (ISLES) dataset [13], containing 28 cases with ischemic stroke
lesions. The data from both test sets was acquired as part of clinical routine.
The HCP dataset was resampled to have 1mm isotropic spacing to match the
test datasets. We apply z-score normalisation to each sample and then align the
bounding box of each brain before padding it to a size of 160×224×160. Lastly,
samples are downsampled by a factor of two.

For chest X-rays we use the VinDr-CXR dataset [18] including 22 different
local labels. To be able to compare with the benchmarks reported in [6] we
use the same healthy subset of 4000 images for training along with their test set
(DDADts) of 1000 healthy and 1000 unhealthy samples, with some minor changes
outlined as follows. First note that [6] derives VinDr-CXR labels using the ma-
jority vote of the 3 annotators. Unfortunately, this means there are 52 training
samples, where 1/3 of radiologists identified an anomaly, but the majority label
is counted as healthy. The same applies to 10 samples within the healthy testing
subset. To avoid this ambiguity, we replace these samples with leftover training
data that all radiologists have labelled as healthy. We also evaluate using the
true test set (VinDrts), where two senior radiologists have reviewed and con-
solidated all labels. For preprocessing, we clip pixel intensities according to the
window centre and width attributes in each DICOM file, and apply histogram
equalisation, before scaling intensities to the range [−1, 1]. Finally, images are
resized to 256× 256.
Comparison to state-of-the-art methods: Validating on synthetic tasks is
one of our main motivations; as such, we use a 1/4 (train/val.) task split to com-
pare with benchmark methods. For brain MRI, we evaluate results at the slice
and voxel level, computing average precision (AP) and area under the receiver
operating characteristic curve (AUROC), as implemented in scikit learn [19].
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Table 1: Upper left part: Metrics on Brain MRI, evaluated on BraTS and
ISLES, presented as AP/AUROC.

CRADL setup· indicates that the metrics are evaluated
over the same region and at the same resolution as CRADL [12]. Upper right
part: Metrics on VinDr-CXR, presented as AP/AUROC on the VinDr and
DDAD test splits. Random is the baseline performance of a random classifier.
Lower part: a sensitivity analysis of the average AP of each individual fold
(mean±s.d.) alongside that of the model ensemble, varying how many tasks we
use for training versus validation. Best results are highlighted in bold.

Brain MRI Chest X-Ray (CXR)

Slice-wise Pixel-wise Sample-wise Pixel-wise
BraTS17 ISLES BraTS ISLES DDADts VinDrts DDADts VinDrts

59.8/55.8 MemAE [8] M
eth

o
d
s
C
X
R

M
et
h
o
d
s
M
R
I VAE 80.7/83.3 51.9/71.7 29.8/92.5 7.7/87.5 74.8/76.3 f-AnoGAN [22]

ceVAE[32] 85.6/86.5 54.1/72.7 48.3/94.8 14.5/87.9 72.8/73.8 AE-U [14]
CRADL[12] 81.9/82.6 54.9/69.3 38.0/94.2 18.6/89.8 49.9/48.2 FPI [24]
CRADL setup

Ours 87.6/89.4 61.3/80.2 76.2/98.7 46.5/97.1 65.8/65.9 PII [25]
CRADL setup

Random 49.0/50.0 36.6/50.0 2.4/50.0 1.1/50.0 65.8/64.4 NSA [23]
Random 40.3/50.0 29.4/50.0 1.7/50.0 0.8/50.0 50.0/50.0 31.6/50.0 4.5/50.0 2.7/50.0
Ours 87.6/92.2 62.0/84.6 76.2/99.1 45.9/97.9 78.4/76.6 71.2/81.1 21.1/75.6 21.4/81.2

T
ra
in
/
va
l.
sp
li
t
a
bl
.

1/4
all 83.4±4.4 59.3±2.2 46.9±14.9 23.7±7.7 74.7±4.9 66.3±4.4 15.3±3.7 15.2±4.5
ens. 87.6 62.0 76.2 45.9 78.4 71.2 21.1 21.4

2/3
all 82.5±3.3 55.9±8.5 42.8±12.8 21.2±9.3 78.6±1.4 71.0±1.4 19.2±1.7 19.5±1.8
ens. 85.7 58.4 72.2 41.0 80.7 73.8 24.0 24.7

3/2
all 81.1±4.3 52.5±4.7 37.9±11.1 15.4±3.3 78.7±1.8 71.1±1.4 20.3±1.4 20.4±1.7
ens. 84.0 55.0 63.7 26.6 80.4 73.3 24.3 24.7

4/1
all 81.5±2.7 53.1±2.3 36.1±9.0 16.5±5.0 79.2±1.3 71.8±1.3 20.4±0.9 21.1±0.9
ens. 83.1 54.7 52.5 23.7 80.5 73.6 23.5 24.5

Note that the distribution shift between training and test data (research vs. clin-
ical scans) adds further difficulty to this task. In spite of this, we substantially
improve upon the current state-of-the-art (Table 1 upper left). In particular,
we achieve a pixel-wise AP of 76.2 and 45.9 for BraTS and ISLES datasets re-
spectively. To make our comparison as faithful as possible, we also re-evaluate
after post-processing our predictions to match the region and resolution used
by CRADL, where we see similar improvement. Qualitative examples are shown
in Figure 3. Note that all baseline methods use a validation set consisting of
real anomalous samples from BraTS and ISLES to select which anomaly scoring
function to use. We, however, only use synthetic validation data. This further
verifies that our method of using synthetic data to estimate generalisation works
well.

For both VinDr-CXR test sets we evaluate at a sample and pixel level, al-
though previous publications have only reported their results at a sample level.
We again show performance above the current state-of-the-art (Table 1 upper
right). Our results are also substantially higher than previously proposed self-
supervised methods, improving on the current state-of-the-art NSA [23] by 12.6
to achieve 78.4 image-level AP. This shows that our use of synthetic validation
data succeeds where their fixed training schedule fails.
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BraTS ISLES

Fig. 3: Examples of predictions on randomly selected BraTS and ISLES samples
after training on HCP. The red contour outlines the ground truth segmentation.

Ablation and sensitivity analysis on cross-validation structure: We also
investigate how performance changes as we vary the number of tasks used for
training and validation (Table 1 lower). For VinDr-CXR, in an individual fold,
the average performance increases as training becomes more diverse (i.e. more
tasks); however, the performance of the ensemble plateaus. Having more training
tasks can help the model to be sensitive to a wider range of anomalous features.
But as the number of training tasks increases, so does the overlap between differ-
ent models in the ensemble, diminishing the benefit of pooling predictions. This
could also explain why the standard deviation (across folds) decreases as the
number of training tasks increases, since the models are becoming more similar.
Our best configuration is close to being competitive with the state-of-the-art
semi -supervised method DDAD-ASR [6]. Even though their method uses twice
as much training data, as well as some real anomalous data, our purely synthetic
method begins to close the gap (AP of [6] 84.3 vs. ours 80.7 on DDADts). For
the brain datasets, all metrics generally decrease as the number of training tasks
increases. This could be due to the distribution shift between training and test
data. Although more training tasks may increase sensitivity to diverse irregulari-
ties, this can actually become a liability if there are differences between (healthy)
training and test data (e.g. acquisition parameters). More sensitive models may
then lead to more “false” positives.
Discussion: We demonstrate the effectiveness of our method in multiple set-
tings and across different modalities. A unique aspect of the brain data is the
domain shift. The HCP training data was acquired at a much higher isotropic res-
olution than the BraTS and ISLES test data, which are both anisotropic. Here we
achieve the best performance using more tasks for validation, which successfully
reduces overfitting and hypersensitivity. Incorporating greater data augmenta-
tions, such as simulating anisotropic spacing, could further improve results by
training the model to ignore these transformations. We also achieve strong re-
sults for the X-ray data, although precise localisation remains a challenging task.
The gap between current performance and clinicially useful localisation should
therefore be high priority for future research.

4 Conclusion

In this work we use multiple synthetic tasks to both train and validate self-
supervised anomaly detection models. This enables more robust training with-
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out the need for real anomalous training or validation data. To achieve this we
propose multiple diverse tasks, exposing models to a wide range of anomalous
features. These include patch blending, image deformations and intensity mod-
ulations. As part of this, we extend Poisson image editing to images of arbitrary
dimensions, enabling the current state-of-the-art tasks to be applied beyond just
2D images. In order to use all of these tasks in a common framework we also
design a unified labelling function, with improved continuity for small intensity
changes. We evaluate our method on both brain MRI and chest X-rays and
achieve state-of-the-art performance and above. We also report pixel-wise re-
sults, even for the challenging case of chest X-rays. We hope this encourages
others to do the same, as accurate localisation is essential for anomaly detection
to have a future in clinical workflows.
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22. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth,
U.: f-AnoGAN: Fast unsupervised anomaly detection with genera-
tive adversarial networks. Medical Image Analysis 54, 30–44 (2019).
https://doi.org/https://doi.org/10.1016/j.media.2019.01.010

23. Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Natural synthetic anomalies for self-
supervised anomaly detection and localization. In: Computer Vision – ECCV 2022.
pp. 474–489. Springer Nature Switzerland, Cham (2022)

24. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign
patch interpolation. Machine Learning for Biomedical Imaging 1, 1–27 (2022)

25. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers
with poisson image interpolation. In: MICCAI’21. pp. 581–591 (2021)

26. Tian, Y., Pang, G., Liu, F., Chen, Y., Shin, S.H., Verjans, J.W., Singh, R.,
Carneiro, G.: Constrained contrastive distribution learning for unsupervised
anomaly detection and localisation in medical images. In: MICCAI 2021. pp. 128–
140 (2021)

https://doi.org/10.1016/j.media.2016.07.009
https://doi.org/https://doi.org/10.1016/j.media.2019.01.010


Many tasks make light work 11

27. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning.
Advances in neural information processing systems 30 (2017)

28. Van Essen, D., Ugurbil, K., Auerbach, E., et al., D.B.: The human connectome
project: A data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012).
https://doi.org/10.1016/j.neuroimage.2012.02.018
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BraTS ISLES

Fig. 4: More randomly selected predictions on BraTS and ISLES samples after
training on HCP. The red contour outlines the ground truth segmentation.

DDADts VinDrts

Fig. 5: Randomly selected predictions on DDADts and VinDrts samples after
training on VinDr. The red contour outlines the ground truth segmentation.
Predictions scaled by a factor of 2 for visualisation purposes. The model generally
underpredicts, with some exceptions such as the raised arms in the third row,
second column, which could be viewed as a logical anomaly.
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Table 2: Metrics of all models evaluated on their respective test sets, presented
as AP/AUROC. ens. - ensemble.

Train Brain MRI Chest X-Ray (CXR)

val. Model Slice-wise Pixel-wise Sample-wise Pixel-wise
split BraTS ISLES BraTS ISLES DDADts VinDrts DDADts VinDrts

1/4

0 80.5/88.6 56.5/80.9 32.2/96.5 12.0/94.7 79.1/77.3 72.0/81.5 19.7/73.1 20.9/79.8
1 83.1/89.7 59.2/82.7 59.6/98.3 29.2/97.2 78.7/76.2 69.5/79.4 17.4/69.8 18.6/73.8
2 86.2/91.7 58.2/82.0 29.1/92.5 20.0/93.9 67.3/66.5 61.3/73.4 10.9/61.4 10.2/65.5
3 89.1/92.6 62.4/84.8 57.8/98.0 30.3/96.9 72.3/71.6 63.3/76.3 12.3/64.6 11.8/69.9
4 78.2/87.0 60.4/83.0 55.6/97.2 27.1/93.7 75.8/72.9 65.2/76.8 16.2/64.5 14.4/66.9

ens. 87.6/92.2 62.0/84.6 76.2/99.1 45.9/97.9 78.4/76.6 71.2/81.1 21.1/75.6 21.4/81.2

2/3

0 83.1/89.8 58.9/83.2 53.5/97.9 20.8/96.2 81.0/79.4 72.9/82.8 19.8/72.9 21.3/78.9
1 79.6/86.6 40.9/70.4 21.8/94.7 8.1/92.2 77.4/76.3 71.0/81.6 21.0/76.4 20.5/80.7
2 84.0/89.6 55.0/80.0 29.2/95.5 14.9/95.5 78.7/76.7 72.8/82.4 21.5/77.4 21.4/83.8
3 80.6/88.2 57.5/82.0 48.7/97.9 20.4/95.7 78.9/77.8 68.6/79.9 19.3/71.6 19.3/78.1
4 84.4/89.9 51.5/77.4 39.1/96.3 14.4/94.3 79.5/78.4 71.7/82.2 19.0/70.1 21.1/77.5
5 82.4/88.5 46.1/74.4 30.0/96.1 13.2/95.2 79.2/77.5 71.0/81.2 19.4/69.4 20.1/76.0
6 80.9/88.5 60.1/82.9 55.4/97.8 24.4/95.2 79.0/76.8 69.9/81.3 17.9/69.8 18.0/76.6
7 90.2/93.4 71.8/86.6 58.2/97.8 40.1/95.6 75.9/75.1 69.9/80.4 15.9/72.0 15.8/78.1
8 81.1/88.3 60.7/80.6 53.6/97.2 29.1/94.9 77.5/75.8 70.0/80.7 18.1/71.2 17.7/77.8
9 78.9/87.5 56.3/80.0 38.6/97.1 26.9/96.1 79.2/77.6 71.5/81.6 20.4/73.3 19.6/80.4

ens. 85.7/90.7 58.4/81.7 72.2/98.7 41.0/97.2 80.7/79.5 73.8/83.6 24.0/79.9 24.7/86.0

3/2

0 80.2/87.2 46.9/73.3 37.9/96.5 10.8/94.4 78.4/77.3 71.7/81.2 21.5/75.4 21.7/80.6
1 82.1/89.5 57.5/82.1 29.9/96.5 16.6/96.1 80.1/78.7 72.0/82.1 20.2/73.2 21.1/79.8
2 81.6/88.8 58.6/82.5 44.6/98.0 19.7/96.3 80.6/79.8 72.0/82.2 20.5/74.2 20.6/81.1
3 88.4/92.3 49.5/76.7 54.0/95.5 18.6/94.3 79.6/78.2 73.0/82.9 22.1/76.7 22.9/83.6
4 77.9/85.4 45.7/73.2 51.6/97.4 19.0/94.9 80.3/78.9 71.6/81.9 21.3/73.1 21.3/80.0
5 81.3/88.1 55.5/80.7 27.9/96.8 15.0/95.8 78.2/76.5 70.0/80.2 21.2/76.8 20.6/82.8
6 87.3/91.6 57.1/80.0 49.6/97.2 17.6/94.4 78.3/76.9 71.3/81.9 19.4/71.4 19.9/76.1
7 79.0/86.8 48.2/75.4 31.8/96.7 12.1/94.0 76.0/75.0 68.5/79.4 17.9/70.8 17.6/76.3
8 79.6/87.3 53.8/78.5 25.3/96.5 11.7/95.1 80.1/78.6 71.2/82.3 20.6/74.2 20.5/80.8
9 73.9/84.4 52.4/76.8 26.6/95.1 13.4/94.2 75.4/73.6 69.2/79.1 18.3/72.1 17.7/79.2

ens. 84.0/89.6 55.0/79.7 63.7/98.5 26.6/96.8 80.4/79.4 73.3/83.1 24.3/80.1 24.7/85.9

4/1

0 84.2/89.8 50.2/76.1 37.4/97.3 13.1/95.4 78.8/76.9 72.2/81.9 20.5/72.1 21.8/78.5
1 79.8/87.4 53.3/79.4 35.2/96.7 20.4/96.0 79.9/78.2 72.2/82.5 19.9/75.0 22.0/83.0
2 79.8/87.6 55.2/80.6 24.8/96.3 11.4/95.1 81.0/79.3 73.5/82.9 21.8/77.1 21.2/81.7
3 84.5/89.7 51.3/76.3 49.6/97.9 23.0/95.7 78.6/77.6 70.4/80.6 20.5/74.8 20.7/82.5
4 79.0/87.4 55.4/78.8 33.3/97.2 14.6/95.5 77.7/76.2 70.5/80.8 19.5/71.7 19.9/78.6

ens. 83.1/89.2 54.7/79.6 52.5/98.4 23.7/96.8 80.5/79.3 73.6/83.3 23.5/78.8 24.5/85.5

Table 3: Experiment hyperparameters. Labeller σ is used to parameterise the
anomaly labelling function, external blending dataset is used for inter-dataset
blending task.

Dataset
Labeller Learning U-Net External Blending Batch GPU Average training

σ rate Depth Dataset size footprint time (hours)

Brain MRI 0.2 1e-3 5 MOOD Abdomen 8 20 GB 15.17
VinDr-CXR 0.2 5e-3 7 Imagenet 50 18 GB 10.09
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