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Abstract. Medical semi-supervised segmentation is a technique where
a model is trained to segment objects of interest in medical images with
limited annotated data. Existing semi-supervised segmentation methods
are usually based on the smoothness assumption. This assumption im-
plies that the model output distributions of two similar data samples
are encouraged to be invariant. In other words, the smoothness assump-
tion states that similar samples (e.g., adding small perturbations to an
image) should have similar outputs. In this paper, we introduce a novel
cross-adversarial local distribution (Cross-ALD) regularization to further
enhance the smoothness assumption for semi-supervised medical image
segmentation task. We conducted comprehensive experiments that the
Cross-ALD archives state-of-the-art performance against many recent
methods on the public LA and ACDC datasets.

Keywords: Semi-supervised segmentation · Adversarial local distribu-
tion · Adversarial examples · Cross-adversarial local distribution.

1 Introduction

Medical image segmentation is a critical task in computer-aided diagnosis and
treatment planning. It involves the delineation of anatomical structures or patho-
logical regions in medical images, such as magnetic resonance imaging (MRI)
or computed tomography (CT) scans. Accurate and efficient segmentation is
essential for various medical applications, including tumor detection, surgical
planning, and monitoring disease progression. However, manual medical imag-
ing annotation is time-consuming and expensive because it requires the domain
knowledge from medical experts. Therefore, there is a growing interest in devel-
oping semi-supervised learning that leverages both labeled and unlabeled data
to improve the performance of image segmentation models [27,16].

Existing semi-supervised segmentation methods exploit smoothness assump-
tion, e.g., the data samples that are closer to each other are more likely to to have
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the same label. In other words, the smoothness assumption encourages the model
to generate invariant outputs under small perturbations. We have seen such per-
turbations being be added to natural input images at data-level [14,4,9,19,21],
feature-level [17,23,25,6], and model-level [8,11,12,24,28]. Among them, virtual
adversarial training (VAT) [14] is a well-known one which promotes the smooth-
ness of the local output distribution using adversarial examples. The adversarial
examples are near decision boundaries generated by adding adversarial pertur-
bations to natural inputs. However, VAT can only create one adversarial sample
in a run, which is often insufficient to completely explore the space of possible
perturbations (see Section 2.1). In addition, the adversarial examples of VAT
can also lie together and lose diversity that significantly reduces the quality of
adversarial examples [20,15]. Mixup regularization [29] is a data augmentation
method used in deep learning to improve model generalization. The idea behind
mixup is to create new training examples by linearly interpolating between pairs
of existing examples and their corresponding labels, which has been adopted in
[3,2,19] to semi-supervised learning. The work [5] suggests that Mixup improves
the smoothness of the neural function by bounding the Lipschitz constant of the
gradient function of the neural networks. However, we show that mixing between
more informative samples (e.g., adversarial examples near decision boundaries)
can lead to a better performance enhancement compared to mixing natural sam-
ples (see Section 3.3).

In this paper, we propose a novel cross-adversarial local distribution regu-
larization for semi-supervised medical image segmentation for smoothness as-
sumption enhancement 1. Our contributions are summarized as follows: 1) To
overcome the VAT’s drawback, we formulate an adversarial local distribution
(ALD) with Dice loss function that covers all possible adversarial examples
within a ball constraint. 2) To enhance smoothness assumption, we propose
a novel cross-adversarial local distribution regularization (Cross-ALD) to en-
courage the smoothness assumption, which is a random mixing between two
ALDs. 3) We also propose a sufficiently approximation for the Cross-ALD by
a multiple particle-based search using semantic feature Stein Variational Gradi-
ent Decent (SVGDF), an enhancement of the vanilla SVGD [10]. 4) We conduct
comprehensive experiments on ADCD [1] and LA [26] datasets, showing that our
Cross-ALD regularization achieves state-of-the-art performance against existing
solutions [14,28,8,11,12,22,21].

2 Method

In this section, we begin by reviewing the minimax optimization problem of
virtual adversarial training (VAT)[14]. Given an input, we then formulate a
novel adversarial local distribution (ALD) with Dice loss, which benefits the
medical semi-supervised image segmentation problem specifically. Next, a cross-
adversarial local distribution (Cross-ALD) is constructed by randomly combin-
ing two ALDs. We approximate the ALD by a particle-based method named

1 The Cross-ALD implementation in https://github.com/PotatoThanh/Cross-
adversarial-local-distribution-regularization
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semantic feature Stein Variational Gradient Descent (SVGDF). Considering the
resolution of medical images are usually high, we enhance the vanilla SVGD [10]
from data-level to feature-level, which is named SVGDF. We finally provide our
regularization loss for semi-supervised medical image segmentation.

2.1 The minimax optimization of VAT
Let Dl and Dul be the labeled and unlabeled dataset, respectively, with PDl

and PDul
being the corresponding data distribution. Denote x ∈ Rd as our d-

dimensional input in a space X. The labeled image xl and segmentation ground-
truth y are sampled from the labeled dataset Dl (xl,y ∼ PDl

), and the unlabeled
image sampled from Dul is x ∼ PDul

.
Given an input x ∼ PDul

(i.e., the unlabeled data distribution), let us denote
the ball constraint around the image x as Cϵ(x) = {x′ ∈ X : ||x′ − x||p ≤ ϵ},
where ϵ is a ball constraint radius with respect to a norm || · ||p, and x′ is an
adversarial example2. Given that fθ is our model parameterized by θ, VAT [14]
trains the model with the loss of ℓvat that a minimax optimization problem:

ℓvat := min
θ

Ex∼PDul

[
max

x′∈Cϵ(x)
DKL(fθ(x

′), fθ(x))
]
, (1)

where DKL is the Kullback-Leibler divergence. The inner maximization problem
is to find an adversarial example near decision boundaries, while the minimiza-
tion problem enforces the local smoothness of the model. However, VAT is insuf-
ficient to explore the set of of all adversarial examples within the constraint Cϵ

because it only find one adversarial example x′ given a natural input x. More-
over, the works [20,15] show that even solving the maximization problem with
random initialization, its solutions can also lie together and lose diversity, which
significantly reduces the quality of adversarial examples.

2.2 Adversarial local distribution
In order to overcome the drawback of VAT, we introduce our proposed adver-
sarial local distribution (ALD) with Dice loss function instead of DKL in [15,14].
ALD forms a set of all adversarial examples x′ within the ball constraint given
an input x. Therefore, the distribution can helps to sufficiently explore all pos-
sible adversarial examples. The adversarial local distribution Pθ(x

′|x) is defined
with a ball constraint Cϵ as follow:

Pθ(x
′|x) := eℓDice(x

′,x;θ)
∫
Cϵ(x)

eℓDice(x′′,x;θ)dx′′ =
eℓDice(x

′,x;θ)

Z(x; θ)
, (2)

where Pθ(·|x) is the conditional local distribution, and Z(x; θ) is a normalization
function. The ℓDice is the Dice loss function as shown in Eq. 3

ℓDice(x
′,x; θ) =

1

C

C∑

c=1

[1− 2||pθ(ŷc|x) ∩ pθ(ỹc|x′)||
||pθ(ŷc|x) + pθ(ỹc|x′)|| ], (3)

where C is the number of classes. pθ(ŷc|x) and pθ(ỹc|x′) are the predictions of
input image x and adversarial image x′, respectively.
2 A sample generated by adding perturbations toward the adversarial direction.
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2.3 Cross-adversarial distribution regularization
Given two random samples xi,xj ∼ PD (i ̸= j), we define the cross-adversarial

distribution (Cross-ALD) denoted P̃θ as shown in Eq. 4

P̃θ(·|xi,xj) = γPθ(·|xi) + (1− γ)Pθ(·|xj) (4)

where γ ∼ Beta(α, α) for α ∈ (0,∞), inspired by [29]. The P̃θ is the Cross-ALD
distribution, a mixture between the two adversarial local distributions.
Given Eq. 4, we propose the Cross-ALD regularization at two random input
images xi,xj ∼ PD (i ̸= j) as

R(θ,xi,xj) := Ex̃′∼P̃θ(·|xi,xj)
[log P̃θ(x̃

′|xi,xj)] = −H(P̃θ(·|xi,xj)), (5)

where H indicates the entropy of a given distribution.
When minimizing R(θ,xi,xj) or equivalently −H(Pθ(·|xi,xj)) w.r.t. θ, we

encourage Pθ(·|xi,xj) to be closer to a uniform distribution. This implies that

the outputs of f(x̃′) = f(x̃′′) = a constant c, where x̃′, x̃′′ ∼ P̃θ(·|xi,xj). In
other words, we encourages the invariant model outputs under small pertur-
bations. Therefore, minimizing the Cross-ALD regularization loss leads to an
enhancement in the model smoothness. While VAT only enforces local smooth-
ness using one adversarial example, Cross-ALD further encourages smoothness
of both local and mixed adversarial distributions to improve the model general-
ization.

2.4 Multiple particle-based search to approximate the Cross-ALD
regularization

In Eq. 2, the normalization Z(x; θ) in denominator term is intractable to find.
Therefore, we propose a multiple particle-based search method named SVGDF
to sample x′(1),x′(2), . . . ,x′(N) ∼ Pθ(·|x)). N is the number of samples (or ad-
versarial particles). SVGDF is used to solve the optimization problem of finding
a target distribution Pθ(·|x)). SVGDF is a particle-based Bayesian inference
algorithm that seeks a set of points (or particles) to approximate the target dis-
tribution without explicit parametric assumptions using iterative gradient-based
updates. Specifically, a set of adversarial particles (x′(n)) is initialized by adding
uniform noises, then projected onto the ball Cϵ. These adversarial particles are
then iteratively updated using a closed-form solution (Eq.6) until reaching ter-
mination conditions (, number of iterations).

x′(n),(l+1) =
∏

Cϵ

(
x′(n),(l) + τ ∗

(
ϕ(x′(n),(l))

))

s.t. ϕ(x′) =
1

N

N∑

j=1

[k(Φ(x′(j),(l)), Φ(x′))∇x′(j),(l) logP (x′(j),(l)|x)

+∇x(j),(l)k(Φ(x′(j),(l)), Φ(x′))],

(6)

where x′(n),(l) is a nth adversarial particle at lth iteration (n ∈ {1, 2, ..., N}, and
l ∈ {1, 2, ..., L} with the maximum number of iteration L).

∏
Cϵ

is projection
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operator to the Cϵ constraint. τ is the step size updating. k is the radial basis

function (RBF) kernel k(x′,x) = exp
{

−||x′−x||2
2σ2

}
. Φ is a fixed feature extractor

(e.g., encoder of U-Net/V-Net). While vanilla SVGD [10] is difficult to capture
semantic meaning of high-resolution data because of calculating RBF kernel
(k) directly on the data-level, we use the feature extractor Φ as a semantic
transformation to further enhance the SVGD algorithm performance for medical
imaging. Moreover, the two terms of ϕ in Eq. 6 have different roles: (i) the first
one encourages the adversarial particles to move towards the high density areas
of Pθ(·|x) and (ii) the second one prevents all the particles from collapsing into
the local modes of Pθ(·|x) to enhance diversity (e.g.,pushing the particles away
from each other). Please refer to the Cross-ALD Github repository for more
details.

SVGDF approximates Pθ(·|xi) and Pθ(·|xj) in Eq. 4, where xi,xj ∼ PDul

(i ̸= j). We form sets of adversarial particles as Dadv|xi= { x′(1)
i ,x

′(2)
i , . . . ,x

′(N)
i }

and Dadv|xj = {x′(1)
j ,x

′(2)
j , . . . ,x

′(N)
j }. The problem (5) can then be relaxed to

R(θ,xi,xj) := E
x

′(n)
i ∼PDadv|xi

,x
′(m)
j ∼PDadv|xj

[
ℓDice(x̃

′, x̃; θ)
]

s.t. : x̃′ = γx
′(n)
i + (1− γ)x

′(m)
j ; x̃ = γxi + (1− γ)xj ,

(7)

where γ ∼ Beta(α, α) for α ∈ (0,∞).

2.5 Cross-ALD regularization loss in medical semi-supervised image
segmentation

In this paper, the overall loss function ℓtotal consists of three loss terms. The first
term is the dice loss, where labeled image xl and segmentation ground-truth y
are sampled from labeled dataset Dl. The second term is a contrastive learning
loss for inter-class separation ℓcs proposed by [21]. The third term is our Cross-
ALD regularization, which is an enhancement of ℓvat to significantly improve
the model performance.

ℓtotal := min
θ

E(xl,y)∼PDl

[
lDice(xl,y; θ)

]
+ λcs Exl∼PDl ,x∼PDul

[
ℓcs(xl,x)

]

+ λCross−ALD E(xi,xj)∼PDul

[
R(θ,xi,xj)

]
,

(8)

where λcs and λCross−ALD are the corresponding weights to balance the losses.
Note that our implementation is replacing ℓvat loss with the proposed Cross-
AD regularization in SS-Net code repository3 [21] to reach the state-of-the-art
performance.

3 Experiments

In this section, we conduct several comprehensive experiments using the ACDC4

dataset [1] and the LA 5 dataset [26] for 2D and 3D image segmentation tasks,

3 https://github.com/ycwu1997/SS-Net
4 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
5 http://atriaseg2018.cardiacatlas.org
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respectively. For fair comparisons, all experiments are conducted using the identi-
cal setting, following [21]. We evaluate our model in challenging semi-supervised
scenarios, where only 5% and 10% of the data are labeled and the remaining
data in the training set is treated as unlabeled. The Cross-ALD uses the U-Net
[18] and V-Net [13] architectures for the ACDC and LA dataset, respectively. We
compare the diversity between the adversarial particles generated by our method
against vanilla SVGD and VAT with random initialization in Section 3.1 . We
then illustrate the Cross-AD outperforms other recent methods on ACDC and
LA datasets in Section 3.2. We show ablation studies in Section 3.3. The effect
of the number particles to the model performance is studied in the Cross-ALD
Github repository.

3.1 Diversity of adversarial particle comparison

Number of particles

S
S

E

64

66

68

70

72

2 3 4

VAT SVGD SVGDF

(a) ACDC

Number of particles

S
S

E

185

190

195

200

205

2 3 4

VAT SVGD SVGDF

(b) LA

Fig. 1: Diversity comparison of our SVGDF, SVGD and VAT with random ini-
tialization using sum of square error (SSE) of ACDC and LA datasets.

Settings. We fixed all the decoder models (U-Net for ACDC and V-Net
for LA). We run VAT with random initialization and SVGD multiple times to
produce adversarial examples, which we compared to the adversarial particles
generated using SVGDF. SVGDF is the proposed algorithm, which leverages fea-
ture transformation to capture the semantic meaning of inputs. Φ is the decoder
of U-Net in ACDC dataset, while Φ is the decoder of V-Net in LA dataset. We set
the same radius ball constraint, updating step, and etc.. We randomly pick three
images from the datasets to generate adversarial particles. To evaluate their di-
versity, we report the sum squared error (SSE) between these particles. Higher
SSE indicates more diversity, and for each number of particles, we calculate the
average of the mean of SSEs.

Results. Note that the advantage of SVGD over VAT is that the former gen-
erates diversified adversarial examples because of the second term in Eq. 6 while
VAT only creates one example. Moreover, vanilla SVGD is difficult to capture
semantic meaning of high-resolution medical imaging because it calculates ker-
nel k on image-level. In Fig. 1, our SVGDF produces the most diverse particles
compared to SVGD and VAT with random initialization.
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Table 1: Performance comparisons with six recent methods on ACDC dataset.
All results of existing methods are used from [21] for fair comparisons.

Method
# Scans used Metrics Complexity

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓ Para.(M) MACs(G)

U-Net 3(5%) 0 47.83 37.01 31.16 12.62 1.81 2.99
U-Net 7(10%) 0 79.41 68.11 9.35 2.7 1.81 2.99
U-Net 70(All) 0 91.44 84.59 4.3 0.99 1.81 2.99

UA-MT [28]

3 (5%) 67(95%)

46.04 35.97 20.08 7.75 1.81 2.99
SASSNet [8] 57.77 46.14 20.05 6.06 1.81 3.02
DTC [11] 56.9 45.67 23.36 7.39 1.81 3.02
URPC [12] 55.87 44.64 13.6 3.74 1.83 3.02
MC-Net [22] 62.85 52.29 7.62 2.33 2.58 5.39
SS-Net [21] 65.82 55.38 6.67 2.28 1.83 2.99

Cross-ALD (Ours) 80.6 69.08 5.96 1.9 1.83 2.99

UA-MT [28]

7 (10%) 63(90%)

81.65 70.64 6.88 2.02 1.81 2.99
SASSNet [8] 84.5 74.34 5.42 1.86 1.81 3.02
DTC [11] 84.29 73.92 12.81 4.01 1.81 3.02
URPC [12] 83.1 72.41 4.84 1.53 1.83 3.02
MC-Net [22] 86.44 77.04 5.5 1.84 2.58 5.39
SS-Net [21] 86.78 77.67 6.07 1.4 1.83 2.99

Cross-ALD (Ours) 87.52 78.62 4.81 1.6 1.83 2.99

Table 2: Performance comparisons with six recent methods on LA dataset. All
results of existing methods are used from [21] for fair comparisons.

Method
f # Scans used Metrics Complexity

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓ Para.(M) MACs(G)

V-Net 4(5%) 0 52.55 39.6 47.05 9.87 9.44 47.02
V-Net 8(10%) 0 82.74 71.72 13.35 3.26 9.44 47.02
V-Net 80(All) 0 91.47 84.36 5.48 1.51 9.44 47.02

UA-MT [28]

4 (5%) 76(95%)

82.26 70.98 13.71 3.82 9.44 47.02
SASSNet [8] 81.6 69.63 16.16 3.58 9.44 47.05
DTC [11] 81.25 69.33 14.9 3.99 9.44 47.05
URPC [12] 82.48 71.35 14.65 3.65 5.88 69.43
MC-Net [22] 83.59 72.36 14.07 2.7 12.35 95.15
SS-Net [21] 86.33 76.15 9.97 2.31 9.46 47.17

Cross-ALD (Ours) 88.62 79.62 7.098 1.83 9.46 47.17

UA-MT [28]

8 (10%) 72(90%)

87.79 78.39 8.68 2.12 9.44 47.02
SASSNet [8] 87.54 78.05 9.84 2.59 9.44 47.05
DTC [11] 87.51 78.17 8.23 2.36 9.44 47.05
URPC [12] 86.92 77.03 11.13 2.28 5.88 69.43
MC-Net [22] 87.62 78.25 10.03 1.82 12.35 95.15
SS-Net [21] 88.55 79.62 7.49 1.9 9.46 47.17

Cross-ALD (Ours) 89.92 81.78 7.65 1.546 9.46 47.17

3.2 Performance evaluation on the ACDC and LA datasets

Settings. We use the metrics of Dice, Jaccard, 95% Hausdorff Distance (95HD),
and Average Surface Distance (ASD) to evaluate the results. We compare our
Cross-ALD to six recent methods including UA-MT [28] (MICCAI’19), SASS-
Net [8] (MICCAI’20), DTC [11] (AAAI’21) , URPC [12] (MICCAI’21) , MC-Net
[22] (MICCAI’21), and SS-Net [21] (MICCAI’22). The loss weights λCross−ALD

and λcs are set as an iteration dependent warming-up function [7], and number
of particles N = 2. All experiments are conducted using the identical settings in
the Github repository6 [21] for fair comparisons.
Results. Recall that our Cross-ALD generates diversified adversarial parti-
cles using SVGDF compared to vanilla SVGD and VAT, and further enhances
smoothness of cross-adversarial local distributions. In Table 1 and 2, the Cross-
ALD can significantly outperform other recent methods with only 5%/10% la-
beled data training based on the four metrics. Especially, our method impres-
sively gains 14.7% and 2.3% Dice score higher than state-of-the-art SS-Net using
5% labeled data of ACDC and LA, respectively. Moreover, the visualized results

6 https://github.com/ycwu1997/SS-Net
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Ground-TruthCross-ADVAT-MixupSS-NetVATRanMixup

ACDC

LA

5%
 Labeled D

ata

Fig. 2: Visualization results of several semi-supervised segmentation methods
with 5% labeled training data and its corresponding ground-truth on ACDC
and LA datasets.

of Fig.2 shows Cross-ALD can segment the most organ details compared to other
methods.

3.3 Ablation study

Table 3: Ablation study on ACDC and LA datasets.

Dataset Method
# Scans used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

ACDC

U-Net 4(5%) 0 47.83 37.01 31.16 12.62

RanMixup

4 (5%) 76(95%)

61.78 51.69 8.16 3.44
VAT 63.87 53.18 7.61 3.38

VAT + Mixup 66.23 56.37 7.18 2.53
SVGD 66.53 58.09 6.41 2.4
SVGDF 73.15 61.71 6.32 2.12

SVGDF + ℓcs 74.89 62.61 6.52 2.01
Cross-ALD (Ours) 80.6 69.08 5.96 1.9

LA

V-Net 3(5%) 0 52.55 39.6 47.05 9.87

RanMixup

3 (5%) 67(95%)

79.82 67.44 16.52 5.19
VAT 82.27 70.46 13.82 3.48

VAT + Mixup 83.28 71.77 12.8 2.63
SVGD 84.62 73.6 11.68 2.94
SVGDF 86.3 76.17 10.01 2.11

SVGDF + ℓcs 86.55 76.51 9.41 2.24
Cross-ALD (Ours) 87.52 78.62 4.81 1.6

Settings. We use the same network architectures and parameter settings
in Section 3.2, and train the models with 5% labeled training data of ACDC
and LA. We illustrate that crossing adversarial particles is more beneficial than
random mixup between natural inputs (RanMixup [29]) because these particles
are near decision boundaries. Recall that our SVGDF is better than VAT and
SVGD by producing more diversified adversarial particles. Applying SVGDF’s
particles and ℓcs (SVGDF + ℓcs ) to gain the model performance in the semi-
supervised segmentation task, while Cross-ALD efficiently enhances smoothness
to significantly improve the generalization.
Result. Table 3 shows that mixing adversarial examples from VAT outperform
those from RanMixup. While SVGDF + ℓcs is better than SVGD and VAT, the
proposed Cross-ALD achieves the most outstanding performance among com-
parisons methods. In addition, our method produces more accurate segmentation
masks compared to the ground-truth, as shown in Fig. 2.
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4 Conclusion

In this paper, we have introduced a novel cross-adversarial local distribution
(Cross-ALD) regularization that extends and overcomes drawbacks of VAT and
Mixup techniques. In our method, SVGDF is proposed to approximate Cross-
ALD, which produces more diverse adversarial particles than vanilla SVGD and
VAT with random initialization. We adapt Cross-ALD to semi-supervised med-
ical image segmentation to achieve start-of-the-art performance on the ACDC
and LA datasets compared to many recent methods such as VAT [14], UA-MT
[28], SASSNet [8], DTC [11], URPC [12] , MC-Net [22], and SS-Net [21].
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Supplementary

1 Public ACDC and LA dataset

Fig. 1: Public ACDC and LA datasets.

2 Adversarial particle analysis

Table 1: We study the number of adversarial particles that affect to the model
performance. We set N in {1, 2, 3, 4} for ACDC dataset and N in {1, 2, 3} for
LA dataset. Note that we use cross-adversarial particles to enhance smooth-
ness. Therefore, by increasing the number of particles, we accordingly increase
the regularization strength. The model performance increases by increasing N .
However, it is as expected that over regularization may hurt the performance
when N = 4 in ACDC dataset.

Dataset # Particles
# Scans used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
ACDC 1

3 (5%) 67(95%)

76.59 65.73 8.44 2.21
2 80.6 69.08 5.96 1.9
3 80.36 68.05 5.61 2.07
4 77.86 65.49 6.16 2.14

LA
1

4 (5%) 76(95%)
86.83 77.03 5.5671 1.993

2 87.52 78.62 4.81 1.6
3 87.71 78.44 5.204 1.9216
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2 Supplementary

3 Semantic feature Stein Variational Gradient Decent
(SVDGF)

Input: A natural sample x ∼ PDul ; n number of adversarial particles; ϵ for
the constraint Cϵ; r is ℓ2 normalization function; η initial noise factor;
τ step size updating; L number of iterations; k is RBF kernel function.
Φ is a semactic feature extractor.

Output: Set of adversarial particles {x′
1,x

′
2, . . . ,x

′
n} ∼ Pθ(·|x)

1 Initialise a set of n particles and project to the Bϵ constraint

{x′
i ∈ Rd, i ∈ {1, 2, . . . , n}|x′

i =
∏

Cϵ
(x+ η ∗ Uniform noise)};

2 for l = 1 to L do

3 for each particle x
′(l)
i do

4 x
′(l+1)
i =

∏
Cϵ

(
x

′(l)
i + τ ∗ r

(
ϕ(x

′(l)
i )

))
;

5 where ϕ(x′) =
1
n

∑n
j=1[k(Φ(x

′(l)
j ), Φ(x′))∇

x
′(l)
j

logP (x
′(l)
j |x)+∇

x
(l)
j

k(Φ(x
′(l)
j ), Φ(x′))]

;

6 end

7 end

8 return {x′L
1 ,x′L

2 , . . . ,x′L
n } ;

Algorithm 1: Approximating the adversarial local distribution (ALD) given
x by using sematic feature Stein Variational Gradient Decent (SVGDF).


