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Abstract. One-shot medical landmark detection gains much attention
and achieves great success for its label-efficient training process. How-
ever, existing one-shot learning methods are highly specialized in a single
domain and suffer domain preference heavily in the situation of multi-
domain unlabeled data. Moreover, one-shot learning is not robust that it
faces performance drop when annotating a sub-optimal image. To tackle
these issues, we resort to developing a domain-adaptive one-shot land-
mark detection framework for handling multi-domain medical images,
named Universal One-shot Detection (UOD). UOD consists of two
stages and two corresponding universal models which are designed as
combinations of domain-specific modules and domain-shared modules. In
the first stage, a domain-adaptive convolution model is self-supervised
learned to generate pseudo landmark labels. In the second stage, we
design a domain-adaptive transformer to eliminate domain preference
and build the global context for multi-domain data. Even though only
one annotated sample from each domain is available for training, the
domain-shared modules help UOD aggregate all one-shot samples to de-
tect more robust and accurate landmarks. We investigated both qualita-
tively and quantitatively the proposed UOD on three widely-used public
X-ray datasets in different anatomical domains (i.e., head, hand, chest)
and obtained state-of-the-art performances in each domain. The code is
at https://github.com/heqin-zhu/UOD_universal_oneshot_detection.

Keywords: One-shot learning · Domain-adaptive model · Anatomical
landmark detection · Transformer network.
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1 Introduction

Robust and accurate detecting of anatomical landmarks is an essential task
in medical image applications [25,24], which plays vital parts in varieties of
clinical treatments, for instance, vertebrae localization [20], orthognathic and
orthodontic surgeries [9], and craniofacial anomalies assessment [4]. Moreover,
anatomical landmarks exert their effectiveness in other medical image tasks such
as segmentation [3], registration [5], and biometry estimation [1].

In the past years, lots of fully supervised methods [27,26,8,11,20,4,21,11] have
been proposed to detect landmarks accurately and automatically. To relieve the
burden of experts and reduce the amount of annotated labels, various one-shot
and few-shot methods have been come up with. Zhao et al. [23] demonstrate a
model which learns transformations from the images and uses the labeled ex-
ample to synthesize additional labeled examples, where each transformation is
composed of a spatial deformation field and an intensity change. Yao et al. [22]
develop a cascaded self-supervised learning framework for one-shot medical land-
mark detection. They first train a matching network to calculate the cosine sim-
ilarity between features from an image and a template patch, then fine-tune the
pseudo landmark labels from coarse to fine. Browatzki et al. [2] propose a semi-
supervised method that consists of two stages. They first employ an adversarial
auto-encoder to learn implicit face knowledge from unlabeled images and then
fine-tune the decoder to detect landmarks with few-shot labels.

However, one-shot methods are not robust enough because they are depen-
dent on the choice of labeled template and the accuracy of detected landmarks
may decrease a lot when choosing a sub-optimal image to annotate. To address
this issue, Quan et al. [12] propose a novel Sample Choosing Policy (SCP) to
select the most worthy image to annotate. Despite the improved performance,
SCP brings an extra computation burden. Another challenge is the scalability
of model building when facing multiple domains (such as different anatomical
regions). While conventional wisdom is to independently train a model for each
domain, Zhu et al. [26] propose a universal model YOLO for detecting landmarks
across different anatomies and achieving better performances than a collection of
single models. YOLO is regularly supervised using the CNN as backbone and it
is unknown if the YOLO model works for a one-shot scenario and with a modern
transformer architecture.

Motivated by above challenges, to detecte robust multi-domain label-efficient
landmarks, we design domain-adaptive models and propose a universal one-
shot landmark detection framework called Universal One-shot Detection
(UOD), illustrated in Figure 1. A universal model is comprised of domain-
specific modules and domain-shared modules, learning the specified features of
each domain and common features of all domains to eliminate domain preference
and extract representative features for multi-domain data. Moreover, one-shot
learning is not robust enough because of the sample selection while multi-domain
one-shot learning reaps benefit from different one-shot samples from various do-
mains, in which cross-domain features are excavated by domain-shared modules.
Our proposed UOD framework consists of two stages: 1) Contrastive learning for
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Fig. 1. Overview of UOD framework. In stage I, two universal models are learned via
contrastive learning for matching similar patches from original image and augmented
one-shot sample image and generating pseudo labels. In stage II, DATR is designed
to better capture global context information among all domains for detecting more
accurate landmarks.

training a universal model with multi-domain data to generate pseudo landmark
labels. 2) Supervised learning for training domain-adaptive transformer (DATR)
to avoid domain preference and detect robust and accurate landmarks.

In summary, our contributions can be categorized into three parts: 1) We
design the first universal framework for multi-domain one-shot landmark de-
tection, which improves detecting accuracy and relieves domain preference on
multi-domain data from various anatomical regions. 2) We design a domain-
adaptive transformer block (DATB), which is effective for multi-domain learning
and can be used in any other transformer network. 3) We carry out comprehen-
sive experiments to demonstrate the effectiveness of UOD for obtaining SOTA
performance on three publicly used X-ray datasets of head, hand, and chest.

2 Method

As Figure 1 shows, UOD consists of two stages: 1) Contrastive learning and 2)
Supervised learning. In stage I, to learn the local appearance of each domain, a
universal model is trained via self-supervised learning, which contains domain-
specific VGG [15] and UNet [13] decoder with each standard convolution replaced
by a domain adaptor [7]. In stage II, to grasp the global constraint and eliminate
domain preference, we designed a domain-adaptive transformer (DATR).
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2.1 Stage I: Contrastive learning

As Figure 1 shows, following Yao et al. [22], we employ contrastive learning
to train siamese network for matching similar patches of original image and
augmented image. Given a multi-domain input image Xd ∈ RHd×Wd×Cd

belongs
to domain d from multi-domain data, we randomly select a target point P and
crop a half-size patch Xd

p which contains P . After applying data augmentation
on Xd

p , the target point is mapped to Pp. Then we feed Xd and Xd
p into the

siamese network respectively and obtain the multi-scale feature embeddings. We
compute cosine similarity of two feature embeddings from each scale and apply
softmax to the cosine similarity map to generate a probability matrix. Finally,
we calculate the cross entropy loss of the probability matrix and ground truth
map which is produced with the one-hot encoding of P d

p to optimize the siamese
network for learning the latent similarities of patches. At inferring stage, we
replace augmented patch Xd

p with the augmented one-shot sample patch Xd
s .

We use the annotated one-shot landmarks as target points to formulate the
ground truth maps. After obtaining probability matrices, we apply argmax to
extract the strongest response points as the pseudo landmarks, which will be
used in UOD Stage II.

2.2 Stage II: Supervised learning

In stage II, we design a universal transformer to capture global relationship of
multi-domain data and train it with the pseudo landmarks generated in stage
I. The universal transformer has a domain-adaptive transformer encoder and
domain-adaptive convolution decoder. The decoder is based on a U-Net [13]
decoder with each standard convolution replaced by a domain adaptor [7]. The
encoder is based on Swin Transformer [10] with shifted window and limited
self-attention within non-overlapping local windows for computation efficiency.
Different from Swin Transformer [10], we design a domain-adaptive transformer
block (DATB) and use it to replace the original transformer block.

Domain-adaptive transformer encoder As Figure 2(a) shows, the trans-
former encoder is built up with DATB, making full use of the capability of
transformer for modeling global relationship and extracting multi-domain rep-
resentative features. As in Figure 2(b), a basic transformer block [17] consists
of a multi-head self-attention module (MSA), followed by a two-layer MLP with
GELU activation. Furthermore, layer normalization (LN) is adopted before each
MSA and MLP and a residual connection is adopted after each MSA and MLP.
Given a feature map xd ∈ Rh×w×c from domain d with height h, width w, and
c channels, the output feature maps of MSA and MLP, denoted by ŷd and yd,
respectively, are formulated as:

ŷd = MSA(LN(xd)) + xd

yd = MLP(LN(ŷd)) + ŷd
(1)
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Fig. 2. (a) The architecture of DATR in stage II, which is composed of domain-
adaptive transformer encoder and convolution adaptors [7]. (b) Basic transformer block.
(c) Domain-adaptive transformer block. Each domain-adaptive transformer is a basic
transformer block with query matrix duplicated and domain-adaptive diagonal for each
domain. The batch-normalization, activation, and patch merging are omitted.

where MSA = softmax(QKT )V .
As illustrated in Figure 2(b)(c), DATB is based on Eq. (1). Similar to U2Net [7]

and GU2Net [26], we adopt domain-specific and domain-shared parameters in
DATB. Since the attention probability is dependent on query and key matrix
which are symmetrical, we duplicate the query matrix for each domain to learn
domain-specific query features and keep key and value matrix domain-shared to
learn common knowledge and reduce parameters. Inspired by LayerScale [16], we
further adopt learnable diagonal matrix [16] after each MSA and MLP module
to facilitate the learning of domain-specific features, which costs few parameters
(O(N) for N × N diagonal). Different from LayerScale [16], proposed domain-
adaptive diagonal Dd

1 and Dd
2 are applied for each domain with Dd

2 applied after
residual connection for generating more representative and direct domain-specific
features. The above process can be formulated as:

ŷd = Dd
1 × MSAQd(LN(xd)) + xd

yd = Dd
2 × (MLP(LN(ŷd)) + ŷd)

(2)

where MSAQd = softmax(QdKT )V .

Overall pipeline Given that a random input Xd ∈ RHd×Wd×Cd

belongs to
domain d from mixed datasets on various anatomical regions, which contains Nd

landmarks with corresponding coordinates being {(id1, jd1 ), (id2, jd2 ), . . . , (idNd
, jdNd

)},
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we set the n-th ∈ {1, 2, . . . , Nd} initial heatmap Ỹ d
n ∈ RHd×Wd×Cd

with Gaus-

sian function to be Ỹ d
n = 1√

2πσ
e−

(i−idn)2+(j−jdn)2

2σ2 if
√
(i− idn)

2 + (j − jdn)
2 ≤ σ

and 0 otherwise. We further add an exponential weight to the Gaussian distri-
bution to distinguish close heatmap pixels and obtain the ground truth heatmap
Y d
n (i, j) = αỸ d

n (i,j).
As illustrated in Figure 2, firstly, the input image from a random batch is par-

titioned into non-overlapping patches and linearly embedded. Next, these patches
are fed into cascaded transformer blocks at each stage, which are merged except
in the last stage. Finally, a domain-adaptive convolution decoder makes dense
prediction to generate heatmaps, which is further used to extract landmarks via
threshold processing and connected components filtering.

3 Experiment

Datasets. For performance evaluation, we adopt three public X-ray datasets
from different domains on various anatomical regions of head, hand, and chest.
(i) Head dataset is a widely-used dataset for IEEE ISBI 2015 challenge [19,18]
which contains 400 X-ray cephalometric images with 150 images for training
and 250 images for testing. Each image is of size 2400 × 1935 with a resolu-
tion of 0.1mm× 0.1mm, which contains 19 landmarks manually labeled by two
medical experts and we use the average labels same as Payer et al. [11]. (ii)
Hand dataset is collected by [6] which contains 909 X-ray images and 37 land-
marks annotated by [11]. We follow [26] to split this dataset into a training
set of 609 images and a test set of 300 images. Following [11] we assume the
distance between two endpoints of wrist is 50mm and calculate the physical dis-
tance as distancephysical = distancepixel× 50

∥p−q∥2
where p, q are the two endpoints

of the wrist respectively. (iii) Chest dataset [26] is a popular chest radiography
database collected by Japanese Society of Radiological Technology (JSRT) [14]
which contains 247 images. Each image is of size 2048× 2048 with a resolution
of 0.175mm× 0.175mm. We split it into a training set of 197 images and a test
set of 50 images and select 6 landmarks from landmark labels at the boundary
of the lung as target landmarks.
Implementation details. UOD is implemented in Pytorch and trained on a
TITAN RTX GPU with CUDA version being 11. All encoders are initialized with
corresponding pre-trained weights. We set batch size to 8, σ to 3, and α to 10. We
adopt binary cross-entropy (BCE) as loss function for both stages. In stage I, we
resize each image to the same shape of 384×384 and train universal convolution
model by Adam optimizer for 1000 epochs with a learning rate of 0.00001. In
stage II, we resize each image to the same shape of 576× 576 and optimize the
universal transformer by Adam optimizer for 300 epochs with a learning rate
of 0.0001. When calculating metrics, all predicted landmarks are resized back
to the original size. For evaluation, we choose model with minimum validation
loss as the inference model and adopt two metrics: mean radial error (MRE)
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Fig. 3. Comparison of single model and universal model on head dataset.

Table 1. Quantitative comparison of UOD with SOTA methods on head, hand, and
chest datasets. * denotes the method is trained on every single dataset respectively
while †denotes the method is trained on mixed data.

Method
Head [19] Hand [6] Chest [14]

Label MRE↓ SDR↑ (%) MRE↓ SDR↑ (%) MRE↓ SDR↑ (%)
(mm) 2mm 2.5mm 3mm 4mm (mm) 2mm 4mm 10mm (mm) 2mm 4mm 10mm

YOLO [26]† all 1.32 81.14 87.85 92.12 96.80 0.85 94.93 99.14 99.67 4.65 31.00 69.00 93.67
YOLO [26]† 25 1.96 62.05 77.68 88.21 97.11 2.88 72.71 92.32 97.65 7.03 19.33 51.67 89.33
YOLO [26]† 10 2.69 47.58 66.47 78.42 90.89 9.70 48.66 76.69 90.52 16.07 11.67 33.67 76.33
YOLO [26]† 5 5.40 26.16 41.32 54.42 73.74 24.35 20.59 48.91 72.94 34.81 4.33 19.00 56.67
CC2D [22]* 1 2.76 42.36 51.82 64.02 78.96 2.65 51.19 82.56 95.62 10.25 11.37 35.73 68.14
Ours† 1 2.43 51.14 62.37 74.40 86.49 2.52 53.37 84.27 97.59 8.49 14.00 39.33 76.33

MRE = 1
N

∑N
i

√
(xi − x̃i)2 + (yi − ỹi)2 and successful detection rates (SDR)

within different thresholds t: SDR(t) = 1
N

∑N
i δ(

√
(xi − x̃i)2 + (yi − ỹi)2 ≤ t).

3.1 Experimental results

The effectiveness of universal model: To demonstrate the effectiveness of
universal model for multi-domain one-shot learning, we adopt head and hand
datasets for evaluation. In stage I, the convolution models are trained in two
ways: 1) single: trained on every single dataset respectively, and 2) universal:
trained on mixed datasets together. With a fixed one-shot sample for the hand
dataset, we change the one-shot sample for the head dataset and report the MRE
and SDR of the head dataset. As Figure 3 shows, universal model performs much
better than single model on various one-shot samples and metrics. It is proved
that universal model learns domain-shared knowledge and promotes domain-
specific learning. Furthermore, the MRE and SDR metrics of universal model
have a smaller gap among various one-shot samples, which demonstrates the
robustness of universal model learned on multi-domain data.
Comparisons with state-of-the-art methods: As Table 1 shows, we com-
pare UOD with two open-source landmark detection methods, i.e., YOLO [26]
and CC2D [22]. YOLO is a multi-domain supervised method while CC2D is
a single-domain one-shot method. UOD achieves SOTA results on all datasets
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Table 2. Ablation study of different components of our DATR. Base is the basic
transformer block; MSAQd denotes the domain-adaptive self-attention and Dd denotes
the domain-adaptive diagonal matrix. In each column, the best results are in bold.

Transformer
Head [19] Hand [6] Chest [14]

MRE↓ SDR↑ (%) MRE↓ SDR↑ (%) MRE↓ SDR↑ (%)
(mm) 2mm 2.5mm 3mm 4mm (mm) 2mm 4mm 10mm (mm) 2mm 4mm 10mm

(a) Base 24.95 2.02 3.17 4.51 5.85 9.83 5.33 16.79 58.64 58.11 0.37 1.96 3.85
(b) +Dd 22.75 2.13 3.24 4.61 6.96 7.52 6.13 20.66 68.43 52.98 0.59 2.17 4.68
(c) +MSAQd 2.51 49.29 60.89 72.17 84.36 2.72 48.56 80.44 94.38 9.09 12.00 19.33 74.00
(d) +MSAQd+Dd 2.43 51.14 62.37 74.40 86.49 2.52 53.37 84.27 97.59 8.49 14.00 39.33 76.33

UOD CC2D UOD CC2D UOD CC2D

Fig. 4. Qualitative comparison of UOD and CC2D [22] on head, hand, and chest
datasets. The red points • indicate predicted landmarks while the green points • indi-
cate ground truth landmarks. The MRE value is displayed in the top left corner of the
image.

under all metrics, outperforming the other one-shot method by a big margin.
On the head dataset, benefiting from multi-domain learning, UOD achieves an
MRE of 2.43mm and an SDR of 86.49% within 4mm, which is comparative with
supervised method YOLO trained with at least 10 annotated labels, and much
better than CC2D. On the hand dataset, there are some performance improve-
ments in all metrics compared to CC2D, outperforming the supervised method
YOLO trained with 25 annotated images. On the chest dataset, UOD shows the
superiority of DATR which eliminates domain preference and balances the per-
formance of all domains. In contrast, the performance of YOLO on chest dataset
suffers a tremendous drop when the available labels are reduced to 25, 10, and
5. Figure 4 visualizes the predicted landmarks by UOD and CC2D.

Ablation study: We compare various components of the proposed domain-
adaptive transformer. The experiments are carried out in UOD Stage II. As
presented in Table 2, the domain-adaptive transformer has two key compo-
nents: domain-adaptive self-attention MSAQd and domain-adaptive diagonal ma-
trix Dd. The performances of (b) and (c) are much superior to those of (a)
which demonstrates the effectiveness of Dd and MSAQd . Further, (d) combines
the two components and achieves much better performances, which illustrates
that domain-adaptive transformer improves the accuracy of detecting via cross-
domain knowledge and global context information. We take (d) as the final
transformer block.
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4 Conclusion

To improve the robustness and reduce domain preference of multi-domain one-
shot learning, we design a universal framework in that we first train a universal
model via contrastive learning to generate pseudo landmarks and further use
these labels to learn a universal transformer for accurate and robust detection
of landmarks. UOD is the first universal framework of one-shot landmark de-
tection on multi-domain data, which outperforms other one-shot methods on
three public datasets from different anatomical regions. We believe UOD will
significantly reduce the labeling burden and pave the path of developing more
universal framework for multi-domain one-shot learning.
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