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Abstract. Masked autoencoder (MAE) has attracted unprecedented at-
tention and achieves remarkable performance in many vision tasks. It
reconstructs random masked image patches (known as proxy task) dur-
ing pretraining and learns meaningful semantic representations that can
be transferred to downstream tasks. However, MAE has not been thor-
oughly explored in ultrasound imaging. In this work, we investigate the
potential of MAE for ultrasound image recognition. Motivated by the
unique property of ultrasound imaging in high noise-to-signal ratio, we
propose a novel deblurring MAE approach that incorporates deblurring
into the proxy task during pretraining. The addition of deblurring facili-
tates the pretraining to better recover the subtle details presented in the
ultrasound images, thus improving the performance of the downstream
classification task. Our experimental results demonstrate the effective-
ness of our deblurring MAE, achieving state-of-the-art performance in
ultrasound image classification. Overall, our work highlights the potential
of MAE for ultrasound image recognition and presents a novel approach
that incorporates deblurring to further improve its effectiveness.

Keywords: Image Deblurring · Masked Autoencoders · Self-Supervised
Learning · Ultrasound Recognition

1 Introduction

Recently, as representative of generative self-supervised learning (SSL) meth-
ods, masked autoencoder (MAE) [8] has achieved great success in many vision
tasks [11,10,24]. In general, MAE belongs to the masked image modeling (MIM)
paradigm [29], where some parts of the image are randomly masked, and the
purpose of pretraining (i.e., proxy or pretext task) is to recover the missing pix-
els. After the pretraining, the learned image representation can be transferred
to downstream tasks for improved performance. With the advent of MAE, many
MAE variants have been proposed [22,25,7]. Tian et al. [22] investigate other
image degradation methods during MAE pretraining and find that the optimal

⋆ Code will be available at: https://github.com/MembrAI/DeblurringMIM
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practice is enriching masking with spatial misalignment for nature images. Wu et
al. [25] design a denoising MAE by introducing Gaussian noising into MAE pre-
training, showing that their denoising MAE is robust to additive noises.

On the other hand, although numerous work has been proposed for apply-
ing MAE to medical imaging across different modalities including pathological
images [19,14,1], X-rays [31,26], electrocardiogram [30], immunofluorescence im-
ages [15], MRI and CT [31,27,4]. However, the majority of them have not fully
exploited the characteristics of medical images and instead, focus on vanilla
applications [31,30,26,4]. This is especially problematic given the domain gap
between medical and natural images, as well as the unique imaging properties
associated with each medical imaging modality [20,16,18]. Furthermore, as an
important and widely used medical imaging modality, ultrasound has not been
extensively explored in the context of MAE-based approaches.

Based on the aforementioned analysis, in this paper, we propose a deblurring
masked auto-encoder framework, which is specifically designed for ultrasound
image recognition. The primary motivation for the deblurring comes from the
unique imaging properties of ultrasound, e.g., high noise-to-signal ratio. Com-
pared with nature images, the subtle details within ultrasound are particularly
important for downstream analysis (e.g., microcalcifications is an important sign
for malignant nodules, which is represented as tiny bright spots in ultrasound
[21,17]). Moreover, the motivation also stems from the findings of our preliminary
experiments, which suggest that denoising may not be appropriate for inherently
noisy ultrasound images. Therefore, we introduce the opposite direction with a
deblurring approach for ultrasound images. Specifically, we first apply blurring
operations to the ultrasound images prior to the random masking during pre-
training, enabling the model to learn how to de-blur and reconstruct the original
image. It should be emphasized that denoising and deblurring are two opposite
directions, i.e., denoising first adds noise to the clean image and learns to re-
move the noise, while deblurring blurs the noisy ultrasound image and learns
to sharpen the image. The deblurring facilitates the pretraining in recovering
the subtle details within the image, which is crucial for ultrasound image recog-
nition. It should be emphasized that while blurring operation has been shown
ineffective for natural images [22], ultrasound images are fundamentally different
and may benefit from blurring operation.

Furthermore, to the best of our knowledge, this paper is the first attempt
to apply the MAE approach to ultrasound image recognition. Our work also
addresses some fundamental concerns that are of great interest to the medical
imaging community with the example of ultrasound, such as the importance of
in-domain data pretraining for MAE in ultrasound, as well as the finding that
SSL pretraining is consistently better than the supervised pretraining as with
nature images. To conclude, our contributions can be summarized as follows:

1. We propose a deblurring MAE framework that is specifically designed for
ultrasound images by incorporating a deblurring task into MAE pretraining.
This is motivated by the fact that ultrasound images have a high noise-to-
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signal ratio, and in contrast to denoising for natural images, we demonstrate
that deblurring is a better recipe for ultrasound images.

2. We explore the effectiveness of various image blurring methods in our de-
blurring MAE and find that a simple Gaussian blurring performs the best,
showing superior transferability compared with the vanilla MAE.

3. We conduct experiments on more than 10k ultrasound images for pretraining
and 4,494 images for downstream thyroid nodule classification. The results
demonstrate the effectiveness of the proposed deblurring MAE, achieving
state-of-the-art classification performance for ultrasound images.

Note that, as a representative MIM approach, the MAE is adopted to vali-
date our proposed deblurring pretraining in this work, our method can also be
seamlessly integrated with other MIM-based approaches such as ConvMAE [7].

2 Method

2.1 Preliminary: MAE

The MAE pipeline consists of two primary stages: self-supervised pretraining
and transferring for downstream tasks. During the self-supervised pretraining,
the model is trained to reconstruct masked input image patches using an asym-
metric encoder-decoder architecture. The encoder is typically a ViT [6], which
compresses the input image into a latent representation, while the decoder is a
lightweight Transformer that reconstructs the original image from the latent rep-
resentation. The loss used during pretraining is the mean squared error (MSE)
between the reconstructed and original images. In the transfer stage, the weights
of the pre-trained ViT encoder are transferred and used as a feature extractor, to
which task-specific heads are appended for learning various downstream tasks.
Typically, there are two common practices in the transfer stage: 1) end-to-end
fine-tuning which tunes the entire model, and 2) linear probing, which only tunes
the task-specific head.

2.2 Our Proposed Deblurring MAE

Similar to MAE, our proposed deblurring MAE also contains pretraining and
transfer learning for downstream tasks. We employ the same asymmetric encoder-
decoder architecture as the original MAE.

Deblurring MAE Pretraining For the pretraining, besides the original masked
image modeling task in the MAE, we introduce one additional task, i.e., deblur-
ring, into the pretraining thus making the pretraining as deblurring pretraining.
As shown in Figure 1, the deblurring is achieved by simply inserting an im-
age blurring operation prior to random masking. The pipeline of our deblurring
MAE pretraining is illustrated in Eq. 1:

x
Blurring−−−−−−→ xb

Masking−−−−−−→ xm
b

ViT Encoder−−−−−−−−→ h
Decoder−−−−−→ x̂. (1)
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Specifically, the original ultrasound image x is first blurred by a chosen image
blurring operation Blurring to obtain xb. After that, several patches in the
blurred image xb are randomly masked by the Masking operation with a pre-
defined ratio to obtain xm

b . Next, the masked blurred image xm
b is passed as

input to the ViT Encoder, which generates a latent representation h. Finally,
the Decoder receives the representation h and outputs reconstructed image x̂.

The image blurring operation Blurring is a commonly used technique for
reducing the sharpness or details of an image, resulting in a smoother, less-
detailed appearance. There exist many different methods for image blurring,
with most of them involving the averaging of neighboring pixels in some way. In
Figure 1, we provide examples of two representative blurring methods: Gaussian
blur and speckle reducing anisotropic diffusion (SRAD) [28].

Gaussian blur involves convolving an input image with a Gaussian kernel
G(σ), which is a two-dimensional Gauss function that represents a normal dis-
tribution with standard deviation of σ. Mathematically, Gaussian blur can be
defined as follows:

xb = Gaussian(x, σ) = x ∗G(σ) = x ∗ 1

2πσ2
e−(u2+v2)/2σ2

, (2)

where ∗ denotes the convolution operation, and (u, v) represents the coordinates
in the kernel. The degree of blurring (i.e., blurriness) in the resulting image is
determined by the standard deviation σ.

The SRAD is a nonlinear anisotropic diffusion technique for removing speck-
led noises, which has been extensively used in medical ultrasound images, due
to its edge-sensitivity for speckled images and powerful preservation of useful
information. The SRAD operation is implemented by repeating an anisotropic
diffusion equation for N iterations. It can be formally given as:

xb = SRAD(x,N, t) = x(i, j, 0) +∆t ∗
N−1∑

k=0

div(c(i, j, k)∇x(i, j, k)), (3)

where x is the original image, N stands for the number of iterations, t means
time. x(i, j, k) and c(i, j, k) represent the image and diffusivity coefficient at iter-
ation k, respectively. ∇x is the gradient of x and div is the divergence operator.
The larger N or t leads to a blurrier resulting image.

The pixel-wise MSE between the reconstructed image x̂ and the original
image x is utilized as the loss function during pretraining: LMSE = ||x̂ − x||2.
It should be noted that a key difference from MAE is that we compute the loss
across all patches, including the masked ones. This operation is necessary due
to the fact that our blurring operation covers the entire image. Through the use
of the proposed deblurring MAE pretraining, we aim to leverage both masked
image modeling and deblurring in order to learn a robust and effective latent
representation that could be successfully applied to a range of downstream tasks.

Deblurring MAE Transfer After the deblurring MAE pretraining, only the
pre-trained encoder is transferred to the downstream thyroid nodule classifica-
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Fig. 1. Illustration of our proposed deblurring MAE pretraining.

tion task. One multi-layer perceptron (MLP) head is appended after the pre-
trained encoder. The transfer learning pipeline is shown in Eq. 4:

x
Blurring−−−−−−→ xb

ViT Encoder−−−−−−−−→ h
MLP−−−→ ŷ, (4)

It should be noted here that, in order to prevent data distribution shift between
pretraining and transfer stages, the original image x also needs to be blurred be-
fore fed into the pre-trained encoder during transfer learning. The cross-entropy
loss between ground-truth classification label y and predicted label ŷ is used as
the loss function: LCE = −[y log(ŷ) + (1− y) log(1− ŷ)].

3 Experiments and Results

3.1 Experimental Settings

Dataset All thyroid ultrasound images used in our study for both pretraining
and downstream classification were acquired at West China Hospital with ethical
approval. We use a total of 10,675 images for pretraining and 4,493 images for the
downstream classification. To avoid any potential data leakage, the images used
in pretraining were not included in the test set for thyroid nodule classification.
The downstream classification dataset contains 2,576 benign and 1,917 malignant
cases. We randomly split the dataset into train/validation/test subsets with
a 3:1:1 ratio. The classification ground-truth labels were obtained either from
the fine-needle aspiration for malignant nodules or clinical diagnosis by senior
radiologists for benign nodules.

Implementation Details We use a mask ratio of 75% during the pretraining.
We set the batch size to 256 for both pretraining and end-to-end fine-tuning,
and 1024 for linear probing. The epochs of pretraining is 12,000 due to our
relatively small data. The full detailed experimental settings are presented in
the appendix. We implement our approach based on PyTorch. The image size
for both pretraining and transfer learning is 224 × 224. For classification, we
choose the model that performs the best on the validation set as the final model
to evaluate on the test set. Three widely used metrics accuracy (ACC), F1-score
(F1), and the area under the receiver operating characteristic (AUROC) are
utilized for classification performance evaluation.
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Table 1. Performance comparison of different methods.

Method Architecture Pretraining ACC (%) F1 (%) AUROC (%)

ResNet [9] ResNet-101 - 86.06±0.87 83.18±1.15 91.96±1.47
ConvNeXt [13] ConvNeXt-L ImageNet 87.76±0.66 85.47±0.91 93.22±1.10
Swin Transformer [12] Swin-L ImageNet 87.43±0.68 84.92±0.82 92.83±1.02
Wang et al.[23] - - 87.44±0.75 85.16±0.87 93.11±1.09
Zhou et al.[32] - - 88.15±0.67 86.09±0.74 94.17±1.21

- 80.60±1.62 76.98±2.05 83.89±2.89

Supervised

ViT [6] ViT-B
ImageNet 86.38±0.74 84.17±0.98 92.69±0.48

SimCLR [2] ResNet-50 ImageNet 86.21±0.96 83.81±1.24 92.16±1.08
ImageNet 86.96±0.85 84.48±1.12 92.77±0.67

MoCo v3 [3]
Ultrasound 87.08±0.78 84.55±1.04 92.95±0.59
ImageNet 87.25±0.51 85.23±0.57 93.71±0.60

MAE [8]
Ultrasound 89.45±0.53 87.54±0.62 95.54±0.46

Denoising MAE Ultrasound 80.38±1.37 77.99±1.75 84.38±2.13
Ours [SRAD] Ultrasound 90.07±0.47 88.13±0.51 95.87±0.45

SSL

Ours [Gaussian]

ViT-B

Ultrasound 90.19±0.47 88.48±0.50 96.08±0.41

ViT-B ViT-L ViT-H
0.875

0.880

0.885

0.890

0.895

0.900
(a) Fine-tuning

Ours
MAE

ViT-B ViT-L ViT-H

0.840

0.845

0.850

0.855

0.860

(b) Linear probing

F1

Fig. 2. Our deblurring MAE vs. vanilla MAE. Pre-
trained with the same ultrasound data.

Image Blurring Blurriness

Method F1 (%) σ F1 (%)

Gaussian 88.48 0.8 88.03
SRAD 88.13 1.1 88.48
Mean 88.11 1.4 87.56
Median 87.63 1.7 85.89
Motion 78.33 2.0 84.74
Defocus 85.37 2.3 84.62

Baseline 87.54

Table 2. Ablation study.

3.2 Results and Comparisons

Our Deblurring MAE vs. vanilla MAE First of all, in order to evaluate the
effectiveness of the proposed deblurring MAE for ultrasound images, we compare
the transfer learning performance between our deblurring MAE and the vanilla
MAE. Table 1 and Figure 2 give the classification performance comparison of
these two approaches. For our deblurring MAE, we use Gaussian blurring with
σ equal to 1.1 as the blurring operation. In Figure 2, we report the experimental
results of three models: ViT-Base (ViT-B), ViT-Large (ViT-L) and ViT-Huge
(ViT-H), and two transfer learning paradigms: end-to-end fine-tuning and linear
probing. As shown in the figure, both the fine-tuning and linear probing perfor-
mance of our proposed deblurring MAE is consistently better than that of the
vanilla MAE, which indicates the effectiveness of deblurring for enhancing the
transferability of learned representations during ultrasound pretraining.

Comparison with state-of-the-art approaches Secondly, we also compare
our approach with more approaches and the results are listed in Table 1. We
implement two variants of our deblurring MAE which differ in blurring operation:
the SRAD with N equals to 40 and t equals to 0.1, and the Gaussian blur with
σ equals to 1.1. We compare with methods based on supervised learning or self-
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Fig. 3. Hyper-parameter choices for MAE pretraining.

supervised learning. In addition, we still add the denoising MAE for comparison,
although it has proved to be ineffective for ultrasound images based on our
preliminary experiments. We adopt ViT-B as the architecture for these SSL-
based methods except SimCLR [2] which uses ResNet-50, and we use two types
of data for pretraining, i.e., ImageNet [5] and ultrasound. The results are based
on end-to-end fine-tuning. According to Table 1, we can draw the following
conclusions:
The deblurring MAE pretraining can improve the transferability of
learned representations. First of all, both the two variants of our proposed
approach (Ours [SRAD] and Ours [Gaussian]) obtain much higher classification
metrics compared with the MAE pretrained using ultrasound, which indicates
the learned representation of our deblurring MAE is more effective than the
vanilla MAE when transferred to downstream classification. In addition, Table 1
also shows that the performance of our proposed deblurring MAE with Gaussian
blurring achieves state-of-the-art performance in terms of all metrics, surpassing
all competing SSL or supervised-based approaches, which further demonstrates
the superior performance of our proposed deblurring MAE. It is noteworthy that,
as the opposite approach to our deblurring MAE, the denoising MAE obtains
worse performance compared with the vanilla MAE, suggesting that adding noise
to ultrasound images during MAE pretraining is unfavorable.
Ultrasound pretraining is better than ImageNet pretraining, better
than supervised pretraining. Table 1 shows that the performance of MAE
with ultrasound pretraining is better than the ImageNet pretraining, which un-
derlines the importance of in-domain self-supervised pretraining in MAE. In
contrast to MAE, our experiments show that the MoCo v3 [3] achieves only
marginal improvement with ultrasound pretraining. Furthermore, the MAE Im-
ageNet pretraining also performs much better than the ImageNet supervised
pretraining. These two conclusions are consistent with other works [26,8].

Ablation Study We design two sets of ablation studies, i.e., different image
blurring methods, and the degree of blurring (blurriness) used in our deblurring
MAE. We adopt the ViT-B as the architecture and end-to-end fine-tuning in
transfer learning for the ablation experiments. Table 2 presents the performance
results of the ablation study, where the ‘Baseline’ represents the vanilla MAE.

Firstly, besides the Gaussian and SRAD, we also try several other blurring
methods that are commonly used in the fields including mean, median, motion
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Original Masked MAE Deblurring MAE 
(Ous)Denoising MAE

Fig. 4. Comparisons of reconstructed images.

and defocus blur. We set the kernel size to 5 in mean, median and motion blur,
and the radius of defocusing is set to 5 for defocus blur. The performance results
are presented on the left side of Table 2. From this table, we can observe that the
Gaussian blurring achieves the best F1. And these six blurring methods are not
all beneficial for pretraining, where some of them (motion, defocus) perform even
worse than the baseline. Secondly, to investigate the effect of blurriness on the
pretraining, we conduct ablation experiments on blurriness based on Gaussian
blurring. The right side of Table 2 reports the performance results and we can
see that the σ with 1.1 obtains the highest F1. In addition, as the σ, i.e., the
blurriness continues to increase, the performance drops rapidly, which indicates
that only a limited range of blurriness has a positive effect on the pretraining.

Hyper-parameter choices for MAE pretraining We conduct experiments
to explore hyper-parameter choices for MAE pretraining based on ViT-B, and
the results are presented in Figure 3. Our findings indicate that a masking ratio
of 75% and a patch size of 16 achieve the best transfer performance, which
is consistent with MAE for natural images [8]. Additionally, we observed that
transfer performance improves with an increase in pre-trained images, surpassing
ImageNet transfer only when a substantial amount of pre-trained images is used.

Visualization The comparisons of reconstructed image examples among MAE,
denoising MAE, and our proposed deblurring MAE are illustrated in Figure 4.
Although there is no strong evidence that reveals the relationship between recon-
struction quality in pretraining and downstream task performance in MAE-based
approaches, we can still obtain some insights from the reconstruction quality. As
shown in Figure 4, we can clearly observe that the reconstructed images of the
denoising MAE are the smoothest and lost most details among all the three
approaches, followed by the vanilla MAE, and our deblurring MAE achieves
the best reconstruction quality with much finer details. The comparisons indi-
cate that our deblurring MAE can capture critical details that are beneficial for
downstream classification. More comparisons can be found in the appendix.

4 Conclusion and Future Work

In this paper, we propose a novel deblurring MAE by incorporating deblurring
into the proxy task during MAE pretraining for ultrasound image recognition.
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The deblurring task is implemented by inserting image blurring operation prior
to the random masking during pretraining. The integration of deblurring enables
the pretraining pay more attention to recovering the intricate details presented
in ultrasound images, which are critical for downstream image classification.
We explore the effect of several different image blurring methods and find that
Gaussian blurring achieves the best performance and only a limited range of
blurriness has a beneficial effect for pretraining. Based on the optimal blur-
ring method and blurriness, our deblurring MAE achieves state-of-the-art per-
formance in the downstream classification of ultrasound images, indicating the
effectiveness of incorporating deblurring into MAE pretraining for ultrasound
image recognition. However, this work has some limitations. For example, only
one downstream task: nodule classification is evaluated in this study. We plan to
extend our approach to include more tasks such as segmentation in the future.

Acknowledgment. This work was supported by Natural Science Foundation
of Sichuan Province under Grant NO. 2022NSFSC1855.
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Appendices

A Experimental Details

Table 1: Pretraining setting.

config value
optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 256
learning rate schedule cosine decay
warmup epochs 40
augmentation RandomResizedCrop
total training epochs 12000

Table 2: End-to-end fine-tuning setting.

config value
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay 0.75
batch size 256
learning rate schedule cosine decay
warmup epochs 5
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1 (B/L) 0.2 (H)

B Visualization

1

ar
X

iv
:2

30
6.

08
24

9v
3 

 [
cs

.C
V

] 
 1

3 
Ju

l 2
02

3



Table 3: Linear probing setting.

config value
optimizer LARS
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 1024
learning rate schedule cosine decay
warmup epochs 10
augmentation RandomResizedCrop

Original Masked MAE Deblurring MAE 
(Ous)Denoising MAE

Figure 1: Comparisons of reconstruction among MAE, denoising MAE, and our
proposed deblurring MAE.
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