
Masked Vision and Language Pre-training with 

Unimodal and Multimodal Contrastive Losses for 

Medical Visual Question Answering 

Pengfei Li1, Gang Liu1(), Jinlong He1, Zixu Zhao1 and Shenjun Zhong2() 

1 College of Computer Science and Technology, Harbin Engineering University, China 
liugang@hrbeu.edu.com 

2 Monash Biomedical Imaging, Monash University, Australia 
shenjun.zhong@monash.edu 

Abstract. Medical visual question answering (VQA) is a challenging task that 

requires answering clinical questions of a given medical image, by taking con-

sider of both visual and language information. However, due to the small scale 

of training data for medical VQA, pre-training fine-tuning paradigms have been 

a commonly used solution to improve model generalization performance. In this 

paper, we present a novel self-supervised approach that learns unimodal and 

multimodal feature representations of input images and text using medical im-

age caption datasets, by leveraging both unimodal and multimodal contrastive 

losses, along with masked language modeling and image text matching as pre-

training objectives. The pre-trained model is then transferred to downstream 

medical VQA tasks. The proposed approach achieves state-of-the-art (SOTA) 

performance on three publicly available medical VQA datasets with significant 

accuracy improvements of 2.2%, 14.7%, and 1.7% respectively. Besides, we 

conduct a comprehensive analysis to validate the effectiveness of different 

components of the approach and study different pre-training settings. Our codes 

and models are available at https://github.com/pengfeiliHEU/MUMC. 

Keywords: Medical Visual Question Answering, Masked Vision Language 

Pre-training, Unimodal and Multimodal Contrastive Losses 

1 Introduction 

Medical VQA is a specialized domain of VQA that aims to generate answers to natu-

ral language questions about medical images. It is very challenging to train deep 

learning based medical VQA models from scratch, since the medical VQA datasets 

available for research are relatively small in scale. Many existing works are proposed 

to leverage pre-trained visual encoders with external datasets to solve downstream 

medical VQA tasks, such as utilizing denoising autoencoders [1] and meta-models 

[2]. These methods mainly transfer feature encoders that are separately pre-trained on 

unimodal (image or text) tasks. 
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Unlike unimodal pretraining approaches, both image and text feature presentations 

can be enhanced by learning through the visual and language interactions, given rela-

tively richer resources of medical image caption datasets [3-5]. Liu et al. followed the 

work of MOCO [19] that trained teacher model for visual encoder via contrastive loss 

of different image views (by data augmentations) to improve the generalization of 

medical VQA [6]. Eslami et al. utilized CLIP [7] for visual model initialization, and 

learned cross-modality representations from medical image-text pairs by maximizing 

the cosine similarity between the extracted features of medical images and their corre-

sponding captions [8]. Cong et al. devised an innovative framework, which featured a 

semantic focusing module to emphasize image regions that were pertinent to the cap-

tion and a progressive cross-modality comprehension module that iteratively en-

hanced the comprehension of the correlation between the image and caption [9]. Chen 

et al. proposed a medical vision language pre-training approach that used both masked 

image modelling and masked language modelling to jointly learn representations of 

medical images and their corresponding descriptions [10]. However, to the best of our 

knowledge, there have been no existing methods that explore learning both unimodal 

and multimodal features at the pre-training stage for downstream medical VQA tasks. 

In this paper, we proposed a new self-supervised vision language pre-training 

(VLP) approach that applied Masked image and text modeling with Unimodal and 

Multimodal Contrastive losses (MUMC) in the pre-training phase for solving down-

stream medical VQA tasks. The model was pretrained on image caption datasets for 

aligning visual and text information, and transferred to downstream VQA datasets. 

The unimodal and multimodal contrastive losses in our work are applied to (1) align 

image and text features; (2) learn unimodal image encoders via momentum contrasts 

of different views of the same image (i.e. different views are generated by different 

image masks); (3) learn unimodal text encoder via momentum contrasts.  We also 

introduced a new masked image strategy by randomly masking the patches of the 

image with a probability of 25%, which serves as a data augmentation technique to 

further enhance the performance of the model. Our approach outperformed existing 

methods and sets new benchmarks on three medical VQA datasets [11-13], with sig-

nificant enhancements of 2.2%, 14.7%, and 1.7% respectively. Besides, we conducted 

an analysis to verify the effectiveness of different components and find the optimal 

masking probability. We also conducted a qualitative analysis on the attention maps 

using Grad-CAM [14] to validate whether the corresponding part of the image is at-

tended when answering a question. 

2 Methods 

In this section, we provide the detailed description of the proposed approach, which 

includes the network architectures, self-supervised pre-training objectives, and the 

way to fine-tune on downstream medical VQA tasks. 
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2.1 Model Architecture 

In the pre-training phase, the network architecture comprises an image encoder, a text 

encoder, and a multimodal encoder, which are all based on the transformer architec-

ture [15]. As shown in Fig. 1(a), the image encoder leverages a 12-layer Vision Trans-

former (ViT) [16] to extract visual features from the input images, while the text en-

coder employs a 6-layer transformer which is initialized by the first 6 layers of pre-

trained BERT [17]. The last 6 layers of BERT are utilized as the multimodal encoder 

and incorporated cross-attention at each layer, which fuses the visual and linguistic 

features to facilitate learning of multimodal interactions. The model is trained on 

medical image-caption pairs. An image is partitioned into patches of size 16 × 16, 

and 25% of the patches are randomly masked. The remaining unmasked image patch-

es are converted into a sequence of embeddings by an image encoder. The text, i.e. 

the image caption is tokenized into a sequence of tokens using a WordPiece [18] to-

kenizer and fed into the BERT-based text encoder. In addition, the special tokens, 

[CLS] are appended to the beginning of both the image and text sequence.  

 

 

Fig. 1. Overview of the network architecture in both pre-training and fine-tuning phases. 

To transfer the models trained on image caption datasets to the downstream medi-

cal VQA tasks, we utilize the weights from the pre-training stage to initialize the im-

age encoder, text encoder and multimodal encoder, as shown in Fig. 1(b). To generate 

answers, we add an answering decoder with a 6-layer transformer-based decoder to 

the model, which receives the multimodal embeddings and output text tokens. A 

[CLS] token serves as the initial input token for the decoder, and a [SEP] token is 

appended to signify the end of the generated sequence. The downstream VQA model 

is fine-tuned via the masked language model (MLM) loss [17], using ground-truth 

answers as targets. 
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2.2 Unimodal and Multimodal Contrastive Losses 

The proposed self-supervised objective attempts to capture the semantic discrepancy 

between positive and negative samples across both unimodal and multimodal domains 

at the same time. The unimodal contrastive loss (UCL) aims to differentiate between 

examples of one modality, such as images or text, in a latent space to make similar 

examples close. And the multimodal contrastive loss (MCL) learns the alignments 

between both modalities by maximizing the similarity between images and their cor-

responding text captions, while separating from the negative examples. In the imple-

mentation, we maintain two momentum models for image and text encoders respec-

tively to generate different perspectives or representations of the same input sample, 

which serve as positive samples for contrastive learning. 

In detail, we denote the image and caption embeddings from the unimodal image 

encoder and text encoder as 𝑣𝑐𝑙𝑠  and 𝑡𝑐𝑙𝑠 , which are further processed through the 

transformations 𝑔𝑣 and 𝑔𝑡 , to normalize and map the image and text embeddings to be 

lower-dimensional representations. The embeddings are inserted into a lookup table, 

and only the most recent 65,535 pairs of image-text embedding are stored for contras-

tive learning. We utilize the momentum update technique originally proposed in Mo-

Co [19], which is updated every 𝑘 iterations where k is a hyperparameter. We denote 

the ground-truth one-hot similarity by 𝑦𝑖2𝑖(𝑉), 𝑦𝑡2𝑡(𝑇), 𝑦𝑖2𝑡(𝑉), and 𝑦𝑡2𝑖(𝑇), where 

the probability of negative pairs is 0 and the probability of the positive pair is 1.  The 

unimodal contrastive losses and multimodal contrastive losses can be defined as the 

cross-entropy 𝐻  given as follows: 

 𝐿𝑢𝑐𝑙 =
1

2
𝔼(𝑉,𝑇) 𝐷 [𝐻 (𝑦𝑖2𝑖(𝑉),

exp(𝑠(𝑉,𝑉𝑖) 𝜏⁄ )

∑ exp(𝑠(𝑉,𝑉𝑖) 𝜏⁄ )𝑁
𝑛=1

) + 𝐻 (𝑦𝑡2𝑡(𝑇),
𝑒𝑥𝑝 (𝑠(𝑇,𝑇𝑖) 𝜏⁄ )

∑ 𝑒𝑥𝑝 (𝑠(𝑇,𝑇𝑖) 𝜏⁄ )𝑁
𝑛=1

)] (1) 

𝐿𝑚𝑐𝑙 =
1

2
𝔼(𝑉,𝑇) 𝐷 [𝐻 (𝑦𝑖2𝑡(𝑉),

𝑒𝑥𝑝 (𝑠(𝑉,𝑇𝑖) 𝜏⁄ )

∑ 𝑒𝑥𝑝 (𝑠(𝑉,𝑇𝑖) 𝜏⁄ )𝑁
𝑛=1

) + 𝐻 (𝑦𝑡2𝑖(𝑇),
𝑒𝑥𝑝 (𝑠(𝑇,𝑉𝑖) 𝜏⁄ )

∑ 𝑒𝑥𝑝 (𝑠(𝑇,𝑉𝑖) 𝜏⁄ )𝑁
𝑛=1

)] (2) 

where 𝑠 denotes cosine similarity function, 𝑠(V, 𝑉𝑖) = 𝑔𝑣(𝑣𝑐𝑙𝑠)𝑇𝑔𝑣(𝑣𝑐𝑙𝑠)𝑖, 𝑠(T, 𝑇𝑖) =
𝑔𝑡(𝑡𝑐𝑙𝑠)𝑇𝑔𝑡(𝑡𝑐𝑙𝑠)𝑖 , 𝑠(V, 𝑇𝑖) = 𝑔𝑣(𝑣𝑐𝑙𝑠)𝑇𝑔𝑡(𝑡𝑐𝑙𝑠)𝑖 , 𝑠(T, 𝑉𝑖) = 𝑔𝑡(𝑡𝑐𝑙𝑠)𝑇𝑔𝑣(𝑣𝑐𝑙𝑠)𝑖  and 𝜏 

is a learnable temperature parameter. 

2.3 Image Text Matching     

We adopt the image text matching (ITM) strategy similar to prior works [20, 21] as 

one of the training objectives, by creating a binary classification task with negative 

text labels randomly sampled from the same minibatch. The joint representation of the 

image and text are encoded by the multimodal encoder, and utilized as input to the 

binary classification head. The ITM task is optimized using the cross-entropy loss: 

 ℒ𝑖𝑡𝑚 = 𝔼(𝑉,𝑇)𝐷𝐻(𝑦𝑖𝑡𝑚, 𝑝𝑖𝑡𝑚(𝑉, 𝑇)) (3) 

the function 𝐻(, )  represents a cross-entropy computation, where 𝑦𝑖𝑡𝑚  denotes the 

ground-truth label and 𝑝𝑖𝑡𝑚(𝑉, 𝑇) is a function for predicting the class. 
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2.4 Masked Language Modeling     

Masked Language Modeling (MLM) is another pre-trained objective in our approach, 

that predicts masked tokens in text based on both the visual and unmasked contextual 

information. For each caption text, 15% of tokens are randomly masked and replaced 

with the special token, [MASK]. Predictions of the masked tokens are conditioned on 

both unmasked text and image features. We minimize the cross-entropy loss for 

MLM:  

 ℒ𝑚𝑙𝑚 = 𝔼(𝑉,𝑇̂)𝐷𝐻(𝑦𝑚𝑙𝑚, 𝑝𝑚𝑙𝑚(𝑉, 𝑇̂)) (4) 

where 𝐻(, )  is a cross-entropy calculation, 𝑇̂  denotes the masked text token, 𝑦
𝑚𝑙𝑚

 

represents the ground-truth of the masked text token and 𝑝𝑚𝑙𝑚(𝑉, 𝑇̂) is the predicted 

probability of a masked token. 

2.5 Masked Image Strategy 

Besides the training objectives, we introduce a masked image strategy as a data aug-

mentation technique. In our experiment, input images are partitioned into patches 

which are randomly masked with a probability of 25%, and only the unmasked patch-

es are passed through the network. Unlike the previous methods [10, 22], we do not 

utilize reconstruction loss [23], but use this only as a data augmentation method. This 

enables us to process more samples at each step, resulting in a more efficient pre-

training of vision-language models with a similar memory footprint. 

3 Experiments 

3.1 Datasets 

Our model is pre-trained on three datasets: ROCO [3], MedICaT [4], and the Im-

ageCLEF2022 Image Caption Dataset [5]. ROCO comprises over 80,000 image-

caption pairs. MedICaT includes over 217,000 medical images and their correspond-

ing captions. ImageCLEF2022 is another well-known dataset that has nearly 90,000 

pairs of medical images and captions.  

For the downstream medical VQA task, we fine-tune and validate the model on 

three public medical VQA datasets: VQA-RAD [11], PathVQA [12] and SLAKE 

[13]. VQA-RAD has 315 radiology images with 3064 question-answer pairs, with 451 

pairs used for testing. SLAKE has 14,028 pairs of samples which are further divided 

into 70% training, 15% validation, and 15% testing subsets. PathVQA is the largest 

dataset, containing 32,799 pairs of data that are split into training (50%), validation 

(30%), and test (20%) sets.  

There are two types of questions: closed-ended questions that have limited answer 

choices (e.g. "yes" or "no") and open-ended questions that VQA models are required 

to generate answers in free text, which are more challenging. 
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3.2 Implementation Details 

Our method was implemented in Python 3.8 and PyTorch 1.10. The experiments were 

conducted on a server with an Intel Xeon(R) Platinum 8255C and 2 NVIDIA Tesla 

V100 GPUs with 32GB memory each. We pre-trained our model on three medical 

image caption datasets for 40 epochs with a batch size of 64. AdamW [24] optimizer 

was used with a weight decay of 0.002 and an initial learning rate of 1𝑒−4, which 

decayed to 2𝑒−5 by following the cosine schedule. We utilized randomly cropped 

images of 256 × 256 resolution as input, and also applied RandAugment to augment 

more training samples [25]. 

For downstream medical VQA tasks, we fine-tuned our model for 30 epochs with a 

batch size of 8. We used the AdamW optimizer with a reduced learning rate of 2𝑒−5, 

which decayed to 1𝑒−8. Besides, we increased image inputs from a resolution of 

256 × 256 to 384 × 384 and interpolated the positional encoding following [16]. 

3.3 Comparison with the State-of-the-arts 

We performed a comparative evaluation of our model against the existing approaches 

[10, 26] on three benchmark datasets, VQA-RAD, PathVQA and SLAKE. Consistent 

with previous research [1, 2, 6, 8-10, 26, 27], we adopt accuracy as the performance 

metric. We treated VQA as a generative task by calculating similarities between the 

generated answers and candidate list answers, selecting the highest score as the final 

answer. As shown in Table 1, our approach outperformed all other methods on all the 

three datasets in terms of overall performance, and yielded the best accuracy for open-

ended or closed-ended answers. On the VQA-RAD dataset [11], our method achieved 

an absolute margin of 2.2% overall over the current state-of-the-art method, M3AE, 

with improvements of 4.3% and 0.7% on open-ended and closed-ended answers re-

spectively. 

Table 1. Comparisons with the state-of-the-art methods on the VQA-RAD, PathVQA and 

SLAKE test set. 

Methods 
VQA-RAD PathVQA SLAKE 

Open Closed Overall Open Closed Overall Overall 

MEVF [1] 43.9 75.1 62.6 8.1 81.4 44.8 78.6 

MMQ [2] 52.0 72.4 64.3 11.8 82.1 47.1 - 

VQAMix [27] 56.6 79.6 70.4 13.4 83.5 48.6 - 

AMAM [26] 63.8 80.3 73.3 18.2 84.4 50.4 - 

CPRD [6] 61.1 80.4 72.7 - - - 82.1 

PubMedCLIP [8] 60.1 80.0 72.1 - - - 80.1 

MTL [9] 69.8 79.8 75.8 - - - 82.5 

M3AE [10] 67.2 83.5 77.0 - - - 83.2 

MUMC (Ours) 71.5 84.2 79.2 39.0 90.4 65.1 84.9 

On the largest dataset, PathVQA [12], our method significantly outperformed the 

previous state-of-the-art model, AMAM [26], by a substantial margin with improve-

ments of 20.8%, 6.0% and 14.7% on the closed-ended, open-ended, and overall an-

swers, respectively. Moreover, on the SLAKE dataset [13], the proposed approach 



7 

exhibited superior performance compared to the existing state-of-the-art model, 

M3AE, by a margin of 1.7% in terms of overall answer accuracy. 

3.4 Ablation Study 

To further verify the effectiveness of the proposed methods in learning multimodal 

representations, we conducted an ablation study across all three medical VQA da-

tasets. Table 2 shows the overall performance of the medical VQA tasks using various 

pre-training approaches. Compared to the baseline pre-training tasks (i.e., MLM + 

ITM), integrating either UCL or MCL significantly improved the performance of the 

pre-trained model across all medical VQA datasets. Notably, the simultaneous use of 

UCL and MCL achieved a performance increase of 1.1%, 1.0%, and 0.9% on VQA-

RAD, PathVQA, and SLAKE dataset, respectively. 

Table 2. Ablation Study on Different Pre-training Objective Settings. 

Training tasks VQA-RAD 

(Overall) 

PathVQA 

(Overall) 

SLAKE 

(Overall) 

ITM+MLM 74.5 61.5 82.0 

ITM+MLM+UCL 77.3 63.5 83.2 

ITM+MLM+MCL 78.1 64.1 84.0 

MUMC(ITM+MLM+UCL+MCL) 79.2 65.1 84.9 

 

Furthermore, to assess the performance of the proposed masked image strategy and 

identify the optimal masking probability, experiments were conducted by varying the 

masking probabilities of input images at levels of 0%, 25%, 50% and 75%. As pre-

sented in Table 3, the results are consistent among all the three datasets. With 25% 

masking probability, the model yielded the best results, compared to no masking ap-

plied. The performance decreased if 50% and 75% masking probabilities were used. 

Table 3. Study of different masked image probabilities. 

Masking probability VQA-RAD 

(Overall) 

PathVQA 

(Overall) 

SLAKE 

(Overall) 

75% 76.9 63.4 82.6 

50% 78.6 64.3 83.7 

25%  79.2 65.1 84.9 

0% 77.8 64.0 83.2 

3.5 Visualization 

We utilized Grad-CAM [14] to visualize the cross-attention maps between the ques-

tions and images, and analyzed the relevance of the attended image regions for gener-

ating the answers. In Fig. 2, it showed some attention maps that overlayed on the 

original images. For answering open-ended questions, the model accurately attended 

to the relevant infarct regions, as shown in Fig. 2a and Fig. 2b. In Fig. 2a, to answer 

the question, “Where is/are the infarct located?”, the model highlighted the areas that 
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well covered the infarction. Interestingly, the model attended to infarct areas on both 

hemispheres (Fig. 2b) and generated the answer, “Bilateral”. Besides the position-

related questions, in Fig. 2c, it showed the attention map to answer the closed form 

question, “Is there any region in the brain that is lesioned?”. The model successfully 

attended to the lesion area and provided the correct answer of “Yes”. Moreover, the 

model demonstrated its ability to attend to the regions of ribs to answer the counting-

related question in Fig. 2d, where the question was “Are there more than 12 ribs?”, 

and the model accurately outputted the answer “Yes”.  

 

Fig. 2. Visualizations of the image attention maps on medical VQA tasks. 

4 Conclusion 

In this paper, we propose a new method to tackle the challenge of medical VQA tasks, 

which is pre-trained on the medical image caption datasets and then transferred to the 

downstream medical VQA tasks. The proposed self-supervised pre-training approach 

with unimodal and multimodal contrastive losses leads to significant performance 

improvement on three public VQA datasets. Also, using masked images as a data 

augmentation technique is proven to be effective for learning representations on med-

ical visual and language tasks. As a result, our proposed method not only outper-

formed the state-of-the-art methods by a significant margin, but also demonstrated the 

potential for model interpretability. 
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