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Abstract. The foundation models based on pre-training technology have
significantly advanced artificial intelligence from theoretical to practical
applications. These models have facilitated the feasibility of computer-
aided diagnosis for widespread use. Medical contrastive vision-language
pre-training, which does not require human annotations, is an effective
approach for guiding representation learning using description informa-
tion in diagnostic reports. However, the effectiveness of pre-training is
limited by the large-scale semantic overlap and shifting problems in med-
ical field. To address these issues, we propose the Knowledge-Boosting
Contrastive Vision-Language Pre-training framework (KoBo), which in-
tegrates clinical knowledge into the learning of vision-language seman-
tic consistency. The framework uses an unbiased, open-set sample-wise
knowledge representation to measure negative sample noise and sup-
plement the correspondence between vision-language mutual informa-
tion and clinical knowledge. Extensive experiments validate the effect
of our framework on eight tasks including classification, segmentation,
retrieval, and semantic relatedness, achieving comparable or better per-
formance with the zero-shot or few-shot settings. Our code is open on
https://github.com/ChenXiaoFei-CS/KoBo.
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Fig. 1. Our knowledge boosting innovates the paradigm of medical vision-language
contrastive learning, inspired by two problems in the existing architecture.
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(a) Semantic Overlap Problem (within contrast-pair) (b) Semantic Shifting Problem (between contrast-pair)
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Fig. 2. Two key challenges in medical contrastive vision-language pre-training: (a)
Semantic overlap exists between negative samples, falsely pulling apart samples with
similar semantics. (b) Biased expression and negative expression of radiologists cause
the inconsistency of semantics and text morphology between sample pairs, causing
disperse and converging semantic shifting.

1 Introduction

Foundation models have become a significant milestone in artificial intelligence,
from theoretical research to practical applications [2], like world-impacting large
language model ChatGPT [5] and art-history-defining large generative model
DALL-E [20]. In medical image analysis, foundation models are showing promis-
ing future, and pre-training technologies [4,3,8], as the cornerstone of foundation
models, facilitated feasibility of computer-aided diagnosis for widespread use.

Medical contrastive vision-language pre-training [21,15,23,25,10] has shown
great superiority in medical image analysis, because it utilizes easy-accessible
expert interpretation from reports to precisely guide the understanding of image
semantics. Therefore, contrastive vision-language pre-training will break through
the bottleneck of time-consuming and expensive expert annotation [26] and dif-
ficulty in learning fine-grained clinical features with pure-image self-supervised
methods [28]. It will improve data efficiency, and achieve comparable or better
performance when transferred with the zero-shot or few-shot setting, demon-
strating the potential of promoting the ecology of medical artificial intelligence.

However, semantic overlap and semantic shifting are two significant chal-
lenges in medical vision-language contrastive learning (Fig.2). (a) Semantic
Overlap Problem: There is overlapping semantics between negative samples
which should be semantic-distinct, e.g. two medical images sharing the same dis-
ease are contrasted which brings noise [25]. Once directly learning, cross-modal
representations of the same disease are falsely pulled apart, making the model
unable to capture the disease-corresponding image feature. (b) Semantic Shift-
ing Problem: Radiologists have writing preferences, e.g. biased for their own
familiar concepts and observation view towards similar visual features, and in-
clined for negation expression towards opposite visual features. Distinct concepts
describing the same image are morphologically dissimilar for text encoder, while
the negation expression of concepts is morphologically similar [17]. Once lack
of concept correlation and negation identification, representations with similar
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a) Our KoBo learns vision-language semantic consistency
for better image representation learning with knowledge boosting
a) Our KoBo learns vision-language semantic consistency
for better image representation learning with knowledge boosting
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Fig. 3. Overview of our proposed architecture, where additional clinical knowledge is
embedded in. Image encoder, text encoder, graph encoder, knowledge semantic en-
hancement module, and knowledge semantic guidance module are presented.

semantics are falsely pushed apart and those with opposite semantics are falsely
pushed together, interfering with the learning of significant representation[7].

Rethinking the existing methods and challenges of medical contrastive vision-
language pre-training [10,26,23,25,21], the lack of clinical knowledge constraints
in dual-free-encoding contrastive learning structure is the key problem. Exist-
ing methods utilize sample-wise differences to learn mutual information between
modalities, improving the representation quality based on the correspondence of
learned mutual information and clinical knowledge. However, semantic overlap
reduces the learning efficiency of mutual information with the noisy difference,
and the mentioned correspondence is vulnerable to semantic shifting. Therefore,
if we are able to embed an unbiased, comprehensive representation as knowledge
boosting, it will reduce the negative noise and supplement the lacking correspon-
dence. It motivates us to measure the noise with similarities between knowledge
representation, and fuse the correspondence between knowledge and modality.

In this paper, we propose a novel knowledge-boosting medical contrastive
vision-language pre-training framework (KoBo). Our contributions are as fol-
lowed. 1) Our KoBo pre-trains a powerful image encoder including visual infor-
mation corresponding with the disease described in texts, where knowledge is
embedded in our paradigm (Fig.1) to boost the learning of vision-language con-
sistency. 2) We propose Knowledge Semantic Enhancement (KSE) module to re-
duce the negative sample noise with the similarity between open-set sample-wise
knowledge embeddings. 3) We propose Knowledge Semantic Guidance (KSG)
module to adjust the semantic shifting during pre-training, fusing the modality
feature with unbiased knowledge embeddings for supplementing the correspon-
dence between modality mutual information and clinical knowledge.
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2 Methodology

Our Knowledge-Boosting Contrastive Vision-Language Pre-training framework
(Fig.3) boosts vision-language learning with additional clinical knowledge. It
contains two modules: KSE for reducing the negative effect of semantic overlap,
and KSG for adjusting semantic shifting, aimed at learning effective representa-
tion by maximizing semantic consistency between paired image and text features.

2.1 Framework Formulation

In the framework, a powerful image encoder EncI and text encoder EncT is pre-
trained, alongside a graph encoder EncG. Given a pair of medical image and diag-
nostic report {Ii, TReport

i }, Ii ∈ RH×W×C , a sentence TSent
i is randomly selected

from TReport
i as a caption comprised of several tokens {w1, w2, ..., wNL

}. EncI

outputs global feature zI,Gi and local feature zI,Li for NI sub-regions, which is
from the intermediate feature map. TSent

i is fed into EncT , obtaining global sen-
tence feature zT,G

i , and local token feature zT,L
i . Distinct projectors are applied

to map features into embeddings with lower semantic dim DS , finally getting
global and local image embeddings vi ∈ RDS , Ri = {ri1, ri2, ..., riNI

} ∈ RNI×DS ,
and text embedding ti ∈ RDS , Li = {li1, li2, ..., liNL

} ∈ RNL×DS .
Besides using reports and images as the input for our pre-training network,

we also input an external knowledge graph to the whole framework for improving
the correspondence of modality features and clinical knowledge. The knowledge
refers to relations between clinical pathology concepts in the radiology domain
in the format of triplet G = {(chk

, rk, ctk)}
NG

k=1, such as UMLS [14]. Domain
knowledge embedding for each concept E = {es}NE

s=1 ∈ RNE×DS is the output of
EncG(G).

2.2 Knowledge Semantic Enhancement

To relieve the semantic overlap problem, where negative sample noise harms
the effective learning of vision-language mutual information, we propose a se-
mantic enhancement module to identify the noise using sample-wise similarities.
The similarity is estimated upon sample knowledge ki, calculated from domain
knowledge embedding E and concept set from texts with negation marker.
Getting Sample knowledge: Firstly, we acquire a concept set that contains
pathology concepts extracted from texts with Negbio N (·) [17]. The image-view
concept set which involves the overall observation is from the whole report, while
the text-view set only covers the chosen sentence. Secondly, the image and text
sample knowledge, as an auxiliary semantic estimation, is selected from domain
knowledge embedding E according to the corresponding concept set from the
report and sentence respectively, if not considering the negation problem.

Furthermore, considering the challenge that negation expression of concepts
commonly exists in radiology reports, which has opposite semantics with similar
morphology for text encoder (converging shifting), we randomly generate a No



KoBo: Knowledge-Boosting Contrastive Vision-Language Pre-training 5

Finding embedding NF and a variant of domain knowledge embedding Ẽ =
{ẽ1, ẽ2, ..., ẽNE

} of the same size as E with Xavier distribution. Upon the negation
mark of concept, sample knowledge embedding ki = {ki,s}NES

s=1 is denoted below:

ki,s =

{
ei,s ci,s ∈ N (Ti), P (ci,s) ̸= Neg

ϵ · NF + (1− ϵ)ẽi,s ci,s ∈ N (Ti), P (ci,s) = Neg
(1)

where P is the negation mark of concepts, and ei,s, ẽi,s is the corresponding
position of ci,s in E and Ẽ. ϵ tunes the variance of negative sample knowledge.
kImage
i,s and kText

i,s are ki from the image-view and text-view concept set.
Estimation of Similarities: The semantic similarity is calculated upon sample
knowledge. For each image-text pair, a max-match strategy is adopted to match
each two sample knowledge embedding with the most similar one for calculating
cosine similarities. Sample-wise similarities are aggregated with averages.

λIT
ij =

1

NES′

NES′∑
s=1

NES
max
s′=1

(kImage
i,s )T kText

j,s′ , λTI
ij =

1

NES

NES∑
s=1

NES′
max
s′=1

(kText
i,s )T kImage

j,s′

(2)
where NES is the number of concepts in TSent

i , while NES′ is that in TReport
i .

Knowledge Semantic Enhancement Loss: We utilize the sample-wise se-
mantic similarity to estimate negative sample noise, placed in the sample weight
of the contrastive loss [26,18], where paired cross-modal embedding are pushed
together and unpaired ones are pulled apart. The importance of estimated noisy
negative samples is relatively smaller for a subtle pulling between cross-modal
embeddings. The semantic enhancement loss is below:

LSE = − 1

N

N∑
i=1

(log
exp(vTi ti/τG)

N∑
j=1

(1− λIT
ij ) exp(vTi tj/τG)

+log
exp(tTi vi/τG)

N∑
j=1

(1− λTI
ij ) exp(tTi vj/τG)

)

(3)
where τG is the global temperature, and λIT , λTI is the sample similarity mea-
surement. specifically, λi,i is fixed to zero to persist the positive sample weight.

2.3 Knowledge Semantic Guidance

In this section, we propose a semantic guidance module to solve the semantic
shifting problem. Utilizing sample knowledge from Section 2.2 which contains
concept correlation and negation information, the adverse effects of both dis-
perse and converging shifting are alleviated by fusing domain-sample knowledge
with global-local modality embeddings. We design four contrast schemes: knowl-
edge anchor guidance for adjusting disperse shifting, semantic knowledge refine-
ment for filtering converging shifting, vision semantic response for consolidating
knowledge fusion, and semantic bridge guidance for narrowing the modality gap.
Knowledge Anchor Guidance: Disperse shifting will be adjusted if there are



6 Chen et al.

unbiased anchors in semantic space as priors to attract modality embeddings
towards clinical semantics, and domain knowledge embedding does a good job.
We define knowledge fused embeddings HIK

i = ATTN(vi, E,E) and HTK
i =

ATTN(ti, E,E), and ATTN(Q,K, V ) means the attention function [10]:

LKAG = − 1

N

N∑
i=1

(log
exp(HIK

i ·HTK
i /τG)∑N

j=1 exp(H
IK
i ·HTK

j /τG)
+log

exp(HTK
i ·HIK

i /τG)∑N
j=1 exp(H

TK
i ·HIK

j /τG)
)

(4)
where image-weighted and text-weighted knowledge is globally contrasted.
Semantic Knowledge Refinement: Wrong-converging pairs have distinct in-
trinsic responses on sample knowledge from image and text. Hence, we propose
to utilize sample knowledge to refine these falsely gathered dissimilar pairs. We
define HSI

ij = ATTN(kText
i , Rj , Rj) and HST

ij = ATTN(kText
i , Lj , Lj):

LSKR = − 1

N

N∑
i=1

log
exp( 1

NES ·τL

∑NES

k=1 HSI
iik ·HST

iik )∑N
j=1 exp(

1
NES ·τL

∑NES

k=1 HSI
ijk ·HST

ijk )
(5)

where local semantic-weighted image and text embeddings are contrasted.
Vision Semantic Response: Instead of matching single token with image sub-
regions in [10], we propose to match the concept with sub-regions. As the con-
cept is a more complete and atomic semantic unit, local response upon concept
will better guide the representation learning with a fine-grained semantic match
through an in-sample contrast. We define HIS

i = ATTN(Ri, k
Text
i , kText

i ), and
the fusion of knowledge will be consolidated as below:

LV SR = − 1

N ·NI

N∑
i=1

NI∑
k=1

log
exp(HIS

ik · rik/τL)∑NI

k′=1 exp(H
IS
ik · rik′/τL)

(6)

where there is an in-sample local contrast between HIS
i and vision features.

Semantic Bridge Guidance: We propose to narrow disperse shifting enlarged
by the modality gap between vision and language. Specifically, the gap is bridged
by the fusion of domain knowledge which is better compatible with text:

LSBG = − 1

N

N∑
i=1

(log
exp(HIK

i · ti/τG)∑N
j=1 exp(H

IK
i · tj/τG)

+ log
exp(ti ·HIK

i /τG)∑N
j=1 exp(ti ·HIK

j /τG)
)

(7)
where the image-weighted domain knowledge is contrasted with text features
between samples. Finally, LSG is aggregated by these four parts as below:

LSG = λ1LKAG + λ2LSKR + λ3LV SR + λ4LSBG (8)

3 Experiment

Experiment Protocol: Pre-training performs on MIMIC-CXR [12] following
the pre-process style of [9]. The impression section of reports and frontal view
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Table 1. Comparison results in eight downstream tasks. (*) defines that official pre-
trained weight is used, and the remaining methods are reproduced with the same batch
size, pre-processing and the evaluation. CLS, RR, SR, and SEG mean classification,
retrieval, semantic relatedness and semantic segmentation, V or L means vision and
language tasks. Few-shot-Frozen means the frozen encoder of the backbone and only
1% of total training data. ResNet-50 is the equal-comparing backbone except for KoBo-
Vit. The best two results are highlighted in underlined red and violet.

Method

Zero-shot Few-shot-Frozen
CLS(V+L)
CheXpert
(Auroc)

RR(V)
CheXpert5X200

(mAP)

RR(V+L)
MIMIC
(mAP)

SR(L)
UMNSRS
(Pearson)

SR(L)
MIMIC

(Pearson)

CLS(V)
CheXpert
(Auroc)

SEG(V)
SIIM
(Dice)

CLS(V)
Covidx
(Acc)

CLIP[18](*) 0.4702 0.2544 0.7577 0.1985 -0.2879 0.5748 / 0.8975
ConVIRT[26] 0.8252 0.3808 0.8482 0.2506 0.1429 0.8548 0.4992 0.9475

Gloria[10] 0.8257 0.3875 0.8390 0.2294 0.1100 0.8492 0.5479 0.9250
MGCA[23] 0.8496 0.3906 0.8428 0.1889 0.1809 0.8616 0.5696 0.9375

MedCLIP[25](*) 0.7805 0.4298 0.7258 0.2032 -0.1321 0.8214 0.5619 0.9325
KoBo 0.8590 0.3918 0.8467 0.2563 0.3712 0.8628 0.6393 0.9550

KoBo-Vit 0.8635 0.4123 0.8455 0.1824 0.4229 0.8660 0.6554 0.9525
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Fig. 4. (a) Module ablation study of our KoBo framework is performed on Covidx
dataset compared with ImageNet and random initialization, upon few-shot frozen set-
ting. (b) Data ablation study is performed on CheXpert with frozen setting when
classification training data amount reduces to 25%, 10% and 1%.

of images are selected to generate 203k image-report pair. Five downstream
task datasets (CheXpert [11], Covidx [24], MIMIC-CXR, UMNSRS [16] and
SIIM [22]) are applied on eight tasks. Semantic relatedness is to verify the
text understanding of radiology concepts, where text embedding with certain
prompts predicts the relatedness. A new semantic relatedness benchmark is gen-
erated from MIMIC-CXR, adding in the extra negation discriminating. CheX-
pert5X200 [10](Multi-classification) is from CheXpert, and CheXpert-labeller[11]
generates retrieval labels in MIMIC-CXR. More details are in appendix.
For implementation, ResNet50 [6] and Vit [13] are image encoder, and BioClini-
calBERT [1] is the text encoder. CompGCN with LTE [27] is our graph encoder,
and domain knowledge contains 10,244 concepts in UMLS which exist in MIMIC-
CXR. Negbio [17] combined with UMLS disambiguation tool [14] serves as N (·).
Embeddings are projected into the dim of 256. Pre-training has the batch size
of 100 and max epochs of 50 based on Pytorch on two RTX3090 GPUs. Adam
optimizer with the learning rate of 5e-5 and ReduceLR scheduler are applied.
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Fig. 5. Visualization of pneumothorax and atelectasis. AblationCAM [19] generates the
class activate map (CAM) upon last layer of Kobo-ResNet. There is strong consistency
between CAM, prediction logits and segmentation label. t-SNE [23] is applied on image
embedding from CheXpert-valid, showing gathering cluster trend of disease samples.

τG is 0.07 and τL is 0.1. λ in KSG loss are all 0.25, while ϵ in KSE loss is 0.1.

Comparison Study: Table 1 verifies our powerful representation ability, reach-
ing state-of-art in classification, segmentation, and semantic relatedness com-
pared with existing vision-language pre-training tasks, while our method is also
top two for retrieval. In zero-shot classification tasks, our KoBo outperforms
MGCA and ConVIRT 0.94% and 3.38% respectively, exceeding most methods
even in their training setting. For CheXpert5X200, our framework is second only
to MedCLIP which presents a superior performance in this dataset. In three few-
shot setting task, our KoBo has an absolute leading position.

Ablation Study: As is demonstrated in Fig.4, we perform module ablation
and data amount ablation. (a) For module ablation, both modules bring bene-
fits in representation learning and are respectively effective. When KSG module
is removed, our KoBo also extracts effective feature related to pneumonia with
a subtle decrease of 0.51%. When KSE is removed, there is a reduction of 1.25%
accuracy. (b) For data amount ablation, KoBo has better data robustness with
a subtle decrease when training data reduce to 1%. KoBo also has a superior
transfer ability with an absolutely better AUC with 1% data than ImageNet
with all training data than ImageNet with all training data.

Qualitative Analysis: In Fig.5, our Kobo has learned fine-grained and ef-
fective image feature with the fusion of knowledge modeling. The deepest region
in the first image gathered on the top left side, showing an obvious expansion on
the right lung. There is consistency with the expert annotation and our output
logit. The precise location of atelectasis region in CAM of second image and
clustering trend interpret for the increase in zero-shot classification.
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4 Conclusion

In our paper, we propose a Knowledge-Boosting Contrastive Vision-Language
Pre-traing framework (KoBo). Sample and domain knowledge are used to dif-
ferentiate noisy negative samples and supplement the correspondence between
modality and clinical knowledge. Our experiments on eight tasks verify the effec-
tiveness of our framework. We hope that our work will encourage more research
on knowledge-granularity alignment in medical vision-language learning.
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