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Abstract. Methods for out-of-distribution (OOD) detection that scale
to 3D data are crucial components of any real-world clinical deep learn-
ing system. Classic denoising diffusion probabilistic models (DDPMs)
have been recently proposed as a robust way to perform reconstruction-
based OOD detection on 2D datasets, but do not trivially scale to 3D
data. In this work, we propose to use Latent Diffusion Models (LDMs),
which enable the scaling of DDPMs to high-resolution 3D medical data.
We validate the proposed approach on near- and far-OOD datasets and
compare it to a recently proposed, 3D-enabled approach using Latent
Transformer Models (LTMs). Not only does the proposed LDM-based ap-
proach achieve statistically significant better performance, it also shows
less sensitivity to the underlying latent representation, more favourable
memory scaling, and produces better spatial anomaly maps. Code is
available at https://github.com/marksgraham/ddpm-ood.
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1 Introduction

Methods for out-of-distribution (OOD) detection are a crucial component of any
machine learning pipeline that is deployed in the real world. They are partic-
ularly necessary for pipelines that employ neural networks, which perform well
on data drawn from the distribution they were trained on but can produce un-
expected results when given OOD data. For medical applications, methods for
OOD detection must be able to detect both far-OOD data, such as images of a
different organ or modality to the in-distribution data, and near-OOD data, such
as in-distribution data corrupted by imaging artefacts. It is also necessary that
these methods can operate on high-resolution 3D data. In this work, we focus
on methods trained in a fully unsupervised way; without any labels or access to
OOD data at train time.
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Recently, Latent Transformer Models (LTMs) [9] have proven themselves
to be effective for anomaly detection and synthesis in medical data [23,21,27].
These two-stage models first use a VQ-VAE [20] or VQ-GAN [9] to provide
a compressed, discrete representation of the imaging data. An autoregressive
Transformer [29] can then be trained on a flattened sequence of this representa-
tion. LTMs are particularly valuable in medical data, where the high input size
makes training a Transformer on raw pixels infeasible. Recently, these models
have been shown to be effective for 3D OOD detection by using the Transformer’s
likelihood of the compressed sequence to identify both far- and near-OOD sam-
ples [11]. These models can also provide spatial anomaly maps that highlight the
regions of the image considered to be OOD, particularly valuable for highlighting
localised artefacts in near-OOD data.

However, LTMs have some disadvantages. Firstly, likelihood models have
well documented weaknesses when used for OOD detection [19,3,13], caused by
focusing on low-level image features [12,26]. It can help to measure likelihood
in a more abstract representation space, such as that provided by a VQ-VAE
[8], but how to train models that provide optimal representations for assessing
likelihood is still an open research problem. For example, [11] showed in an
ablation study that LTMs fail at OOD when lower levels of VQ-VAE compression
are used. Secondly, the memory requirements of Transformers mean that even
with high compression rates, the technique cannot scale to very high-resolution
medical data, such as a whole-body CT with an image dimension 5123. Finally,
the spatial anomalies maps produced by LTMs are low resolution, being in the
space of the latent representation rather than that of the image itself.

A promising avenue for OOD detection is denoising diffusion probabilistic
model (DDPM)-based OOD detection [10]. This approach works by taking the
input images and noising them multiple times to different noise levels. The model
is used to denoise each of these noised images, which are compared to the input;
the key idea is that the model will only successfully denoise in-distribution (ID)
data. The method has shown promising results on 2D data [10] but cannot be
trivially extended to 3D; as even extending DDPMs to work on high-resolution
2D data is an area of active research. We propose to scale it to 3D volumetric data
through the use of Latent Diffusion Models (LDMs). These models, analogous to
LTMs, use a first-stage VQ-GAN to compress the input. The DDPM then learns
to denoise these compressed representations, which are then decoded and their
similarity to the input image is measured directly in the original image space.

The proposed LDM-based OOD detection offers the potential to address the
three disadvantages of an LTM-based approach. Firstly, as the method is not like-
lihood based, it is not necessary that the VQ-GAN provides an ill-defined ‘good
representation’. Rather, the only requirement is that it reconstructs the inputs
well, something easy to quantify using reconstruction quality metrics. Secondly,
DDPMs have more favourable memory scaling behaviour than Transformers, al-
lowing them to be trained on higher-dimensional representations. Finally, as the
comparisons are performed at the native resolution, LDMs can produce high-
resolution spatial anomaly maps. We evaluate both the LTM and the proposed
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LDM model on several far- and near-OOD detection tasks and show that LDMs
overcome the three main failings of LTMs: that their performance is less re-
liant on the quality of the first stage model, that they can be trained on higher
dimensional inputs, and that they produce higher resolution anomaly maps.

2 Methods

We begin with a brief overview of LDMs and relevant notation before describing
how they are used for OOD detection and to estimate spatial anomaly maps.

2.1 Latent Diffusion Models

LDMs are trained in two stages. A first stage model, here a VQ-GAN, is trained
to compress the input image into a latent representation. A DDPM [14] is trained
to learn to sample from the distribution of these latent representations through
iterative denoising.

VQ-GAN: The VQ-GAN operates on a 3D input of size x ∈ RH×W×D

and consists of an encoder E that compresses to a latent space z ∈ Rh×w×d×n,
where n is the dimension of the latent embedding vector. This representation is
quantised by looking up the nearest value of each representation in a codebook
containing K elements and replacing the embedding vector of length d with
the codebook index, k, producing zq ∈ Rh×w×d. A decoder G operates on this
quantised representation to produce a reconstruction, x̂ ∈ RH×W×D.

In a VQ-VAE [20], E, G and the codebook are jointly learnt with a L2 loss
on the reconstructions and a codebook loss. The VG-GAN [9] aims to produce
higher quality reconstructions by employing a discriminator D and training ad-
versarially, and including a perceptual loss component [32] in addition to the L2

reconstruction loss. Following [28], we also add a spectral loss component to the
reconstruction losses [7].

The encoder and decoder are convolutional networks of l levels. There is
a simple relationship between the spatial dimension of the latent space, the
input, and number of levels: h,w, d = H

2l
, W
2l
, D
2l
, so the latent space is 23l times

smaller spatially than the input image, with a 4× 23l reduction in memory size
when accounting for the conversion from a float to integer representation. In
practice, most works use l = 3 (512× spatial compression) or l = 4 (4096×
spatial compression); it is challenging to train a VQ-GAN at higher compression
rates.

DDPM: A DDPM is then trained on the latent embedding z (the de-
quantised latent). During training, noise is added to z according to a timestep t
and a fixed Gaussian noise schedule defined by βt to produce noised samples zt,
such that

q(zt|z0) = N
(
zt|

√
ᾱtz0, (1− ᾱ)I

)
(1)

where we use z0 to refer to the noise-free latent z, we have 0 ≤ t ≤ T , and
αt := 1 − βt and ᾱt :=

∏t
s=1 αs. We design βt to increase with t such that the
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latent zT is close to an isotropic Gaussian. We seek to train a network that can
perform the reverse or denoising process, which can also be written as a Gaussian
transition:

pθ(zt−1|zt) = N (zt−1|µθ(zt, t),Σθ(zt, t)) (2)

In practice, following [14], we can train a network ϵθ(zt, t) to directly predict
the noise used in the forward noising process, ϵ. We can train with a simplified
loss Lsimple(θ) = Et,z0,ϵ

[
∥ϵ− ϵθ (zt)∥2

]
, and denoise according to

zt−1 =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ (zt, t)

)
+ σtn (3)

where n ∼ N (0, I).
While in most applications an isotropic Gaussian is drawn and iteratively

denoised to draw samples from the model, in this work, we take a latent input
z0 and noise to zt for a range of values of t < T and obtain their reconstructions,
ẑ0,t = pθ(z0|zt).

2.2 OOD detection with LDMs

In [10], an input image x that has been noised to a range of t-values spanning
the range 0 < t < T is then denoised to obtain x̂0,t, and we measure the simi-
larity for each reconstruction, S(x̂0,t,x). These multiple similarity measures are
then combined to produce a single score per input, with a high similarity score
suggesting the input is more in-distribution. Typically, reconstruction methods
work by reconstruction through some information bottleneck - for an autoen-
coder, this might be the dimension of the latent space; for a denoising model,
this is the amount of noise applied - with the principal that ID images will be
successfully reconstructed through the bottleneck, yielding high similarity with
the input, and OOD images will not. Prior works have shown the performance
becomes dependent on the choice of the bottleneck - too small and even ID in-
puts are poorly reconstructed, too large and OOD inputs are well reconstructed
[18,22,6,33]. Reconstructing from multiple t-values addresses this problem by
considering reconstructions from multiple bottlenecks per image, outperforming
prior reconstruction-based methods [10].

In order to scale to 3D data, we reconstruct an input x in the latent space of
the VQ-GAN, z = E (x). Reconstructions are performed using the PLMS sam-
pler [17], which allows for high-quality reconstructions with significantly fewer
reconstruction steps. The similarity is measured in the original image space by
decoding the reconstructed latents, S (G (ẑ0,t) ,x). As recommended by [10], we
measure both the mean-squared error (MSE) and the perceptual similarity [32]
for each reconstruction, yielding a total of 2N similarity measures for the N
reconstructions performed. As the perceptual loss operates on 2D images, we
measure it on all slices in the coronal, axial, and sagittal planes and average
these values to produce a single value per 3D volume. Each similarity metric is
converted into a z-score using mean and standard deviation parameters calcu-
lated on the validation set, and are then averaged to produce a single score.
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2.3 Spatial anomaly maps

To highlight spatial anomalies, we aggregate a set of reconstruction error maps.
We select reconstructions from t-values = [100, 200, 300, 400], calculate the pixel-
wise mean absolute error (MAE), z-score these MAE maps using the pixel-
wise mean and standard deviation from the validation set, and then average to
produce a single spatial map per input image.

3 Experiments

3.1 Data

We use three datasets to test the ability of our method to flag OOD values in
both the near- and far-OOD cases. The CROMIS dataset [30,31] consists of 683
head CT scans and was used as the train and validation set for all models, with
a 614/69 split. The KCH dataset consists of 47 head CTs acquired indepen-
dently from CROMIS, and was used as the in-distribution test set. To produce
near-OOD data, a number of corruptions were applied to this dataset, designed
to represent a number of acquisition/ data preprocessing errors. These were: ad-
dition of Gaussian noise to the images at three levels (σ = 0.01, 0.1, 0.2), setting
the background to values different to the 0 used during training (0.3, 0.6, 1), in-
verting the image through either of the three imaging planes, removing a chunk
of adjacent slices from either the top or centre of the volume, skull-stripping
(the models were trained on unstripped images), and setting all pixel values to
either 1% or 10% of their true values (imitating an error in intensity scaling
during preprocessing). Applying each corruption to each ID image yielded a to-
tal of 705 near-OOD images. The Decathlon dataset [1] comprises a range of
3D imaging volumes that are not head CTs and was used to represent far-OOD
data. We selected 22 images from each of the ten classes. All CT head images
were affinely registered to MNI space, resampled to 1mm isotropic, and cropped
to a 176 × 208 × 176 grid. For the images in the Decathlon dataset, all were
resampled to be 1mm isotropic and either cropped or zero-padded depending
on size to produce a 176 × 216 × 176 grid. All CT images had their intensities
clamped between [−15, 100] and then rescaled to lie in the range [0, 1]. All non-
CT images were rescaled based on their minimum and maximum values to lie in
the [0, 1] range.

3.2 Implementation details

All models were implemented in PyTorch v1.13.1 using the MONAI framework
v1.1.0 [2]. Code is available at https://github.com/marksgraham/ddpm-ood.
LTMmodel code can be found at https://github.com/marksgraham/transformer-ood.

LDMs: VQ-GANS were trained with levels l = 2, 3, or 4 levels with 1 con-
volutional layer and 3 residual blocks per level, each with 128 channels. Training
with l = 3/4 represents standard practice, training with l = 2 (64× spatial com-
pression) was done to simulate a situation with higher-resolution input data. All

https://github.com/marksgraham/ddpm-ood
https://github.com/marksgraham/transformer-ood
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VQ-GANs had an embedding dim of 64, and the 2, 3, 4 level models have a
codebook size of 64, 256, 1024, respectively. Models were trained with a percep-
tual loss weight of 0.001, an adversarial weight loss of 0.01, and all other losses
unweighted. Models were trained with a batch size of 64 for 500 epochs on an
A100, using the Adam optimizer [16] with a learning rate of 3× 10−4 and early
stopping if the validation loss did not decrease over 15 epochs. The LDM used a
time-conditioned UNet architecture as in [25], with three levels with (128, 256,
256) channels, 1 residual block per level, and attention in the deepest level only.
The noise schedule had T = 1000 steps with a scaled linear noise schedule with
β0 = 0.0015 and βT = 0.0195. Models were trained with a batch size of 112 on
an A100 with the Adam optimizer, learning rate 2.5 × 10−5 for 12,000 epochs,
with early stopping. During reconstruction, the PLMS scheduler was used with
100 timesteps. Reconstructions were performed from 50 t values spaced evenly
over the interval [0, 1000].

LTM: The Latent Transformer Models were trained on the same VQ-GAN
bases using the procedure described in [11], using a 22-layer Transformer with
dimension 256 in the attention layers and 8 attention heads. The authors in [11]
used the Performer architecture [4], which uses a linear approximation to the
attention matrix to reduce memory costs and enable training on larger sequence
lengths. Instead, we use the recently introduced memory efficient attention mech-
anism [24] to calculate exact attention with reduced memory costs. This enables
us to train a full Transformer on a 3-level VQ-GAN embedding, with a sequence
length of 22× 27× 22 = 13, 068. Neither the Performer nor the memory-efficient
Transformer was able to train on the 2-level embedding, with a sequence length
of 44× 52× 44 = 100, 672. Models were trained on an A100 with a batch size of
128 using Adam with a learning rate of 10−4.

4 Results & Discussion

Results and associated statistical tests are shown in Table 1 as AUC scores, with
tests for differences in AUC performed using Delong’s method [5]. At 4-levels,
the LDM and LTM both perform well, albeit with the proposed LDM perform-
ing better on certain OOD datasets. LTM performance degrades when trained
on a 3-level model, but LDM performance remains high. The 3-level LTM result
is in agreement with the findings in [11]. This is likely caused by the previously
discussed tendency for likelihood-based models, such as Transformers, to be sen-
sitive to the quality of the underlying representation. For instance, [12] showed
that likelihood-based models can fail unless forced to focus on high-level image
features. We posit that at the high compression rates of a 4-level VQ-GAN the
representation encodes higher-level features, but at 3-levels the representation
can encode lower-level features, making it harder for likelihood-based models to
perform well. By contrast, the LDM-based method only requires that the VG-
GAN produces reasonable reconstructions. While memory constraints prevented
training a 2-level LTM, the more modest requirements on the UNet-based LDM
meant it was possible to train. This result has implications for the application of
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Table 1. AUC scores for identifying OOD data, with the CT-2 dataset used as the
in-distribution test set. Results shown split according to the number of levels in the
VQ-GAN. Tests for difference in AUC compare each LTM and LDM models with
the same VQ-GAN base, bold values are differences significant with p < 0.001 and
underlined values significant with p < 0.05. Results are shown as N/A for the 2-level
LTM as it was not possible to train a Transformer on such a long sequence.

Dataset Model
2-level 3-level 4-level

LTM LDM LTM LDM LTM LDM

F
a
r-

O
O

D

Head MR N/A 72 0 100 100 100
Colon CT N/A 100 100 100 100 100
Hepatic CT N/A 100 100 100 99.9 100
Hippocampal MR N/A 3.51 0 100 100 100
Liver CT N/A 100 100 100 99.8 100
Lung CT N/A 100 89 100 100 100
Pancreas CT N/A 100 100 100 99.3 100
Prostate MR N/A 99.9 0 100 100 100
Spleen CT N/A 100 100 100 99.6 100
Cardiac MR N/A 100 90 100 100 100

N
ea

r-
O

O
D

Noise σ = 0.01 N/A 59.7 48.1 59.3 50.7 54.5
Noise σ = 0.1 N/A 100 57.5 100 44.7 100
Noise σ = 0.2 N/A 100 88.3 100 45.6 100
BG value=0.3 N/A 100 100 100 100 100
BG value=0.6 N/A 100 100 100 100 100
BG value=1.0 N/A 100 100 100 100 100
Flip L-R N/A 53.5 49.4 61.2 51.1 58.6
Flip A-P N/A 100 65.6 100 90.7 100
Flip I-S N/A 100 69.7 100 90.5 100
Chunk top N/A 46.1 28.6 94.6 97.6 99.8
Chunk middle N/A 94.4 22 100 96.2 100
Skull stripped N/A 98.1 0 100 100 100
Scaling 1% N/A 0.317 0 100 100 100
Scaling 10% N/A 100 0 100 100 100

very high-resolution medical data: for instance, a whole-body CT with an image
dimension 5123 would have a latent dimension 323 even with 4-level compres-
sion, too large to train an LTM on but comfortably within the reach of a LDM.
The 2-level LDM had reduced performance on two classes that have many pixels
with an intensity close to 0 (Hippocampal MR, and Scaling 1%). Recent research
shows that at higher resolutions, the effective SNR increases if the noise schedule
is kept constant [15]. It seems this effect made it possible for the 2-level LDM to
reconstruct these two OOD classes with low error for many values of t. In future
work we will look into scaling the noise schedule with LDM input size.

Anomaly maps are shown in Figure 4 for near-OOD cases with a spatially lo-
calised anomaly. The LDM-based maps are high-resolution, as they are generated
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3-layer 4-layer

LTM LDM LTM LDM

Normal

Noise 

BG 
=1.0

Chunk
middle

Chunk top

Skull
stripped

Scaling
10%

Image
LDM

Fig. 1. Example anomaly maps for models based on 3- and 4-level VQ-GANs. Maps
for each model are shown on the same colour scale, but the scales vary between each
model to obtain the best display for each model. Brighter regions are more anomalous.

in image space, and localise the relevant anomalies. The LTM maps are lower
resolution, as they are generated in latent space, but more significantly often fail
to localise the relevant anomalies. This is most obvious in anomalies that cause
missing signal, such as missing chunks, skulls, or image scaling, which are flagged
as low-anomaly regions. This is caused by the tendency of likelihood-based mod-
els to view regions with low complexity, such as blank areas, as high-likelihood
[26]. The anomaly is sometimes picked up but not well localised, notable in the
‘chunk top’ example at 4-levels. Here, the transition between brain tissue and
the missing chunk is flagged as anomalous rather than the chunk itself.

Memory and time requirements for all models are tabulated in Supplementary
A. These confirm the LDM’s reduced memory use compared to the LTM. All
models run in < 30s, making them feasible in a clinical setting.
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5 Conclusion

We have introduced Latent Diffusion Models for 3D out-of-distribution detection.
Our method outperforms the recently proposed Latent Transformer Model when
assessed on both near- and far-OOD data. Moreover, we show LDMs address
three key weaknesses of LTMs: their performance is less sensitive to the quality of
the latent representation they are trained on, they have more favourable memory
scaling that allows them to be trained on higher resolution inputs, and they
provide higher resolution and more accurate spatial anomaly maps. Overall,
LDMs show tremendous potential as a general-purpose tool for OOD detection
on high-resolution 3D medical imaging data.
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Supplementary material
Unsupervised 3D out-of-distribution detection

with latent diffusion models

A Time and memory use

Table 1. Details the memory usage and inference time for a single input. Values include
the time/memory required by the VQ-GAN base model, too, which increases for larger
numbers of levels, somewhat countering the effect of the Transformer/DDPM operating
on lower-resolution data as the levels increase.

Model
2-level 3-level 4-level

LTM LDM LTM LDM LTM LDM

Memory/GB N/A 1.8 3.4 1.8 3.4 1.5
Inference time/s N/A 28.2 2.2 14.5 0.6 12.7
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