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Abstract. Domain shift is a common problem in clinical applications,
where the training images (source domain) and the test images (target
domain) are under different distributions. Unsupervised Domain Adap-
tation (UDA) techniques have been proposed to adapt models trained
in the source domain to the target domain. However, those methods
require a large number of images from the target domain for model
training. In this paper, we propose a novel method for Few-Shot Un-
supervised Domain Adaptation (FSUDA), where only a limited num-
ber of unlabeled target domain samples are available for training. To
accomplish this challenging task, first, a spectral sensitivity map is in-
troduced to characterize the generalization weaknesses of models in the
frequency domain. We then developed a Sensitivity-guided Spectral Ad-
versarial MixUp (SAMix) method to generate target-style images to
effectively suppresses the model sensitivity, which leads to improved
model generalizability in the target domain. We demonstrated the pro-
posed method and rigorously evaluated its performance on multiple tasks
using several public datasets. The source code is available at https:
//github.com/RPIDIAL/SAMix.

Keywords: Few-shot UDA · Data Augmentation · Spectral Sensitivity.

1 Introduction

A common challenge for deploying deep learning to clinical problems is the dis-
crepancy between data distributions across different clinical sites [6,15,20,29,28].
This discrepancy, which results from vendor or protocol differences, can cause a
significant performance drop when models are deployed to a new site [2,23,21]. To
solve this problem, many Unsupervised Domain Adaptation (UDA) methods [6]
have been developed for adapting a model to a new site with only unlabeled
★ Pingkun Yan is corresponding author.
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data (target domain) by transferring the knowledge learned from the original
dataset (source domain). However, most UDA methods require sufficient target
samples, which are scarce in medical imaging due to the limited accessibility to
patient data. This motivates a new problem of Few-Shot Unsupervised Domain
Adaptation (FSUDA), where only a few unlabeled target samples are available
for training.

Few approaches [11,22] have been proposed to tackle the problem of FSUDA.
Luo et. al [11] introduced Adversarial Style Mining (ASM), which uses a pre-
trained style-transfer module to generate augmented images via an adversarial
process. However, this module requires extra style images [9] for pre-training.
Such images are scarce in clinical settings, and style differences across sites are
subtle. This hampers the applicability of ASM to medical image analysis. SM-
PPM [22] trains a style-mixing model for semantic segmentation by augmenting
source domain features to a fictitious domain through random interpolation with
target domain features. However, SM-PPM is specifically designed for segmenta-
tion tasks and cannot be easily adapted to other tasks. Also, with limited target
domain samples in FSUDA, the random feature interpolation is ineffective in
improving the model’s generalizability.

In a different direction, numerous UDA methods have shown high perfor-
mance in various tasks [17,18,16,4]. However, their direct application to FSUDA
can result in severe overfitting due to the limited target domain samples [22].
Previous studies [25,24,10,7] have demonstrated that transferring the amplitude
spectrum of target domain images to a source domain can effectively convey
image style information and diversify training dataset. To tackle the overfitting
issue of existing UDA methods, we propose a novel approach called Sensitivity-
guided Spectral Adversarial MixUp (SAMix) to augment training samples. This
approach uses an adversarial mixing scheme and a spectral sensitivity map that
reveals model generalizability weaknesses to generate hard-to-learn images with
limited target samples efficiently. SAMix focuses on two key aspects. 1) Model
generalizability weaknesses: Spectral sensitivity analysis methods have been ap-
plied in different works [26] to quantify the model’s spectral weaknesses to image
amplitude corruptions. Zhang et al. [27] demonstrated that using a spectral sen-
sitivity map to weigh the amplitude perturbation is an effective data augmen-
tation. However, existing sensitivity maps only use single-domain labeled data
and cannot leverage target domain information. To this end, we introduce a
Domain-Distance-modulated Spectral Sensitivity (DoDiSS) map to analyze the
model’s weaknesses in the target domain and guide our spectral augmentation. 2)
Sample hardness: Existing studies [19,11] have shown that mining hard-to-learn
samples in model training can enhance the efficiency of data augmentation and
improve model generalization performances. Therefore, to maximize the use of
the limited target domain data, we incorporate an adversarial approach into the
spectral mixing process to generate the most challenging data augmentations.

This paper has three major contributions. 1) We propose SAMix, a novel
approach for augmenting target-style samples by using an adversarial spectral
mixing scheme. SAMix enables high-performance UDA methods to adapt easily
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to FSUDA problems. 2) We introduce DoDiSS to characterize a model’s gener-
alizability weaknesses in the target domain. 3) We conduct thorough empirical
analyses to demonstrate the effectiveness and efficiency of SAMix as a plug-in
module for various UDA methods across different tasks.

2 Methods

We denote the labeled source domain as 𝑿𝑆 = {(𝒙𝑠𝑛, 𝒚𝑠𝑛)}𝑁𝑛=1 and the unlabeled
𝐾-shot target domain as 𝑿𝑇 = {𝒙𝑡

𝑘
}𝐾
𝑘=1

, 𝒙𝑠𝑛, 𝒙𝑡
𝑘
∈ Rℎ×𝑤. Figure 1 depicts the

framework of our method as a plug-in module for boosting a UDA method in
the FSUDA scenario. It contains two components. First, a Domain-Distance-
modulated Spectral Sensitivity (DoDiSS) map is calculated to characterize a
source model’s weaknesses in generalizing to the target domain. Then, this sen-
sitivity map is used for Sensitivity-guided Spectral Adversarial MixUp (SAMix)
to generate target-style images for UDA models. The details of the components
are presented in the following sections.

Model
Error Rate
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Fig. 1. Illustration of the proposed framework. (a) DoDiSS map characterizes a model’s
generalizability weaknesses. (b) SAMix enables UDA methods to solve FSUDA.

2.1 Domain-Distance-modulated Spectral Sensitivity (DoDiSS)

The prior research [27] found that a spectral sensitivity map obtained using
Fourier-based measurement of model sensitivity can effectively portray the gen-
eralizability of that model. However, the spectral sensitivity map is limited to
single-domain scenarios and cannot integrate target domain information to assess
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model weaknesses under specific domain shifts. Thus, we introduce DoDiSS, ex-
tending the previous method by incorporating domain distance to tackle domain
adaptation problems. Figure 1 (a) depicts the DoDiSS pipeline. It begins by
computing a domain distance map for identifying the amplitude distribution dif-
ference between the source and target domains in each frequency. Subsequently,
this difference map is used for weighting amplitude perturbations when calcu-
lating the DoDiSS map.

Domain Distance Measurement. To overcome the limitations of lacking
target domain images, we first augment the few-shot images from the target do-
main with random combinations of various geometric transformations, including
random cropping, rotation, flipping, and JigSaw [13]. These transformations keep
the image intensities unchanged, preserving the target domain style information.
The Fast Fourier Transform (FFT) is then applied to all the source images and
the augmented target domain images to obtain their amplitude spectrum, de-
noted as 𝑨𝑆 and 𝑨𝑇 , respectively. We calculate the probabilistic distributions
𝒑𝑆
𝑖, 𝑗

and 𝒑𝑇
𝑖, 𝑗

of 𝑨𝑆 and 𝑨𝑇 at the (𝑖, 𝑗)𝑡ℎ frequency entry, respectively. The do-
main distance map at (𝑖, 𝑗) is defined as 𝑫𝑊 (𝑖, 𝑗) = 𝑊1 ( 𝒑𝑆𝑖, 𝑗 , 𝒑𝑇𝑖, 𝑗 ), where 𝑊1 is
the 1-Wasserstein distance.

DoDiSS Computation. With the measured domain difference, we can now
compute the DoDiSS map of a model. As shown in Figure 1 (a), a Fourier basis
is defined as a Hermitian matrix 𝑯𝑖, 𝑗 ∈ Rℎ×𝑤 with only two non-zero elements at
(𝑖, 𝑗) and (−𝑖,− 𝑗). A Fourier basis image 𝑼𝑖, 𝑗 can be obtained by ℓ2-normalized
Inverse Fast Fourier Transform (IFFT) of 𝑨𝑖, 𝑗 , i.e., 𝑼𝑖, 𝑗 =

IFFT(𝑨𝑖, 𝑗 )
| |IFFT(𝑨𝑖, 𝑗 ) | |2 . To

analyze the model’s generalization weakness with respect to the frequency (𝑖, 𝑗),
we generate perturbed source domain images by adding the Fourier basis noise
𝑵𝑖, 𝑗 = 𝑟 ·𝑫𝑊 (𝑖, 𝑗)·𝑼𝑖, 𝑗 to the original source domain image 𝒙𝑠 as 𝒙𝑠+𝑵𝑖, 𝑗 . 𝑫𝑊 (𝑖, 𝑗)
controls the ℓ2-norm of 𝑵𝑖, 𝑗 and 𝑟 is randomly sampled to be either -1 or 1. The
𝑵𝑖, 𝑗 only introduces perturbations at the frequency components (𝑖, 𝑗) to the
original images. The 𝑫𝑊 (𝑖, 𝑗) guarantees that images are perturbed across all
frequency components following the real domain shift. For RGB images, we add
𝑵𝑖, 𝑗 to each channel independently following [27]. The sensitivity at frequency
(𝑖, 𝑗) of a model 𝐹 trained on the source domain is defined as the prediction
error rate over the whole dataset 𝑿𝑆 as in (1), where Acc denotes the prediction
accuracy

𝑴𝑆 (𝑖, 𝑗) = 1 − Acc
(𝒙𝑠 ,𝒚𝑠 ) ∈𝑿𝑆

(𝐹 (𝒙𝑠 + 𝑟 · 𝑫𝑊 (𝑖, 𝑗) ·𝑼𝑖, 𝑗 ), 𝒚𝑠). (1)

2.2 Sensitivity-guided Spectral Adversarial Mixup (SAMix)

Using the DoDiSS map 𝑴𝑆 and an adversarially learned parameter 𝜆∗ as a
weighting factor, SAMix mixes the amplitude spectrum of each source image with
the spectrum of a target image. DoDiSS indicates the spectral regions where the
model is sensitive to the domain difference. The parameter 𝜆∗ mines the heard-to-
learn samples to efficiently enrich the target domain samples by maximizing the
task loss. Further, by retaining the phase of the source image, SAMix preserves
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the semantic meaning of the original source image in the generated target-style
sample. Specifically, as shown in Figure 1 (b), given a source image 𝒙𝑠 and a
target image 𝒙𝑡 , we compute their amplitude and phase spectrum, denoted as
(𝑨𝑠 ,𝚽𝑠) and (𝑨𝑡 ,𝚽𝑡 ), respectively. SAMix mixes the amplitude spectrum by

𝑨𝑠𝑡𝜆∗ = 𝜆
∗ · 𝑴𝑆 · 𝑨𝑡 + (1 − 𝜆∗) · (1 − 𝑴𝑆) · 𝑨𝑠 . (2)

The target-style image is reconstructed by 𝒙𝑠𝑡
𝜆∗ = IFFT (𝑨𝑠𝑡

𝜆∗ , 𝚽
𝑠). The adver-

sarially learned parameter 𝜆∗ is optimized by maximizing the task loss 𝐿𝑇 using
the projected gradient descent with 𝑇 iterations and step size of 𝛿:

𝜆∗ = arg max
𝜆

𝐿𝑇 (𝐹 (𝒙𝑠𝑡𝜆 ; 𝜃), 𝒚), s.t. 𝜆 ∈ [0, 1] . (3)

In the training phase, as shown in Figure 1 (b), the SAMix module generates
a batch of augmented images, which are combined with few-shot target domain
images to train the UDA model. The overall training objective is to minimize

𝐿𝑡𝑜𝑡 (𝜃) = 𝐿𝑇 (𝐹 (𝒙𝑠; 𝜃), 𝒚) + 𝜇 · 𝐽𝑆(𝐹 (𝒙𝑠; 𝜃), 𝐹 (𝒙𝑠𝑡𝜆∗ ; 𝜃)) + 𝐿𝑈𝐷𝐴, (4)

where 𝐿𝑡 is the supervised task loss in the source domain; 𝐽𝑆 is the Jensen-
Shannon divergence [27], which regularizes the model predictions consistency
between the source images 𝒙𝑠 and their augmented versions 𝒙𝑠𝑡

𝜆∗ ; 𝐿𝑈𝐷𝐴 is the
training loss in the original UDA method, and 𝜇 is a weighting parameter.

3 Experiments and Results

We evaluated SAMix on two medical image datasets. Fundus [14,5] is an optic
disc and cup segmentation task. Following [21], we consider images collected from
different scanners as distinct domains. The source domain contains 400 images of
the REFUGE [14] training set. We took 400 images from the REFUGE validation
set and 159 images of RIM-One [5] to form the target domain 1 & 2. We center
crop and resize the disc region to 256 × 256 as network input. Camelyon [1] is
a tumor tissue binary classification task across 5 hospitals. We use the training
set of Camelyon as the source domain (302, 436 images from hospitals 1 − 3)
and consider the validation set (34, 904 images from hospital 4) and test set
(85, 054 images from the hospital 5) as the target domains 1 and 2, respectively.
All the images are resized into 256 × 256 as network input. For all experiments,
the source domain images are split into training and validation in the ratio of
4 : 1. We randomly selected 𝐾-shot target domain images for training, while the
remaining target domain images were reserved for testing.

3.1 Implementation Details

SAMix is evaluated as a plug-in module for four UDA models: AdaptSeg [17] and
Advent [18] for Fundus, and SRDC [16] and DALN [4] for Camelyon. For a
fair comparison, we adopted the same network architecture for all the methods
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Table 1. 10-run average DSC (%) and ASD of models on REFUGE. The best perfor-
mance is in bold and the second best is indicated with underline.

Method
Source Domain → Target Domain 1 Source Domain → Target Domain 2

DSC(↑) ASD(↓) DSC(↑) ASD(↓)
cup disc avg cup disc avg cup disc avg cup disc avg

Source Only 61.16∗ 66.54∗ 63.85∗ 14.37∗ 11.69∗ 13.03∗ 55.77∗ 58.62∗ 57.20∗ 20.95∗ 17.63∗ 19.30∗

AdaptSeg 61.45∗ 66.61∗ 64.03∗ 13.79∗ 11.47∗ 12.64∗ 56.67∗ 60.50∗ 58.59∗ 20.44∗ 17.97∗ 19.21∗

Advent 62.03∗ 66.82∗ 64.43∗ 12.82∗ 11.54∗ 12.18∗ 56.43∗ 60.56∗ 58.50∗ 20.31∗ 17.86∗ 19.09∗

ASM 69.18∗ 71.91∗ 70.05∗ 8.92∗ 8.35∗ 8.64∗ 57.79∗ 61.86∗ 59.83∗ 19.26∗ 16.94∗ 18.10∗

SM-PPM 74.55∗ 77.62∗ 76.09∗ 6.09∗ 5.66∗ 5.88∗ 59.62∗ 64.17∗ 61.90∗ 14.52∗ 12.22∗ 13.37∗

AdaptSeg+SAMix 76.56 80.57 78.57 4.97 4.12 4.55 61.75 66.20 63.98 12.75 11.09 11.92
Advent+SAMix 76.32 80.64 78.48 4.90 3.98 4.44 62.02 66.35 64.19 11.97 10.85 11.41
∗ 𝑝 < 0.05 in the one-tailed paired t-test with Advent+SAMix.

on each task. For Fundus, we use a DeepLabV2-Res101 [3] as the backbone
with SGD optimizer for 80 epochs. The task loss 𝐿𝑡 is the Dice loss. The initial
learning rate is 0.001, which decays by 0.1 for every 20 epochs. The batch size is
16. For Camelyon, we use a ResNet-50 [8] with SGD optimizer for 20 epochs. 𝐿𝑡
is the binary cross-entropy loss. The initial learning rate is 0.0001, which decays
by 0.1 every 5 epochs. The batch size is 128. We use the fixed weighting factor
𝜇 = 0.01, iterations 𝑇 = 10, and step size 𝛿 = 0.1 in all the experiments.

3.2 Method Effectiveness

We demonstrate the effectiveness of SAMix by comparing it with two sets of
baselines. First, we compare the performance of UDA models with and without
SAMix. Second, we compare SAMix against other FSUDA methods [11,9].
Fundus. Table 1 shows the 10-run average Dice coefficient (DSC) and Aver-
age Surface Distance (ASD) of all the methods trained with the source do-
main and 1-shot target domain image. The results are evaluated in the two
target domains. Compared to the model trained solely on the source domain
(Source only), the performance gain achieved by UDA methods (AdaptSeg and
Advent) is limited. However, incorporating SAMix as a plug-in for UDA meth-
ods (AdaptSeg+SAMix and Advent+SAMix) enhances the original UDA per-
formance significantly (𝑝 < 0.05). Moreover, SAMix+Advent surpasses the two
FSUDA methods (ASM and SM-PPM) significantly. This improvement is pri-
marily due to spectrally augmented target-style samples by SAMix.

To assess the functionality of the target-aware spectral sensitivity map in
measuring the model’s generalization performance on the target domain, we
computed the DoDiSS maps of the four models (AdaptSeg, ASM, SM-PPM,
and AdaptSeg+SAMix). The results are presented in Figure 2(a). The DoDiSS
map of AdaptSeg+SAMix demonstrates a clear suppression of sensitivity, lead-
ing to improved model performance. To better visualize the results, the model
generalizability (average DSC) versus the averaged ℓ1-norm of the DoDiSS map
is presented in Figure 2 (b). The figure shows a clear trend of improved model
performance as the averaged DoDiSS decreases. To assess the effectiveness of
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Fig. 2. Method effectiveness analysis. (a) The DoDiSS maps visualization; (b) Scat-
tering plot of model generalizability v.s. sensitivity; (c) Feature space visualization.

Table 2. 10-run average Acc (%) and AUC (%) of models on Camelyon. The best
performance is in bold and the second best is indicated with underline.

Method Source Domain → Target Domain 1 Source Domain → Target Domain 2
Acc(↑) AUC(↑) Acc(↑) AUC(↑)

Source Only 75.42∗ 71.67∗ 65.55∗ 60.18∗

DALN 78.63∗ 74.74∗ 62.57∗ 56.44∗

ASM 83.66∗ 80.43 77.75∗ 73.47∗

SRDC+SAMix 84.28 80.05 78.64 74.62
DALN+SAMix 86.41 82.58 80.84 75.90
∗ 𝑝 < 0.05 in the one-tailed paired t-test with DALN+SAMix.

SAMix-augmented target-style images in bridging the gap of domain shift, the
feature distributions of Fundus images before and after adaptation are visualized
in Fig.2 (c) by t-SNE [12]. Figure 2(c1) shows the domain shift between the
source and target domain features. The augmented samples from SAMix build
the connection between the two domains with only a single example image from
the target domain. Please note that, except the 1-shot sample, all the other tar-
get domain samples are used here for visualization only but never seen during
training/validation. Incorporating these augmented samples in AdaptSeg merges
the source and target distributions as in Figure 2 (c2).
Camelyon. The evaluation results of the 10-run average accuracy (Acc) and
Area Under the receiver operating Curve (AUC) of all methods trained with 1-
shot target domain image are presented in Table 2. The clustering-based SRDC
is not included in the table, as the model crashed in this few-shot scenario. Also,
the SM-PPM is not included because it is specifically designed for segmentation
tasks. The results suggest that combining SAMix with UDA not only enhances
the original UDA performance but also significantly outperforms other FSUDA
methods.

3.3 Data Efficiency

As the availability of target domain images is limited, data efficiency plays a
crucial role in determining the data augmentation performance. Therefore, we
evaluated the model’s performance with varying numbers of target domain im-
ages in the training process. Figure 3 (a) and (b) illustrate the domain adapta-



8 J. Zhang et al.

(a) (b)

Number of Few-shot Samples
1 2 3 4 5 6 7 8 9 10

85

D
ic

e 
C

o
ef

fi
ci

en
t 

(%
)

80

75

70

65

60

Number of Few-shot Samples
1 2 3 4 5 6 7 8 9 10

85

A
cc

u
ra

cy
 (

%
)

80

75

70

65

60

SM-PPM

ASM

AdaptSeg+SAMix

Full data AdaptSeg

ASM
AdaptSeg+SAMix

Full data AdaptSeg

AdaptSeg
AdaptSeg

Fig. 3. Data efficiency of FSUDA methods on (a) Fundus and (b) Camelyon.

SAMix image
target domain 2

Source domain image(a) (b) Ground Truth AdaptSeg ASM SM-PPM AdaptSeg+SASMix

Ta
rg

et
 d

om
ai

n2

Fig. 4. (a) SAMix generated samples. (b) Case study of the Fundus segmentation.

tion results on Fundus and Camelyon (both in target domain 1), respectively.
Our method consistently outperforms other baselines with just a 1-shot target
image for training. Furthermore, we qualitatively showcase the data efficiency
of SAMix. Figure 4 (a) displays the generated image of SAMix given the tar-
get domain image. While maintaining the retinal structure of the source image,
the augmented images exhibit a more similar style to the target image, indicat-
ing SAMix can effectively transfer the target domain style. Figure 4 (b) shows
an example case of the segmented results. Compared with other baselines, the
SAMix segmentation presents much less prediction error, especially in the cup
region.
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3.4 Ablation Study

To assess the efficacy of the components in SAMix, we conducted an ablation
study with AdaptSeg+SAMix and DALN+SAMix (Full model) on Fundus and
Camelyon datasets. This was done by 1) replacing our proposed DoDiSS map
with the original one in [27] (Original map); 2) replacing the SAMix module
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with the random spectral swapping (FDA, 𝛽 = 0.01, 0.09) in [25]; 3) removing
the three major components (No 𝐿𝑈𝐷𝐴, No SAMix, No 𝐽𝑆) in a leave-one-out
manner. Figure 5 suggests that, compared with the Full model, the model perfor-
mance degrades when the proposed components are either removed or replaced
by previous methods, which indicates the efficacy of the SAMix components.

4 Discussion and Conclusion

This paper introduces a novel approach, Sensitivity-guided Spectral Adversar-
ial MixUp (SAMix), which utilizes an adversarial mixing scheme and a spec-
tral sensitivity map to generate target-style samples effectively. The proposed
method facilitates the adaptation of existing UDA methods in the few-shot sce-
nario. Thorough empirical analyses demonstrate the effectiveness and efficiency
of SAMix as a plug-in module for various UDA methods across multiple tasks.
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