
MedGen3D: A Deep Generative Framework for
Paired 3D Image and Mask Generation

Kun Han1, Yifeng Xiong1, Chenyu You2, Pooya Khosravi1, Shanlin sun1,
Xiangyi Yan1, James Duncan2, and Xiaohui Xie1

1 University of California, Irvine
2 Yale University

Abstract. Acquiring and annotating sufficient labeled data is crucial
in developing accurate and robust learning-based models, but obtaining
such data can be challenging in many medical image segmentation tasks.
One promising solution is to synthesize realistic data with ground-truth
mask annotations. However, no prior studies have explored generating
complete 3D volumetric images with masks. In this paper, we present
MedGen3D, a deep generative framework that can generate paired 3D
medical images and masks. First, we represent the 3D medical data as
2D sequences and propose the Multi-Condition Diffusion Probabilistic
Model (MC-DPM) to generate multi-label mask sequences adhering to
anatomical geometry. Then, we use an image sequence generator and
semantic diffusion refiner conditioned on the generated mask sequences
to produce realistic 3D medical images that align with the generated
masks. Our proposed framework guarantees accurate alignment between
synthetic images and segmentation maps. Experiments on 3D thoracic
CT and brain MRI datasets show that our synthetic data is both diverse
and faithful to the original data, and demonstrate the benefits for down-
stream segmentation tasks. We anticipate that MedGen3D’s ability to
synthesize paired 3D medical images and masks will prove valuable in
training deep learning models for medical imaging tasks.

Keywords: Deep Generative Framework · 3D Volumetric Images with
Masks · Fidelity and Diversity · Segmentation

1 Introduction

In medical image analysis, the availability of a substantial quantity of accurately
annotated 3D data is a prerequisite for achieving high performance in tasks like
segmentation and detection [26,17,29,9,31,34,35,32,33]. This, in turn, leads to
more precise diagnoses and treatment plans. However, obtaining and annotating
such data presents many challenges, including the complexity of medical images,
the requirement for specialized expertise, and privacy concerns.

Generating realistic synthetic data presents a promising solution to the above
challenges as it eliminates the need for manual annotation and alleviates privacy
risks. However, most prior studies [16,6,7,4,3,20,28,34,32,33] have focused on 2D
image synthesis, with only a few generating corresponding segmentation masks.
For instance, [15] uses dual generative adversarial networks (GAN) [14,35] to
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synthesize 2D labeled retina fundus images, while [12] combines a label gener-
ator [25] with an image generator [24] to generate 2D brain MRI data. More
recently, [27] uses WGAN [5] to generate small 3D patches and corresponding
vessel segmentations.

However, there has been no prior research on generating whole 3D volumetric
images with the corresponding segmentation masks. Generating 3D volumetric
images with corresponding segmentation masks faces two major obstacles. First,
directly feeding entire 3D volumes to neural networks is impractical due to GPU
memory constraints, and downsizing the resolution may compromise the quality
of the synthetic data. Second, treating the entire 3D volume as a single data point
during training is suboptimal because of the limited availability of annotated 3D
data. Thus, innovative methods are required to overcome these challenges and
generate high-quality synthetic 3D volumetric data with corresponding segmen-
tation masks.

We propose MedGen3D, a novel diffusion-based deep generative framework
that generates paired 3D volumetric medical images and multi-label masks.
Our approach treats 3D medical data as sequences of slices and employs an
autoregressive process to sequentially generate 3D masks and images. In the
first stage, a Multi-Condition Diffusion Probabilistic Model (MC-DPM) gen-
erates mask sequences by combining conditional and unconditional generation
processes. Specifically, the MC-DPM generates mask subsequences (i.e., several
consecutive slices) at any position directly from random noise or by condition-
ing on existing slices to generate subsequences forward or backward. Given that
medical images have similar anatomical structures, slice indices serve as addi-
tional conditions to aid the mask subsequence generation. In the second stage,
we introduce a conditional image generator with a seq-to-seq model from [30]
and a semantic diffusion refiner. By conditioning on the mask sequences gener-
ated in the first stage, our image generator synthesizes realistic medical images
aligned with masks while preserving spatial consistency across adjacent slices.

The main contributions of our work are as follows: 1) Our proposed frame-
work is the first to address the challenge of synthesizing complete 3D volumet-
ric medical images with their corresponding masks; 2) we introduce a multi-
condition diffusion probabilistic model for generating 3D anatomical masks with
high fidelity and diversity; 3) we leverage the generated masks to condition an
image sequence generator and a semantic diffusion refiner, which produces real-
istic medical images that align accurately with the generated masks; and 4) we
present experimental results that demonstrate the fidelity and diversity of the
generated 3D multi-label medical images, highlighting their potential benefits
for downstream segmentation tasks.

2 Preliminary

2.1 Diffusion Probabilistic Model

A diffusion probabilistic model (DPM) [18] is a parameterized Markov chain of
length T, which is designed to learn the data distribution p(X). DPM builds



MedGen3D: Paired 3D Image and Mask Generation 3

the Forward Diffusion Process (FDP) to get the diffused data point Xt at any
time step t by q (Xt | Xt−1) = N

(
Xt;
√
1− βtXt−1, βtI

)
, with X0 ∼ q(X0) and

p(XT ) = N (XT ; 0, I). Let αt = 1−βt and ᾱt =
∏t

s=1 (1− βs), Reverse Diffusion
Process (RDP) is trained to predict the noise added in the FDP by minimizing:

Loss(θ) = EX0∼q(X0),ϵ∼N (0,I),t

[∥∥ϵ− ϵθ
(√

ᾱtX0 +
√
1− ᾱtϵ, t

)∥∥2
]
, (1)

where ϵθ is predicted noise and θ is the model parameters.

2.2 Classifier-free Guidance

Samples from conditional diffusion models can be improved with classifier-free
guidance [19] by setting the condition c as ∅ with probability p. During sampling,
the output of the model is extrapolated further in the direction of ϵθ (Xt | c) and
away from ϵθ (Xt | ∅) as follows:

ϵ̂θ (Xt | c) = ϵθ (Xt | ∅) + s · (ϵθ (Xt | c)− ϵθ (Xt | ∅)) , (2)
where ∅ represents a null condition and s ≥ 1 is the guidance scale.

3 Methodology

We propose a sequential process to generate complex 3D volumetric images with
masks, as illustrated in Figure 1. The first stage generates multi-label segmenta-
tion, and the second stage performs conditional medical image generation. The
details will be presented in the following sections.

Fig. 1. Overview of the proposed MedGen3D, including a 3D mask generator to
autoregressively generate the mask sequences starting from a random position z, and
a conditional image generator to generate 3D images conditioned on generated masks.

3.1 3D Mask Generator

Due to the limited annotated real data and GPU memory constraints, directly
feeding the entire 3D volume to the network is impractical. Instead, we treat 3D
medical data as a series of subsequences. To generate an entire mask sequence, an
initial subsequence of m consecutive slices is unconditionally generated from
random noise. Then the subsequence is expanded forward and backward in
an autoregressive manner, conditioned on existing slices.

Inspired by classifier-free guidance in Section 2.2, we propose a general Multi-
Condition Diffusion Probabilistic Model (MC-DPM) to unify all three condi-
tional generations (unconditional, forward, and backward). As shown in Fig.
2, MC-DPM is able to generate mask sequences directly from random noise or
conditioning on existing slices.

Furthermore, as 3D medical data typically have similar anatomical struc-
tures, slices with the same relative position roughly correspond to the same
anatomical regions. Therefore, we can utilize the relative position of slices as
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Fig. 2. Proposed 3D mask generator. Given target position z, MC-DPM is designed
to generate mask subsequences (length of m) for specific region, unconditionally or
conditioning on first or last n slices, according to the pre-defined probability pC ∈
{pF , pB , pU}. Binary indicators are assigned to slices to signify the conditional slices.
We ignore the binary indicators in the inference process for clear visualization with red
outline denoting the conditional slices and green outline denoting the generated slices.

conditions to guide the MC-DPM in generating subsequences of the target re-
gion and control the length of generated sequences.
Train: For a given 3D multi-label mask M ∈ RD×H×W , subsequneces of m
consecutive slices are selected as {Mz,Mz+1, . . . ,Mz+(m−1)}, with z as the ran-
domly selected starting indices. For each subsequence, we determine the condi-
tional slices XC ∈ {Rn×H×W , ∅} by selecting either the first or the last n slices,
or no slice, based on a probability pC ∈ {pForward, pBackward, pUncondition}.
The objective of the MC-DPM is to generate the remaining slices, denoted as
XP ∈ R(m−len(XC))×H×W .

To incorporate the position condition, we utilize the relative position of the
subsequence z̃ = z/D, where z is the index of the subsequence’s starting slice.
Then we embed the position condition and concatenate it with the time embed-
ding to aid the generation process. We also utilize a binary indicator for each
slice in the subsequence to signify the existence of conditional slices.

The joint distribution of reverse diffusion process (RDP) with the conditional
slices XC can be written as:

pθ(X
P
0:T |XC , z̃) = p(XP

T )

T∏

t=1

pθ(X
P
t−1 | XP

t , XC , z̃). (3)

where p(XP
T ) = N

(
XP

T ; 0, I
)
, z̃ = z/D and pθ is the distribution parameterized

by the model.



MedGen3D: Paired 3D Image and Mask Generation 5

Overall, the model will be trained by minimizing the following loss function,
with XP

t =
√
ᾱtX

P
0 +
√
1− ᾱtϵ:

Loss(θ) = EX0∼q(X0),ϵ∼N (0,I),pC ,z,t

[∥∥ϵ− ϵθ
(
XP

t , XC , z, t
)∥∥2

]
. (4)

Inference: During inference, MC-DPM first generates a subsequence of m slices
from random noise given a random location z. The entire mask sequence can then
be generated autoregressively by expanding in both directions, conditioned on
the existing slices, as shown in Figure 2. Please refer to the Supplementary
for a detailed generation process and network structure.

3.2 Conditional Image Generator

In the second step, we employ a sequence-to-sequence method to generate med-
ical images conditioned on masks, as shown in Figure 3.
Image Sequence Generator: In the sequence-to-sequence generation task,
new slice is the combination of the warped previous slice and newly generated
texture, weighted by a continuous mask [30]. We utilize Vid2Vid [30] as our
image sequence generator. We train Vid2Vid with its original loss, which includes
GAN loss on multi-scale images and video discriminators, flow estimation loss,
and feature matching loss.

Fig. 3. Image Sequence Generator. Given the generated 3D mask, the initial image
is generated by Vid2Vid model sequentially. To utilize the semantic diffusion model
(SDM) to refine the initial result, we first apply small steps (10 steps) noise, and
then use three SDMs to refine. The final result is the mean 3D images from 3 different
views (Axial, Coronal, and Sagittal), yielding significant improvements over the initially
generated image.

Semantic Diffusion Refiner: Despite the high cross-slice consistency and spa-
tial continuity achieved by vid2vid, issues such as blocking, blurriness and sub-
optimal texture generation persist. Given that diffusion models have been shown
to generate superior images [11], we propose a semantic diffusion refiner utilizing
a diffusion probabilistic model to refine the previously generated images.

For each of the 3 different views, we train a semantic diffusion model (SDM),
which takes 2D masks and noisy images as inputs to generate images aligned
with input masks. During inference, we only apply small noising steps (10 steps)
to the generated images so that the overall anatomical structure and spatial
continuity are preserved. After that, we refine the images using the pre-trained
semantic diffusion model. The final refined 3D images are the mean results from
3 views. Experimental results show an evident improvement in the quality of
generated images with the help of semantic diffusion refiner.
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4 Experiments and Results

4.1 Datasets and Setups

Datasets: We conducted experiments on the thoracic site using three thoracic
CT datasets and the brain site with two brain MRI datasets. For both generative
models and downstream segmentation tasks, we utilized the following datasets:
– SegTHOR [22]: 3D thorax CT scans (25 training, 5 validation, 10 testing);
– OASIS [23]: 3D brain MRI T1 scans (40 training, 10 validation, 10 testing);

For the downstream segmentation task only and the transfer learning, we utilized
10 fine-tuning, 5 validation, and 10 testing scans from each of the 3D thorax CT
datasets of StructSeg-Thorax [2] and Public-Thor [9], as well as the 3D brain
MRI T1 dataset from ADNI [1].
Implementation: For thoracic datasets, we crop and pad CT scans to (96 ×
320 × 320). The annotations of six organs (left lung, right lung, spinal cord,
esophagus, heart, and trachea) are examined by an experienced radiation on-
cologist. We also include a body mask to aid in the image generation of body
regions. For brain MRI datasets, we use Freesurfer [13] to get segmentations of
four regions (cortex, subcortical gray matter, white matter, and CSF), and then
crop the volume to (192 × 160 × 160). We assign discrete values to masks of
different regions or organs for both thoracic and brain datasets and then com-
bine them into one 3D volume. When synthesizing mask sequences, we resize the
width and height of the masks to 128×128 and set the length of the subsequence
m to 6. We use official segmentation models provided by MONAI[8] along with
standard data augmentations, including spatial and color transformations.
Setup: We compare the synthetic image quality with DDPM [18], 3D-α-WGAN
[21] and Vid2Vid [30], and utilize four segmentation models with different train-
ing strategies to demonstrate the benefit for the downstream task.

4.2 Evaluate the Quality of Synthetic Image.

Synthetic Dataset: To address the limited availability of annotated 3D medical
data, we used only 30 CT scans from SegTHOR (25 for training and 5 for
validation) and 50 MRI scans from OASIS (40 for training and 10 for validation)
to generate 110 3D thoracic CT scans and 110 3D brain MRI scans, respectively.

Thoracic CT Brain MRI
FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

DDPM [18] 35.2 0.316 34.9 0.298
3D-α-WGAN [21] 136.2 0.286 136.4 0.289

Vid2Vid [30] 47.3 0.300 48.2 0.324
Ours 39.6 0.305 40.3 0.326

Table 1. Synthetic image quality comparison between baselines and ours.
We compare the fidelity and diversity of our synthetic data with DDPM [18]

(train 3 for different views), 3D-α-WGAN [21], and vid2vid [30] by calculating
the mean Frèchet Inception Distance (FID) and Learned Perceptual Image Patch
Similarity (LPIPS) from 3 different views.
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According to Table 1, our proposed method has a slightly lower FID score
but a similar LPIPS score compared to DDPM. We speculate that this is because
DDPM is trained on 2D images without explicit anatomical constraints and only
generates 2D images. On the other hand, 3D-α-WGAN [18], which uses much
larger 3D training data (146 for thorax and 414 for brain), has significantly
worse FID and LPIPS scores than our method. Moreover, our proposed method
outperforms Vid2Vid, showing the effectiveness of our semantic diffusion refiner.

Fig. 4. Our proposed method produces more anatomically accurate images compared
to 3D-α-WGAN and vid2vid, as demonstrated by the clearer organ boundaries and
more realistic textures. Left: Qualitative comparison between different generative mod-
els. Right: Visualization of synthetic 3D brain MRI slices at different relative positions.

4.3 Evaluate the Benefits for Segmentation Task.

We explore the benefits of synthetic data for downstream segmentation tasks by
comparing Sørensen–Dice coefficient (DSC) of 4 segmentation models, including
Unet2D [26], UNet3D [10], UNETR [17], and Swin-UNETR [29]. In Table 2
and 3, we utilize real training data (from SegTHOR and OASIS) and synthetic
data to train the segmentation models with 5 different strategies, and test on
all 3 thoracic CT datasets and 2 brain MRI datasets. In Table 4, we aim to
demonstrate whether the synthetic data can aid transfer learning with limited
real finetuning data from each of the testing datasets (StructSeg-Thorax, Public-
Thor and ADNI) with four training strategies.

SegTHOR* StructSeg-Thorax Public-Thor
Unet
2D

Unet
3D UNETR

Swin
UNETR

Unet
2D

Unet
3D UNETR

Swin
UNETR

Unet
2D

Unet
3D UNETR

Swin
UNETR

E2-1 0.817 0.873 0.867 0.878 0.722 0.793 0.789 0.810 0.822 0.837 0.836 0.847
E2-2 0.815 0.846 0.845 0.854 0.736 0.788 0.788 0.803 0.786 0.838 0.814 0.842
E2-3 0.845 0.881 0.886 0.886 0.772 0.827 0.824 0.827 0.812 0.856 0.853 0.856
E2-4 0.855 0.887 0.894 0.899 0.775 0.833 0.825 0.833 0.824 0.861 0.852 0.867
E2-5 0.847 0.891 0.890 0.897 0.783 0.833 0.823 0.835 0.818 0.864 0.858 0.867

Table 2. Experiment 2: DSC of different thoracic segmentation models. There are 5
training strategies, namely: E2-1: Training with real SegTHOR training data; E2-2:
Training with synthetic data; E2-3: Training with both synthetic and real data; E2-4:
Finetuning model from E2-2 using real training data; and E2-5: finetuning model from
E2-3 using real training data. (* denotes the training data source.)

According to Table 2 and Table 3, the significant DSC difference between 2D
and 3D segmentation models underlines the crucial role of 3D annotated data.
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While purely synthetic data (E2-2) fails to achieve the same performance as
real training data (E2-1), the combination of real and synthetic data (E2-3)
improves model performance in most cases, except for Unet2D on the Public-
Thor dataset. Furthermore, fine-tuning the pre-trained model with real data
(E2-4 and E2-5) consistently outperforms the model trained only with real
data. Please refer to Supplementary for organ-level DSC comparisons of the
Swin-UNETR model with more details.

OASIS* ADNI
Unet
2D

Unet
3D UNETR

Swin
UNETR

Unet
2D

Unet
3D UNETR

Swin
UNETR

E2-1 0.930 0.951 0.952 0.954 0.815 0.826 0.880 0.894
E2-2 0.905 0.936 0.935 0.934 0.759 0.825 0.828 0.854
E2-3 0.938 0.953 0.953 0.955 0.818 0.888 0.898 0.906
E2-4 0.940 0.955 0.954 0.956 0.819 0.891 0.903 0.903
E2-5 0.940 0.954 0.954 0.956 0.819 0.894 0.902 0.906

Table 3. Experiment 2: DSC of brain segmentation models. Please refer to Table 2 for
detailed training strategies. (* denotes the training data source.)

According to Table 4, for transfer learning, utilizing the pre-trained model
(E3-2) leads to better performance compared to training from scratch (E3-1).
Additionally, pretraining the model with synthetic data (E3-3 and E3-4) can
facilitate transfer learning to a new dataset with limited annotated data.

Thoracic CT Brain MRI
StructSeg-Thorax* Public-Thor* ADNI*

E3-1 0.845 0.897 0.946
E3-2 0.865 0.901 0.948
E3-3 0.878 0.913 0.949
E3-4 0.882 0.914 0.949

Table 4. Experiment 3: DSC of Swin-UNETR finetuned with real dataset. There are
4 training strategies: E3-1: Training from scratch for each dataset using limited fine-
tuning data; E3-2 Finetuning the model E2-1 from experiment 2; E3-3 Finetuning the
model E2-4 from experiment 2; and E3-4 Finetuning the model E2-5 from experiment
2. (* denotes the finetuning data source.)

We have included video demonstrations of the generated 3D volumetric im-
ages in the supplementary material, which offer a more comprehensive rep-
resentation of the generated image’s quality.

5 Conclusion
This paper introduces MedGen3D, a new framework for synthesizing 3D medical
mask-image pairs. Our experiments demonstrate its potential in realistic data
generation and downstream segmentation tasks with limited annotated data.
Future work includes merging the image sequence generator and semantic diffu-
sion refiner for end-to-end training and extending the framework to synthesize
3D medical images across modalities. Overall, we believe that our work opens
up new possibilities for generating 3D high-quality medical images paired with
masks, and look forward to future developments in this field.
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Algorithm 1 3D Mask Generation (Inference)
Require: n: number of conditional slices, m: length of subsequence, L: length

of the sequence to generate, Pθ: the predicted probability distribution
Z ← L− (m− 1)
z ∼ Uniform ({0, 1, ..., Z}) ▷ Randomly pick one z as start position
Initialize an empty mask sequenceM
X ← {Mz,Mz+1, ...,Mz+(m−1)} ∼ Pθ(X

P
0 | XC = ∅, z)

M←M∪X
//Forward Sampling
z′ ← z
while z′ <= Z do

z′ ← z′ + (m− n)
XC ←M[−n :] ▷ Select the last n masks as condition
XP ∼ Pθ(X

P
0 | XC , z′) ▷ Sample the following (m-n) masks

M←M∪XP ▷ Add the generated masks to the end of sequence
end while
//Backward Sampling
z′ ← z
while z′ >= 0 do

z′ ← z′ − (m− n)
XC ←M[: n] ▷ Select the first n masks as condition
XP ∼ Pθ(X

P
0 | XC , z′) ▷ Sample the previous (m-n) masks

M← XP ∪M ▷ Add the generated masks to the start of sequence
end while
returnM ▷ Return the generated mask sequence

SegTHOR* StructSeg-Thorax Public-Thor
ll rl ht eso tra spin ll rl ht eso tra spin ll rl ht eso tra spin

E2-1 0.98 0.99 0.90 0.64 0.86 0.91 0.95 0.96 0.91 0.60 0.68 0.77 0.97 0.98 0.88 0.69 0.73 0.84
E2-2 0.98 0.98 0.91 0.55 0.83 0.89 0.94 0.95 0.89 0.54 0.63 0.86 0.97 0.98 0.88 0.68 0.69 0.85
E2-3 0.98 0.98 0.92 0.64 0.87 0.93 0.95 0.95 0.90 0.64 0.65 0.87 0.97 0.98 0.88 0.73 0.72 0.86
E2-4 0.98 0.99 0.93 0.67 0.90 0.94 0.95 0.96 0.90 0.64 0.69 0.87 0.97 0.98 0.90 0.74 0.75 0.86
E2-5 0.98 0.99 0.92 0.67 0.88 0.94 0.95 0.96 0.90 0.67 0.69 0.86 0.97 0.98 0.89 0.75 0.77 0.85

ll: left lung rl: right lung ht: heart eso: esophagus tra: trachea spin: spinal cord

Table 1. Experiment 2: Organ-level DSC Comparison of Swin-UNETR for thoracic
site. Please refer to Table 2 in main submission for detailed strategies.

OASIS* ADNI

Cortex
Subcortical

Gray
White
Matter CSF Cortex

Subcortical
Gray

White
Matter CSF

E2-1 0.941 0.965 0.970 0.941 0.884 0.856 0.929 0.908
E2-2 0.922 0.951 0.958 0.909 0.847 0.841 0.910 0.818
E2-3 0.942 0.964 0.970 0.944 0.895 0.876 0.932 0.925
E2-4 0.943 0.965 0.971 0.946 0.888 0.870 0.931 0.924
E2-5 0.943 0.966 0.971 0.947 0.895 0.875 0.931 0.919

Table 2. Experiment 2: Organ-level DSC Comparison of Swin-UNETR for brain site.
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Fig. 1. Network Structure of MC-DPM.

Fig. 2. Experiment 2: Qualitative comparison of different training strategies using
Swin-UNETR. For brain segmentation, improvements brought by synthetic data are
more evident when training and testing data come from different datasets (ADNI: train
on OASIS, test on ADNI) rather than same dataset (OASIS*).

Fig. 3. Experiment 3: Qualitative comparison of different finetuning strategies using
Swin-UNETR. Please refer to Table 4 in main submission for detailed strategies.


