
ar
X

iv
:2

30
6.

05
68

4v
1

 [
cs

.D
S]

 9
 J

un
 2

02
3

Space-time Trade-offs for the LCP Array of

Wheeler DFAs

Nicola Cotumaccio1,2[0000−0002−1402−5298], Travis Gagie2[0000−0003−3689−327X],
Dominik Köppl3[0000−0002−8721−4444], and Nicola Prezza4[0000−0003−3553−4953]

1 GSSI, Italy nicola.cotumaccio@gssi.it
2 Dalhousie University, Canada nicola.cotumaccio@dal.ca, travis.gagie@dal.ca

3 University of Münster, Germany dominik.koeppl@uni-muenster.de
4 University Ca’ Foscari, Venice, Italy nicola.prezza@unive.it

Abstract. Recently, Conte et al. generalized the longest-common prefix
(LCP) array from strings to Wheeler DFAs, and they showed that it
can be used to efficiently determine matching statistics on a Wheeler
DFA [DCC 2023]. However, storing the LCP array requires O(n log n)
bits, n being the number of states, while the compact representation of
Wheeler DFAs often requires much less space. In particular, the BOSS
representation of a de Bruijn graph only requires a linear number of bits,
if the size of alphabet is constant.
In this paper, we propose a sampling technique that allows to access
an entry of the LCP array in logarithmic time by only storing a linear
number of bits. We use our technique to provide a space-time trade-
off to compute matching statistics on a Wheeler DFA. In addition, we
show that by augmenting the BOSS representation of a k-th order de
Bruijn graph with a linear number of bits we can navigate the underlying
variable-order de Bruijn graph in time logarithmic in k, thus improving
a previous bound by Boucher et al. which was linear in k [DCC 2015].

Keywords: Wheeler graphs · LCP array · de Bruijn graphs · Matching
statistics · Variable-order de Bruijn graphs.

1 Introduction

In 1973, Weiner invented the suffix tree of a string [28], a versatile data structure
which allows to efficiently handle a variety of problems, including solving pat-
tern matching queries, determining matching statistics, identifying combinatorial
properties of the string and computing its Lempel-Ziv decomposition. However,
the space consumption of a suffix tree can be too high for some applications
(including bioinformatics), so over the past 30 years a number of compressed
data structures simulating the behavior of a suffix tree have been designed, thus
leading to compressed suffix trees [26]. In many applications, one does not need
the full functionality of a suffix tree, so it may be sufficient to store only some of
these data structures. Among the most popular data structures, we have the suf-
fix array [21], the longest common prefix (LCP) array [21], the Burrows-Wheeler
transform (BWT) [6] and the FM-index [13].

http://arxiv.org/abs/2306.05684v1

2 N. Cotumaccio et al.

In the past 20 years, the ideas behind the suffix array, the BWT and the FM-
index have been generalized to trees [12,14], de Bruijn graphs [5], Wheeler graphs
[1, 17] and arbitrary graphs and automata [8, 9]. Broadly speaking, Wheeler
graphs concisely capture the intuition behind these data structures in a graph
setting; thus, they can be regarded as a benchmark for extending suffix tree func-
tionality to graphs. In particular, the LCP array of a string remarkably extends
the functionality of the suffix array, and a recent paper [7] shows that the LCP
array can also be generalized to Wheeler DFAs, which represents a remarkable
step toward fully simulating suffix-tree functionality in a graph setting. However,
the solution in [7] is not space efficient: storing the LCP array of a Wheeler DFA
requires O(n log n) bits, n being the number of states. If the size σ of the al-
phabet is small, this space can be considerably larger than the space required to
store the Wheeler DFA itself. As we will see, if σ log σ = o(logn) , then the space
required to store the Wheeler DFA is o(n log n), and if σ = O(1), then the space
required to store the Wheeler DFA is O(n). The latter case is especially relevant
in practice, because de Bruijn graphs are the prototypes of Wheeler graphs, and
in bioinformatics de Bruijn graphs are defined over the constant-size alphabet
Σ = {A,C,G, T }.

In this paper, we show that we can sample entries of the LCP array in such
a way that, by storing only a linear number of additional bits on top of the
Wheeler graph, we can compute each entry of the LCP array in logarithmic
time, thus providing a space-time trade-off. More precisely:

Theorem 1. We can augment the compact representation of a Wheeler DFA A
with O(n) bits (O(n log log σ) bits, respectively), where n is the number of states
and σ is the size of the alphabet, in such a way that we can compute each entry
of the LCP array of A in O(log n log log σ) time (O(log n) time, respectively).

We present two applications of our result: computing matching statistics on
Wheeler DFAs and navigating varriable-order de Bruijn graphs.

Matching Statistics on Wheeler DFAs The problem of computing matching
statistics on a Wheeler DFA is defined as follows: given a pattern of length m and
a Wheeler DFA with n states, determine the longest suffix of each prefix of m
that occurs in the graph (that is, that can be read by following some edges on the
graph and concatenating the labels). This problem is a natural generalization of
the problem of computing matching statistics on strings. Conte et al. [7] proved
the following result:

Theorem 2. We can augment the compact representation of a Wheeler DFA
A with O(n logn) bits, where n is the number of states and σ is the size of the
alphabet, in such a way that we can compute the matching statistics of a pattern
of length m w.r.t to the Wheeler DFA in O(m log n) time.

We will show that if we only want to use linear space, then we can use
Theorem 1 to obtain the following trade-off.

Space-time Trade-offs for the LCP Array of Wheeler DFAs 3

Theorem 3. We can augment the compact representation of a Wheeler DFA A
with O(n log log σ) bits, where n is the number of states and σ is the size of the
alphabet, in such a way that we can compute the matching statistics of a pattern
of length m w.r.t to the Wheeler DFA in O(m log2 n) time.

Variable-order de Bruijn Graphs Wheeler graphs are a generalization of de
Bruijn graphs; in particular, the compact representation of a Wheeler graph is
a generalization of the BOSS representation of a de Bruijn graph [5], and our
results on the LCP array also apply to a de Bruijn graph. Many assemblers
[3, 19, 24, 27] consider all k-mers occurring in a set of reads and build a k-th
order de Bruijn graph (on the alphabet Σ = {A,C,G, T }) to perform Eulerian
sequence assembly [18, 25]. However, the choice of the parameter k impacts the
assembly quality, so some assemblers try several choices for k [3,24], which slows
down the process because several de Bruijn graphs need to be built. In [4] it was
shown that the k-order de Bruijn graph of S can be used to implicitly store the
k′-th order de Bruijn graph of S for every k′ ≤ k, thus leading to a variable-order
de Bruijn graph. The challenge is to navigate this implicit representation (that
is, how to follow edges in a forward or backward fashion). In [4], it was shown
that the navigation is possible by storing or by simulating an array LCPG which
can be seen as a simplification of the LCP array of the Wheeler graph G. More
precisely, we have the following result (see [4]; we assume σ = O(1)).

Theorem 4. 1. We can augment the BOSS representation of a k-th order de
Bruijn graph with O(n log k) bits, where n is the number of nodes, so that
the underlying variable-order de Bruijn graph can be navigated in O(log k)
time per visited node.

2. We can augment the BOSS representation of a k-th order de Bruijn graph
with O(n) bits, where n is the number of nodes, so that the underlying
variable-order de Bruijn graph can be navigated in O(k logn) time per visited
node.

Essentially, the first solution in Theorem 4 explicitly stores LCPG, while the
second solution in Theorem 4 computes the entries of LCPG by exploiting the
BOSS representation. In general, a big k (close to the size of the reads) allows
to retrieve the expressive power on an overlap graph [11], so in Theorem 4 we
cannot assume that k is small. On the one hand, the space required for the
first solution can be too large, because a de Bruijn graph can be stored by
using only O(n) bits. On the other hand, the time bound in the second solution
increases substantially. We can now improve the second solution by providing a
data structure that achieves the best of both worlds. As we did in Theorem 1,
we can conveniently sample some entries of LCPG. We will prove the following
result.

Theorem 5. We can augment the BOSS representation of a k-th order de
Bruijn graph with O(n) bits, where n is the number of nodes, so that the un-
derlying variable-order de Bruijn graph can be navigated in O(log k logn) time
per visited node.

4 N. Cotumaccio et al.

2 Definitions

Sets and Relations Let V be a set. A total order on V is a binary relation ≤
which is reflexive, antisymmetric and transitive. We say that U is a ≤-interval
(or simply an interval) if for all v1, v2, v3 ∈ V , if v1, v3 ∈ U and v1 < v2 < v3,
then v2 ∈ U . If u, v ∈ V , with u ≤ v, we denote by [u, v] the smallest interval
containing u and v, that is [u, v] = {z ∈ V | u ≤ z ≤ v }. In particular, if V
is the set of integers, then we assume that ≤ is the standard total order, hence
[u, v] = {u, u+ 1, . . . , v − 1, v}.

Strings Let Σ be a finite alphabet, with σ = |Σ|. Let Σ∗ be the set of all finite
strings on Σ and let Σω be the set of all (countably) infinite strings on Σ. If
α ∈ Σ∗, then αR is the reverse string of α. If α, β ∈ Σ∗ ∪ Σω, we denote by
lcp(α, β) the length of longest common prefix between α and β. In particular, if
α ∈ Σ∗, then lcp(α, β) ≤ |α| and if α, β ∈ Σω with α = β, then lcp(α, β) = ∞.
Let � be a fixed total order on Σ. We extend the total order � from Σ to
Σ∗ ∪Σω lexicographically.

DFAs Throughout the paper, let A = (Q,E, s0, F) be a deterministic finite
automaton (DFA), where Q is the set of states, E ⊆ Q × Q × Σ is the set of
labeled edges, s0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The alphabet Σ is effective, that is, every c ∈ Σ labels some edge. Since A is
deterministic, for every u ∈ Q and for every a ∈ Σ there exists at most one edge
labeled a leaving u. Following [1], we assume that (i) s0 has no incoming edges,
(ii) every state is reachable from the initial state and (iii) all edges entering the
same state have the same label (input-consistency). For every u ∈ Q \ {s0},
let λ(u) ∈ Σ be the label of all edges entering u. We define λ(s0) = #, where
6∈ Σ is a special character such that # ≺ a for every a ∈ Σ (the character
plays the same role as the termination character $ in suffix arrays, suffix trees
and Burrows-Wheeler transforms). As a consequence, an edge (u′, u, a) can be
simply written as (u′, u), because it must be a = λ(u).

Compact Data Structures Let A be an array of length n containing elements
from a finite totally-ordered set. A range minimum query on A is defined as
follows: given 1 ≤ i ≤ j ≤ n, return one of the indices k with 1 ≤ k ≤ n such
that (i) i ≤ k ≤ j and A[k] = min{A[i], A[i + 1], . . . , A[j − 1], A[j]}. We write
k = RMQA(i, j). Then, there exists a data structure of 2n+ o(n) such that in
O(1) time we can compute RMQA(i, j) for every 1 ≤ i ≤ n, without the need to
access A [15,16]. This result is essentially optimal, because every data structure
solving range minimum queries on A requires at least 2n−Θ(log n) bits [16,20].

Let A be a bitvector of length n. Let rank(A, i) = |{j ∈ {1, 2, . . . , i −
1, i} | A[j] = 1}| be the number of 1’s among the first i bits of A. Then, there
exists a data structure of n+ o(n) bits such that in O(1) time we can compute
rank(A, i) for 1 ≤ i ≤ n [23].

Space-time Trade-offs for the LCP Array of Wheeler DFAs 5

3 Wheeler DFAs

Let us recall the definition of Wheeler DFA [7].

Definition 1. Let A = (Q,E, s0, F) be a DFA. A Wheeler order on A is a total
order ≤ on Q such that s0 ≤ u for every u ∈ Q and:

1. (Axiom 1) If u, v ∈ Q and u < v, then λ(u) � λ(v).
2. (Axiom 2) If (u′, u), (v′, v) ∈ E, λ(u) = λ(v) and u < v, then u′ < v′.

A DFA A is Wheeler if it admits a Wheeler order.

Every DFA admits at most one Wheeler order [1], so the total order ≤ in
Definition 1 is the Wheeler order on A. In the following, we fix a Wheeler DFA
A = (Q,E, s0, F), with n = |Q| and e = |E|, and we write Q = {u1, . . . , un},
with u1 < u2 < · · · < un in the Wheeler order. In particular, u1 = s0. Following
[7], we assume that s0 has a self-loop labeled #, which is consistent with Axiom
1, because # ≺ a for every a ∈ Σ). This implies that every state has at least
one incoming edge, so for every state ui there exists at least one infinite string
α ∈ Σω that can be read starting from ui and following edges in a backward
fashion. We denote by Iui

the nonempty set of all such strings. Formally:

Definition 2. Let 1 ≤ i ≤ n. Define:

Iui
= {α ∈ Σω | there exist integers f1, f2, . . . in [1, n] such that (i) f1 = i,

(ii) (ufk+1
, ufk) ∈ E for every k ≥ 1 and (iii) α = λ(uf1)λ(uf2) . . . }.

For every 1 ≤ i ≤ n, let pmin(i) be the smallest 1 ≤ i′ ≤ n such that
(ui′ , ui) ∈ E and let pmax(i) be the largest 1 ≤ i′′ ≤ n such that (ui′′ , ui) ∈ E.
Both pmin(i) and pmax(i) are well-defined because every state has at least one
incoming edge. For every 1 ≤ i ≤ n, define p1min(i) = pmin(i) and recursively, for

j ≥ 2, let pjmin(i) = pmin(p
j−1
min(i)). Then, λ(ui)λ(pmin(i))λ(p

2
min(i))λ(p

3
min(i)) . . .

is the lexicographically smallest string in Iui
, which we denote by mini [7].

Analogously, one can define the lexicographically largest string in Iui
by using

pmax. Moreover, in [7] it was shown that:

min1 � max1 � min2 � max2 � · · · � maxn−1 � minn � maxn.

Intuitively, the previous equation shows that the permutation of the set of
all states of A induced by the Wheeler order can be seen as a generalization
of the permutation of positions induced by the prefix array of a string α (or
equivalently, the suffix array of the reverse string of αR). Indeed, a string α can
also be seen as a DFA A′ = (Q′, E′, s′0, F

′), where Q′ = {q′0, q
′
1 . . . , q

′
|α|}, s

′
0 = q′0,

F ′ = {q′|α|} (the set F plays no role here), λ(q′i) is the i-th character of α for

1 ≤ i ≤ n and E′ = {(q′i−1, q
′
i) | 1 ≤ i ≤ n} (every state is reached by exactly one

string so the minimum and the maximum string reaching each state are equal).
Let 1 ≤ r ≤ s ≤ n and let c ∈ Σ. Let Er,s,c be the set of all states that can be

reached from a state in [r, s] by following edges labeled c; formally, Er,s,c = {1 ≤

6 N. Cotumaccio et al.

j ≤ n | λ(uj) = c and (ui, uj) ∈ E for some i ∈ [r, s] }. Then, Er,s,c is again an
interval, that is, there exist 1 ≤ r′ ≤ s′ ≤ n such that Er,s,c = [r′, s′] [17].
This property enables a compression mechanism that generalizes the Burrows-
Wheeler transform [6] and the FM-index [13] to Wheeler DFAs. The Wheeler
DFA A can be stored by using only 2e+ 4n+ e logσ + σ log e bits (up to lower
order terms), including n bits to mark the set F of final states and n bits to mark
all 1 ≤ i ≤ n such that λ(ui) 6= λ(ui−1), which allows us to retrieve each λ(ui) in
O(1) time by using a rank query [17] (recall that n is the number of states and
e is the number of edges). Since A is a DFA, we have e ≤ nσ, so the required
space is O(nσ log σ). If the alphabet is small — that is, if σ log σ = o(log n) —
then the number of required bits is o(n logn); if σ = O(1), then the number of
required bits is O(n). This compact representation supports efficient navigation
of the graph and it allows to solve pattern matching queries. More precisely,
by resorting to state-of-the art select queries [23] in O(log log σ) time (i) for
1 ≤ i ≤ n, we can compute pmin(i) and pmax(i) and (ii) given 1 ≤ r ≤ s ≤ n

and c ∈ Σ, we can compute [r′, s′] = Er,s,c [17]. In particular, query (ii) is
the so-called forward-search, which generalizes the analogous mechanism of the
FM-index, thus allowing to solve pattern matching queries on the graph.

The Wheeler order generalizes the notion of suffix array from strings to DFA.
It is also possible to generalize LCP-arrays from strings to graph [7].

Definition 3. The LCP-array of the Wheeler DFA A is the array LCPA =
LCPA[2, 2n] which contains the following 2n − 1 values in the following or-
der: lcp(min1,max1), lcp(max1,min2), lcp(min2,max2), . . . , lcp(maxn−1,minn),
lcp(minn,maxn). In other words, LCP[2i] = lcp(mini,maxi) for 1 ≤ i ≤ n and
LCPA[2i− 1] = lcp(maxi−1,mini) for 2 ≤ i ≤ n.

It can be proved that for every 2 ≤ i ≤ n, if LCPA[i] is finite, then LCPA[i] <
3n [7]. As a consequence, LCPA can be stored by using O(n logn) bits.

4 A Space-time Trade-off for the LCP Array

By storing an LCP array on top of the compact representation of a Wheeler
graph, we have additional information that we can use to efficiently solve prob-
lems such as computing the matching statistics; however, we need to store
O(n log n) bits. As we have seen, O(n log n) dominates the number of bits re-
quired to store A itself, if the alphabet is small. In this section, we show that we
can store a data structure of only O(n log log σ) bits which allows to compute
every entry LCPA[i] in O(log n) time, thus proving Theorem 1. This will be pos-
sible by sampling some entries of LCPA. The sampling mechanism is obtained
by conveniently defining an auxiliary graph from the entries of the LCP ar-
ray. We will immediately describe our technique, our sampling mechanism being
general-purpose.

Sampling Let G = (V,H) be a finite (unlabeled) directed graph such that
every node has at most one incoming edge. For every v ∈ V and for every i ≥ 0,

Space-time Trade-offs for the LCP Array of Wheeler DFAs 7

Algorithm 1 Building V (h)

V (h)← ∅
U ← ∅
while there exists v ∈ V such that (a) v(i) is defined for 0 ≤ i ≤ h − 1, (b) v(i) 6= v(j) for
0 ≤ j < i ≤ h− 1, (c) v(i) 6∈ U for 0 ≤ i ≤ h− 1 do

Pick such a v, add v(h − 1) to V (h) and add v(i) to U for every 0 ≤ i ≤ h− 1
end while

Algorithm 2 Input: h ∈ [2, 2n]. Output: LCPA[h].

procedure main function(h)
Initialize a global bit array D[2, 2n] to zero ⊲ D[2, 2n] marks the entries already considered
return lcp(h)

end procedure

procedure lcp(h)
D[h]← 1
if C[h] = 1 then ⊲ The desired value has been sampled

return LCP
∗

A
[rank(C, h)]

else if h is odd then

i← ⌈h/2⌉
if λ(ui−1) 6= λ(ui) then

return 0
else

k ← pmax(i− 1)
k′ ← pmin(i)
j ← RMQLCPA

(2k + 1, 2k′ − 1)

if D[j] = 1 then ⊲ We have already considered this entry before, so there is a cycle
return ∞

else

return 1 + lcp(j)
end if

end if

else

i← h/2
k← pmin(i)
k′ ← pmax(i)
j ← RMQLCPA

(2k, 2k′)

if D[j] = 1 then ⊲ We have already considered this entry before, so there is a cycle
return ∞

else

return 1 + lcp(j)
end if

end if

end procedure

there exists at most one node v′ ∈ V such that there exists a directed path from
v′ to v having i edges; if v′ exists, we denote it by v(i). Fix a parameter h ≥ 1.

Let us prove that there exists V (h) ⊆ V such that (i) |V (h)| ≤ |V |
h and (ii) for

every v ∈ V there exists 0 ≤ i ≤ 2h − 2 such that v(i) is defined and either
v(i) ∈ V (h) or v(i) has no incoming edges or v(i) = v(j) for some 0 ≤ j < i.
We build V (h) incrementally following Algorithm 1. Let us prove that, at the
end of the algorithm, properties (i) and (ii) are true. For every v ∈ V (h), define
Sv = {v, v(1), v(2) . . . , v(h − 1)}, which is possible because by construction if
v ∈ V (h), then v(i) is defined for every 0 ≤ i ≤ h− 1. It must be v(i) 6= v(j) for
0 ≤ i < j ≤ h−1, so |Sv| = h. If v, v′ ∈ V (h) and v 6= v′, then by construction Sv

and Sv′ are disjoint. As a consequence, |V | ≥
∑

v∈V (h) |Sv| =
∑

v∈V (h) h = h|Vh|

8 N. Cotumaccio et al.

and so |Vh| ≤
|V |
h , which proves property (i). Let us prove property (ii). Pick

v ∈ V ; we must prove that there exists 0 ≤ i ≤ 2h− 2 such that v(i) is defined
and either v(i) ∈ V (h) or v(i) has no incoming edges or v(i) = v(j) for some
0 ≤ j < i. We distinguish three cases:

1. there exists i with 1 ≤ i ≤ h− 1 such that v(i− 1) is defined but v(i) is not
defined. Then, v(i − 1) has no incoming edges.

2. there exist i, j with 0 ≤ j < i ≤ h − 1 such that v(j) and v(i) are defined
and v(i) = v(j). In this case, the conclusion is immediate.

3. v(i) is defined for every 0 ≤ i ≤ h and v(i) 6= v(j) for 0 ≤ j < i ≤ h − 1.
Since Algorithm 1 has terminated, then there exists 0 ≤ j ≤ h − 1 such
that v(j) ∈ U . The construction of U implies that there exists v′ ∈ V and
0 ≤ j ≤ h−1 such that v(j) = v′(j′) and v′(h−1) ∈ V (h). As a consequence
v(h− 1+ j − j′) = v(j)(h− 1− j′) = (v′(j′))(h− 1− j′) = v′(h− 1) ∈ V (h).
Since j ≤ h− 1 and j′ ≥ 0, we conclude h− 1 + j − j′ ≤ 2h− 2 and we are
done.

Computing the LCP Array Using a Linear Number of Bits First, let us
store a data structure of O(n) bits which in O(1) time determines RMQLCPA

(i, j)
for every 2 ≤ i ≤ j ≤ 2n.

Notice that LCPA[2i] ≥ 1 for 1 ≤ i ≤ n because the first character of mini and
the first character of maxi are equal to λ(ui). Moreover, we have LCPA[2i−1] ≥ 1
if and only if λ(ui−1) = λ(ui), for 2 ≤ i ≤ n.

Consider the entry LCPA[2i− 1] = lcp(maxi−1,mini), for 2 ≤ i ≤ n, and as-
sume that LCPA[2i−1] ≥ 1. Let k = pmax(i−1) and k′ = pmin(i). Since LCPA[2i−
1] ≥ 1, then there exists a ∈ Σ such that maxi−1 = amaxk and mini−1 =
amink′ . In particular, (uk, ui−1, a) ∈ E and (uk′ , ui, a) ∈ E, so from Axiom
2 we obtain k < k′. Moreover, we have LCPA[2i − 1] = lcp(maxi−1,mini) =
lcp(amaxk, amink′) = 1 + lcp(maxk,mink′). Notice that:

lcp(maxk,mink′) = min{lcp(maxk,mink+1), lcp(mink+1,maxk+1), . . . ,

= lcp(mink′−1,maxk′−1), lcp(maxk′−1,mink′)} =

= min{LCPA[2k + 1], LCPA[2k + 2], . . . , LCPA[2k
′ − 2], LCPA[2k

′ − 1]}.

Let j = RMQLCPA
(2k + 1, 2k′ − 1). Then, LCPA[j] = min{LCPA[2k +

1], LCPA[2k+2], . . . , LCPA[2k
′−2], LCPA[2k

′−1]}, so LCPA[2i−1] = 1+LCPA[j]
(we assume t + ∞ = ∞ for every t ≥ 0), and we have reduced the problem of
computing LCPA[2i− 1] to the problem of computing LCPA[j]. In the following,
let R(2i−1) = j. Given 2 ≤ i ≤ n, we can compute j = R(2i−1) in O(log log σ)
time, because we can compute k = pmax(i − 1) and k′ = pmin(i) in O(log log σ)
time and we can compute j in O(1) time by means of a range minimum query.

We proceed analogously with the entries LCPA[2i] = lcp(mini,maxi), for
1 ≤ i ≤ n (it must necessarily be LCPA[2i] ≥ 1). Let k = pmin(i) and k′ =
pmax(i); by the definitions of pmin and pmax it must be k ≤ k′. Hence, LCPA[2i] =
1+ lcp(mink,maxk′) and similarly lcp(mink,maxk′) = min{LCPA[2k], LCPA[2k+

Space-time Trade-offs for the LCP Array of Wheeler DFAs 9

u1start

u3

u4

u2

u4

u6

u7

u9

u10

u8

u11

u12

u13

u14

u15 u16

a

b

c

d

a

d

e

e

e

e

f

fg

g

h

i

j

k

l

(a)

State i LCPA[i] k k
′ R(i)

1
1
2 ∞ 1 1 2

2
3 0 - - -
4 1 1 2 3

3
5 0 - - -
6 ∞ 1 1 2

4
7 0 - - -
8 ∞ 1 1 2

5
9 0 - - -
10 1 1 5 9

6
11 0 - - -
12 1 2 3 5

7
13 1 3 4 7
14 1 4 5 9

8
15 0 - - -
16 2 6 6 12

9
17 2 6 7 13
18 2 7 7 14

10
19 0 - - -
20 2 6 6 12

11
21 2 6 7 13
22 2 7 7 14

12
23 0 - - -
24 3 8 8 16

13
25 0 - - -
26 4 12 12 24

14
27 0 - - -
28 5 13 13 26

15
29 0 - - -
30 6 14 14 28

16
31 0 - - -
32 7 15 15 30

(b)

v5 v12

v16

v20

v24

v26 v28

v30

v32

v7

v13

v17 v21

v9

v10

v14

v18

v22

v2

v8

v6

v3 v4

v11

v15

v19

v23

v25

v27

v29

v31

(c)

i C[i] LCP∗
A

1 3
2 0 7
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 1
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 1

(d)

Fig. 1: (a) A Wheeler DFA. States are numbered according to the Wheeler order.
(b) The array LCPA, and the values needed to compute G = (V,H). We assume
that a range minimum query returns the largest position of a minimum value.
(c) The graph G = (V,H), with V (⌈logn⌉) = V (4) = {v24, v32} (yellow states).
(d) The data structures that we store.

10 N. Cotumaccio et al.

1], . . . , LCPA[2k
′ − 1], LCPA[2k

′]}. Let j = RMQLCPA
(2k, 2k′). In the following,

let R(2i) = j. Given 1 ≤ i ≤ n, we can compute j = R(2i) in O(log log σ) time.
See Figure 1 for an example.

Now, consider the (unlabeled) directed graph G = (V,H) defined as follows.
Let V be a set of 2n−1 nodes v2, v3, . . . , v2n. Moreover, vi ∈ V has no incoming
edge in G if R(i) is not defined, which happens if LCPA[i] = 0 (and so i is odd
and λ(ui−1) 6= λ(ui)); vi ∈ V has exactly one incoming edge if R(i) is defined,
namely, (vR(i), vi). Note that v2i has an incoming edge for every 1 ≤ i ≤ n.
Let h ≥ 1 be a parameter. We know that there exists V (h) ⊆ V such that

(i) |V (h)| ≤ |V |
h and (ii) for every vi ∈ V there exists 0 ≤ k ≤ 2h − 2 such

that vi(k) is defined and either vi(h) ∈ V (h) or vi(h) has no incoming edges or
vi(h) = vi(l) for some 0 ≤ l < h. Notice that if vi(h) = vi(l) for some 0 ≤ l < h,
then LCPA[i] = ∞ (because there is a cycle and so vi(h

′) is defined for every
h′ ≥ 0). Let n′ = |V (h)|, and let LCP∗A[1, n

′] an array storing the value LCPA[i]

for each vi ∈ V (h), sorted by increasing i. Since n′ ≤ |V |
h = 2n−1

h , storing

LCP∗A[1, n
′] takes n′O(log n) = O(n log n

h) bits. We store a bitvector C[2, 2n] such
that C[i] = 1 if and only if vi ∈ V (h) for every 2 ≤ i ≤ 2n; we augment C with
o(n) bits so that it supports rank queries in O(1) time. For every 2 ≤ i ≤ 2n, in
O(1) time we can check whether LCPA[i] has been stored in LCP

∗
A by checking

whether C[i] = 1, and if C[i] = 1 it must be LCPA[i] = LCP∗A[rank(C, i)].

From our discussion, it follows that Algorithm 2 correctly computes LCPA[i]
for every 2 ≤ i ≤ n. Property (ii) ensures that the function lcp is called at
most h times. Every call requires O(log log σ) time, so the running time of our
algorithm is O(h log log σ) (the initialization of D[2, 2n] in Algorithm 2 can be
simulated in O(1) time [22]). We conclude that we store O(n+ n logn

h) bits, and
in O(h log log σ) time we can compute LCPA[i] for every 2 ≤ i ≤ n.

By choosing h = ⌈ logn
log log σ ⌉, we conclude that our data structure can be stored

using O(n log log σ) bits and it allows to compute LCPA[i] for every 2 ≤ i ≤ n in
O(log n) time. By choosing h = ⌈logn⌉ we conclude that our data structure can
be stored using O(n) bits and it allows to compute LCPA[i] for every 2 ≤ i ≤ n

in O(log n log log σ) time.

5 Applications

Matching Statistics Let us recall how the bounds in Theorem 2 are obtained.
The space bound is O(n log n) bits because we need to store LCPA. We also store
a data structure to solve range minimum queries on LCPA, which only takes
O(n) bits. The time bound O(m logn) follows from performing O(m) steps to
compute all matching statistics. In each of these O(m) steps, we may need to
perform a binary search on LCPA. In each step of the binary search, we need
to solve a range minimum query once and we need to access LCPA once, so
the binary search takes O(log n) time per step. By Theorem 1, if we store only
O(n log log σ) bits, we can access LCPA in O(log n) time, so the time for the
binary search becomes O(log2 n) per step and Theorem 3 follows.

Space-time Trade-offs for the LCP Array of Wheeler DFAs 11

$$$ $$T

$TA

TAC ACG

CGT

GTC TCG

CGA

GAC ACT

T

A

C

G

T

C

G

A

C

T

A

G

(a)

i Node LCPG[i] k k
′ R(i)

1 $$$

2 CGA 0 - - -
3 $TA 1 9 9 9
4 GAC 0 - - -
5 TAC 2 3 3 3
6 GTC 1 4 11 9
7 ACG 0 - - -
8 TCG 2 6 6 6
9 $$T 0 - - -
10 ACT 1 2 4 4
11 CGT 1 6 7 7

(b)

v9

v3

v6

v5

v8

v4 v10

v7 v11

v2

(c)

i C[i] LCP
∗

G

1 1
2 0 2
3 1 1
4 0 1
5 0
6 0
7 0
8 1
9 0
10 1
11 1

(d)

Fig. 2: The 3-rd order de Bruijn graph for the set S =
{CGAC,GACG,GACT, TACG,GTCG,ACGA,ACGT, TCGA,CGTC}
from [4]. We proceed like in Figure 1 (now we only consider odd entries of
LCPG, and h = ⌈log k⌉ = 2).

Variable-order de Bruijn Graphs Let k ≥ 0 be a parameter, and let S be
a set of strings on the alphabet Σ = {A,C,G, T } (in this application we always
assume σ = O(1)).

The k-th order de Bruijn graph of S is defined as follows. The set of nodes
is the set of all strings of Σ of length k that occur as a substring of some string
in S. There is an edge from node α to node β labeled c ∈ Σ if and only if (i)
the suffix of α of length k − 1 is equal to the prefix of β of length k − 1 and
(ii) the last character of β is c. If some node α has no incoming edges, then
we add nodes $iαk−i for 1 ≤ i ≤ k, where αj is the prefix of α of length j

and $ is a special character, and we add edges as above; see Figure 2 for an
example. Wheeler DFAs are a generalization of de Bruijn graphs (we do not
need to define an initial state and a set of final states, because here we are
not interested in studying the applications of de Bruijn graphs and Wheeler
automata to automata theory [2, 10]); the Wheeler order is the one such that
node α comes before node β if and only if the string αR is lexicographically
smaller than the string βR [17].

Notice that, in a k-th order de Bruijn graph G, all strings that can be read
from node α by following edges in a backward fashion start with αR (as usual,

12 N. Cotumaccio et al.

we assume that node $$$ has a self-loop labeled $). As a consequence, it holds
LCPG[2i] ≥ k for every 1 ≤ i ≤ n and LCPG[2i− 1] ≤ k − 1 for every 2 ≤ i ≤ n

(so any value in an odd entry is smaller than any value in an even entry).
As we saw in the introduction, in [4] it was shown that the k-order de Bruijn

graph of S can be used to implicitly store the k′-th order de Bruijn graph of S for
every k′ ≤ k, thus leading to a variable-order de Bruijn graph. The navigation
of a variable-order de Bruijn graph is possible by storing or by simulating the
values in the odd entries of the LCP array. Formally, in order to avoid confusion,
we define LCPG[i] = LCPG[2i − 1] for every 2 ≤ i ≤ n; see Figure 2. Note that
LCPG[i] ≤ k − 1 for every 2 ≤ i ≤ n, so LCPG can be stored by using O(n log k)
bits. Notice that Theorem 1 also applies to LCPG[i] (we do not need to store
values in the even entries because a value in an odd entry is smaller than a value
in an even entry, so even entries are never selected in the sampling process when
answering a range minimum query on LCPG). However, we can now choose a
better parameter h ≥ 1 in our sampling process. Indeed, each entry of LCPG can
be stored by using O(log k) bits (not O(log n) bits), so if we choose h = ⌈log k⌉,
we conclude that we can augment the BOSS representation of a de Bruijn graph
with O(n) bits such that for every 2 ≤ i ≤ n we can compute LCPG[i] in O(log k)
time.

The first solution in Theorem 4 consists in storing a wavelet tree on LCPG,
which requires O(n log k) bits and allows to navigate the graph in O(log k) time
per visited node. The second solution in Theorem 4 does not store LCPG at all;
whenever needed, an entry of LCPG is computed in O(k) time by exploiting the
BOSS representation of the de Bruijn graph. The second solution only stores a
data structures of O(n) bits to solve range minimum queries. The details can
be found in [4]. Essentially, the time bound O(k log n) comes from performing
binary searches on LCPG while explicitly computing an entry of LCPG at each
step in O(k) time. However, we have seen that, while staying within the O(n)
space bound, we can augment the BOSS representation so that we can compute
the entries of LCPG in O(log k) time, so the time bound O(k logn) becomes
O(log k logn), which implies Theorem 5.

References

1. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet pre-
fix sorting. In: Proc. of the 31st Symposium on Discrete Algorithms, (SODA’20).
pp. 911–930. SIAM (2020). https://doi.org/10.1137/1.9781611975994.55 ,
https://doi.org/10.1137/1.9781611975994.55

2. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Informa-
tion and Computation 281, 104820 (2021)

3. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Ku-
likov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D.,
Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A.,
Pevzner, P.A.: SPAdes: A new genome assembly algorithm and its
applications to single-cell sequencing. Journal of Computational Biol-
ogy 19(5), 455–477 (2012). https://doi.org/10.1089/cmb.2012.0021 ,
https://doi.org/10.1089/cmb.2012.0021, pMID: 22506599

https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021

Space-time Trade-offs for the LCP Array of Wheeler DFAs 13

4. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order
de Bruijn graphs. In: 2015 Data Compression Conference. pp. 383–392 (2015).
https://doi.org/10.1109/DCC.2015.70

5. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs.
In: Algorithms in Bioinformatics. pp. 225–235. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

6. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. rep. (1994)

7. Conte, A., Cotumaccio, N., Gagie, T., Manzini, G., Prezza, N.,
Sciortino, M.: Computing matching statistics on Wheeler DFAs.
In: 2023 Data Compression Conference (DCC). pp. 150–159 (2023).
https://doi.org/10.1109/DCC55655.2023.00023

8. Cotumaccio, N.: Graphs can be succinctly indexed for pattern matching in O(|E|2+
|V |5/2) time. In: 2022 Data Compression Conference (DCC). pp. 272–281 (2022).
https://doi.org/10.1109/DCC52660.2022.00035

9. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata.
In: Proc. of the 32nd Symposium on Discrete Algorithms, (SODA’21).
pp. 2585–2599. SIAM (2021). https://doi.org/10.1137/1.9781611976465.153 ,
https://doi.org/10.1137/1.9781611976465.153

10. Cotumaccio, N., D’Agostino, G., Policriti, A., Prezza, N.: Co-lexicographically or-
dering automata and regular languages – part i (2023)

11. Dı́az-Domı́nguez, D., Gagie, T., Navarro, G.: Simulating the DNA Over-
lap Graph in Succinct Space. In: Pisanti, N., Pissis, S.P. (eds.) 30th
Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 128,
pp. 26:1–26:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.26 ,
http://drops.dagstuhl.de/opus/volltexte/2019/10497

12. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled
trees for optimal succinctness, and beyond. In: proc. 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05). pp. 184–193 (2005).
https://doi.org/10.1109/SFCS.2005.69

13. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS’00).
pp. 390–398 (2000). https://doi.org/10.1109/SFCS.2000.892127

14. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Com-
pressing and indexing labeled trees, with applications. J. ACM
57(1) (nov 2009). https://doi.org/10.1145/1613676.1613680 ,
https://doi.org/10.1145/1613676.1613680

15. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010: Theoretical Informatics. pp. 158–169. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2010)

16. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011).
https://doi.org/10.1137/090779759, https://doi.org/10.1137/090779759

17. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: A framework for
BWT-based data structures. Theoretical Computer Science 698, 67–78
(2017). https://doi.org/https://doi.org/10.1016/j.tcs.2017.06.016 ,
https://www.sciencedirect.com/science/article/pii/S0304397517305285,
algorithms, Strings and Theoretical Approaches in the Big Data Era (In Honor of
the 60th Birthday of Professor Raffaele Giancarlo)

https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.4230/LIPIcs.CPM.2019.26
https://doi.org/10.4230/LIPIcs.CPM.2019.26
http://drops.dagstuhl.de/opus/volltexte/2019/10497
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/https://doi.org/10.1016/j.tcs.2017.06.016
https://www.sciencedirect.com/science/article/pii/S0304397517305285

14 N. Cotumaccio et al.

18. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Jour-
nal of computational biology : a journal of computational molecular cell biology 2

2, 291–306 (1995)
19. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,

Kristiansen, K., Li, S., Yang, H., Wang, J., Wang, J.: De novo assembly of human
genomes with massively parallel short read sequencing. Genome research 20, 265–
72 (12 2009). https://doi.org/10.1101/gr.097261.109

20. Liu, M., Yu, H.: Lower bound for succinct range minimum query. In: Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing. p. 1402–1415. STOC 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3357713.3384260 ,
https://doi.org/10.1145/3357713.3384260

21. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058 ,
https://doi.org/10.1137/0222058

22. Navarro, G.: Spaces, trees, and colors: The algorithmic landscape of doc-
ument retrieval on sequences. ACM Comput. Surv. 46(4) (mar 2014).
https://doi.org/10.1145/2535933 , https://doi.org/10.1145/2535933

23. Navarro, G.: Compact Data Structures - A Prac-
tical Approach. Cambridge University Press (2016),
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB

24. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – a practical iterative de
Bruijn graph de novo assembler. In: Berger, B. (ed.) Research in Computational
Molecular Biology. pp. 426–440. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

25. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sci-
ences 98(17), 9748–9753 (2001). https://doi.org/10.1073/pnas.171285098 ,
https://www.pnas.org/doi/abs/10.1073/pnas.171285098

26. Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comp.
Sys. 41(4), 589–607 (2007). https://doi.org/10.1007/s00224-006-1198-x ,
https://doi.org/10.1007/s00224-006-1198-x

27. Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., Birol, I.: ABySS: A
parallel assembler for short read sequence data. Genome research 19, 1117–23 (02
2009). https://doi.org/10.1101/gr.089532.108

28. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE An-
nual Symposium on Switching and Automata Theory. pp. 1–11 (1973).
https://doi.org/10.1109/SWAT.1973.13

https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1145/2535933
https://doi.org/10.1145/2535933
https://doi.org/10.1145/2535933
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://www.pnas.org/doi/abs/10.1073/pnas.171285098
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

	Space-time Trade-offs for the LCP Array of Wheeler DFAs
	Introduction
	Definitions
	Wheeler DFAs
	A Space-time Trade-off for the LCP Array
	Applications

