
ar
X

iv
:2

30
6.

10
71

4v
1

 [
cs

.D
S]

 1
9

Ju
n

20
23

Efficient Parameterized Pattern Matching in Sublinear Space

Haruki Ideguchi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara

Tohoku University, Japan

Abstract

The parameterized matching problem is a variant of string matching, which is to search for all
parameterized occurrences of a pattern P in a text T . In considering matching algorithms, the
combinatorial natures of strings, especially periodicity, play an important role. In this paper, we
analyze the properties of periods of parameterized strings and propose a generalization of Galil and
Seiferas’s exact matching algorithm (1980) into parameterized matching, which runs in O(π|T |+|P |)
time and O(log |P |+ |Π|) space in addition to the input space, where Π is the parameter alphabet
and π is the number of parameter characters appearing in P plus one.

1 Introduction

String matching is a problem to search for all occurrences of a pattern P in a text T . Since it is
one of the most important computer applications, many efficient algorithms for the problem have been
proposed. Let us denote the length of T and P by n and m, respectively. While a naive algorithm takes
O(nm) time to solve the problem, Knuth, Morris, and Pratt [13] gave an algorithm which runs in only
O(n + m) time by constructing auxiliary arrays called border arrays. After that, various algorithms
to solve the problem in linear time have been proposed, which use auxiliary data structures, such
as suffix trees [18], suffix arrays [15], LCP arrays [15]. All of those algorithms outperform the naive
algorithm in terms of time complexity. They require additional space to store their auxiliary data,
whose sizes are typically Θ(n) or Θ(m). On the other hand, studies for reducing such extra space were
conducted. Firstly, Galil and Seiferas reduced extra space usage to O(logm) [11], and later several
time-space-optimal, O(n+m) time and O(1) extra-space algorithms were devised [5, 6, 12].

In this paper, we consider a variant of string matching: parameterized matching. It is a pattern
matching paradigm in which two strings are considered a match if we can map some characters (pa-
rameter characters) in one string to characters in another string. This paradigm was first introduced
by Baker [4] for use in software maintenance by the ability to detect ‘identical’ computer programs
renaming their variables. For solving the parameterized matching problem, a number of linear-time
algorithms have been proposed that extend algorithms for exact matching [2, 7, 8, 10, 14, 16, 17].
However, we know of no previous attempt to reduce extra space usage for time-efficient parameterized
matching algorithms to sublinear.

The main contribution of this paper is to give a sublinear-extra-space algorithm for the parame-
terized matching problem by extending Galil and Seiferas’s exact matching algorithm [11]. It runs in
O(|ΠP |n + m) time and O(logm + |Π|) space in addition to the input space, where Π is the set of
parameter characters and ΠP is the non-empty1 set of parameter characters appearing in P .

In order to provide the basis for our algorithm, we also investigate the properties of periodicity
of parameterized strings in this paper. It is widely known that periods of strings are useful for exact
matching algorithms [5, 6, 11, 12, 13], which is also the case for parameterized matching [2]. We extend
previous work on parameterized periods by Apostolico and Giancarlo [3] and derive several properties
for our algorithm. In particular, we focus on ‘sufficiently short’ periods of parameterized strings having

1We can assume ΠP 6= ∅ without loss of generality. See Remark 2.

1

http://arxiv.org/abs/2306.10714v1

properties useful for matching algorithms. Those results contain a parameterized version of Fine and
Wilf’s periodicity lemma [9].

Remark 1. The time and space complexities of our algorithm stated above are based on a computing
model in which functions Π → N can be stored as arrays. If not, one can use AVL trees [1] instead
of arrays to store such functions. Then, our algorithm runs in O((|ΠP |n + m) log |ΠP |) time and
O(logm+ |ΠP |) extra space.

2 Preliminaries

Let N and N+ be the set of natural numbers including and excluding 0, respectively. For x, y ∈ N, we
denote by x | y that y is a multiple of x.

2.1 Parameterized Matching Problem

In parameterized matching, we consider two disjoint alphabets: the constant alphabet Σ and the
parameter alphabet Π. A string over Σ ∪Π is called a parameterized string or a p-string. Consider
a p-string w ∈ (Σ ∪Π)∗. We denote the length of w by |w|. For 0 ≤ i < |w|, let us denote i-th
letter of w by w[i], where the index i is 0-based. For 0 ≤ i ≤ j ≤ |w|, we denote the substring
w[i]w[i + 1] · · ·w[j − 1] by w[i : j]. (Note that w[i : j] does not contain w[j].)

We denote the set of permutations of Π by SΠ. Throughout this paper, for a permutation f ∈ SΠ

and a constant character c ∈ Σ, let f(c) = c. Then, the map f is naturally expanded as a bijection
over p-strings: (Σ ∪Π)∗ → (Σ ∪Π)∗.

Definition 1 (Baker [4]). Two p-strings x and y are called a parameterized-match or a p-match if
and only if there exists a permutation f ∈ SΠ such that f(x) = y. Denote this relation by x ≡ y.

Example 1. Let Σ = {a, b, c} and Π = {A, B, C}. We have ABaCBCa ≡ BCaACAa with a witness f such
that f(A) = B, f(B) = C, and f(C) = A.

Clearly, the relation ≡ is an equivalence relation over (Σ ∪Π)∗. Note that if x ≡ y, we have |x| = |y|
and x[i : j] ≡ y[i : j] for any 0 ≤ i ≤ j ≤ |x|. By this relation, the problem we consider in this paper,
the parameterized matching problem, is defined as follows.

Problem 1 ([4]). Given two p-strings T (text) and P (pattern), find all 0 ≤ i ≤ |T | − |P | such that
T [i : i+ |P |] ≡ P .

2.2 Periodicity of Parameterized Strings

Periodicity is one of the most fundamental concepts in combinatorics of strings and a wealth of appli-
cations. In exact matching, the Knuth-Morris-Pratt algorithm and various algorithms based on it rely
on the properties of periods [13, 11, 12, 6, 5]. It is also the case for parameterized matching [2], where
periods of parameterized strings are defined as follows:

Definition 2 (Apostolico and Giancarlo [3]). Consider w ∈ (Σ ∪Π)∗ and p ∈ N+ with p ≤ |w|. Then,
p is called a period of w if and only if w[0 : |w| − p] ≡ w[p : |w|].

If p is a period of w, there exists f ∈ SΠ satisfying f(w[0 : |w| − p]) = w[p : |w|] by definition. We
denote this relation by p ‖f w or simply by p ‖ w when f is not specified.

In general, a p-string w can have multiple periods. We denote the shortest period of w as period (w).
It is clear that a period p of a p-string w is also a period of any substring w′ of w such that |w′| ≥ p.

Example 2. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABaCBCaACAa, we have 4 ‖f w as ABaCBCa ≡
BCaACAa with f(A) = B, f(B) = C, and f(C) = A.

Instead of Definition 3, one can use the following equivalent definition for periods, which is a more
intuitive representation of the repetitive structure of strings:

2

Lemma 1 ([3]). Consider w ∈ (Σ ∪Π)∗, p ∈ N+, and f ∈ SΠ. Then, p ‖f w holds if and only if w
can be written as

w = f0(v) · f1(v) · f2(v) · · · f ⌊ρ⌋(v) · f ⌊ρ⌋+1(v′),

where ρ = |w|
p

, v = w[0 : p] and v′ is a prefix of v (allowing the case v′ is empty).

The following lemma has important applications for various matching algorithms. Particularly, it
is used to shift the pattern string safely in the Knuth-Morris-Pratt algorithm and variants [2, 13].

Lemma 2. Consider x, y ∈ (Σ ∪Π)∗ with x ≡ y. For any 0 < δ < period(y), we have x[δ : |x|] 6≡
y[0 : |y| − δ].

Proof. We give a proof by contraposition. Suppose x[δ : |x|] ≡ y[0 : |y| − δ]. Then we have
y[0 : |y| − δ] ≡ x[δ : |x|] ≡ y[δ : |y|], which means δ ‖ y. Hence, δ ≥ period (y) holds.

One of the main interest regarding string periodicity is what holds when a string w has two different
periods p and q. For ordinary strings, Fine and Wilf’s periodicity lemma [9] gives an answer: gcd(p, q)
is also a period when |w| ≥ p+ q − gcd(p, q), where gcd(p, q) is the greatest common divisor of p and
q. Apostolico and Giancarlo showed a similar property for parameterized strings.

Lemma 3 ([3]). For w ∈ (Σ ∪Π)∗, p, q ∈ N+, and f, g ∈ SΠ, assume that p ‖f w and q ‖g w. If
|w| ≥ p+ q and fg = gf , we have gcd(p, q) ‖ w.

It is known that the length |w| = p + q − gcd(p, q) is not sufficient for this lemma unlike ordinary
strings [3].

3 Properties of Parameterized Periods

In this section, we show some properties of periods of parameterized strings. They play an important
role in our algorithm presented in Section 4.

3.1 Alternative Periodicity Lemma

The requirements of Lemma 3 are slightly different from Fine and Wilf’s lemma for ordinary strings.
Particularly, the commutativity of f and g is essential [3, Lemma 5]. We show in this section a new
periodicity lemma for parameterized strings which does not assume the commutativity.

Firstly, we focus on parameter characters contained in a given p-string and its substrings. For
w ∈ (Σ ∪Π)∗, we denote by Πw the set of parameter characters appearing on w.

Example 3. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABabAca, we have Πw = {A, B}.

Lemma 4. Consider w ∈ (Σ ∪Π)∗ and any of its substrings w′ and w′′. Then, the followings hold:

• If |w′| ≥ period(w) · (|Πw| − 1), we have |Πw′ | ≥ |Πw| − 1.

• If |w′′| ≥ period (w) · |Πw|, we have Πw′′ = Πw.

Proof. The case Πw = ∅ is trivial. Suppose Πw 6= ∅. Let p := period(w) and f be a permutation of Π
such that p ‖f w. It suffices to show the lemma for the cases |w′| = p ·(|Πw|−1) and |w′′| = p · |Πw|. By
Lemma 1, w′ and w′′ can be written as w′ = v′ ·f(v′) · · · f |Πw|−2(v′) and w′′ = v′′ ·f(v′′) · · · f |Πw|−1(v′′),
where v′ and v′′ are the prefixes of w′ and w′′ of length p, respectively. Now, we consider the cyclic
decomposition of f .

Suppose the characters in Πw make one cyclic permutation in f . Let a be any parameter char-
acter contained in v′. Note that a, f(a), · · · , f |Πw|−2(a) are all different characters and appear in w′.
Therefore, we have |Πw′ | ≥ |Πw| − 1. The analogous argument shows |Πw′′ | = |Πw|.

Suppose the characters in Πw make two or more cyclic permutations in f . Then, those cyclic
permutations are all of length |Πw| − 1 or less. For 0 ≤ i < |w|, there exists an integer k such that

3

w[i+ kp], w[i+(k +1)p], · · · , w[i+(k+ |Πw|− 2)p] are all contained in w′. Then, those characters can
be represented as fk(w[i]), fk+1(w[i]), · · · , fk+|Πw|−2(w[i]), and by the assumption about f , at least
one of them is equal to w[i]. Therefore, we have w[i] ∈ Πw′ . Since i is arbitrary, we end up with
Πw ⊆ Πw′ , as required.

Now, we show a variant of Lemma 3. It does not require any assumption on the permutations, in
exchange of a stricter requirement for the length of strings.

Lemma 5. Suppose w ∈ (Σ ∪Π)∗ with Πw 6= ∅ has periods p and q. If |w| ≥ p+q+min(p, q)·(|Πw|−1),
we have gcd(p, q) ‖ w.

Proof. Let f and g be permutations of Π such that p ‖f w and q ‖g w. Without loss of generality,
we suppose f(a) = a and g(a) = a for any a ∈ Π \ Πw. By Lemma 3, it suffices to show that
fg = gf . Let w′ := w[0 : |w| − p− q]. Then, notice that fg(w′) = f(w[q : |w| − p]) = w[p + q : |w|] =
g(w[p : |w| − q]) = gf(w′), which claims fg(a) = gf(a) for any a ∈ Πw′ . Moreover, given |w′| =
|w| − p − q ≥ min(p, q) · (|Πw| − 1) ≥ period (w) · (|Πw − 1|), we have |Πw′ | ≥ |Πw| − 1 by Lemma 4.
Hence, the permutations fg and gf behave the same for at least |Π| − 1 parameter characters. This
implies fg = gf .

Corollary 1. Suppose w ∈ (Σ ∪Π)∗ with Πw 6= ∅ has a period q. If q ≤ |w|
|Πw|+1 , then period (w) | q.

Proof. Let p := period(w). By p ≤ q ≤ |w|
|Πw|+1 , we have p · |Πw|+q ≤ q ·(|Πw|+1) ≤ |w|

|Πw|+1(|Πw|+1) =

|w|. Hence, we can use Lemma 5 to obtain gcd(p, q) ‖ w. Then, since p is the smallest period of w, we
have gcd(p, q) ≥ p, which means gcd(p, q) = p i.e. p | q, as required.

3.2 Prefix Periods

Galil and Seiferas’s exact matching algorithm [11] can be regarded as an extension of the Knuth-
Morris-Pratt algorithm [13]. The main idea of their algorithm is to deal with only periods of pattern
prefixes which are ‘short enough.’ They pointed out that periods shorter than 1

k
times of the length of

the string have useful properties for saving space usage in exact string matching for an arbitrarily fixed
k ≥ 3. We show in this section that similar properties hold for parameterized strings as well when k

is set to be |Πw| + 2. Most part of those properties come from Lemma 5 we proved in the previous
section.

Lemma 6. Suppose w ∈ (Σ ∪Π)∗ has a period p. If p ≤ |w|
|Πw|+1 , there exists only one character

a ∈ Σ ∪Π such that p ‖ wa.

Proof. Consider the prefix w′ := w[0 : |w| − p]. By p ≤ |w|
|Πw|+1 , we have |w|−p ≥ p|Πw| ≥ period(w)|Πw|.

By Lemma 4, Πw′ = Πw. Therefore, w[|w| − p] already appears in w′ as w[i] = w[|w| − p] for some
i < |w| − p. Hence, for any f such that p ‖f w, it holds that p ‖f wa if and only if a = w[i+ p].

Corollary 2. Suppose w ∈ (Σ ∪Π)∗ has a period p. For any ℓ ∈ N+ with ℓp ≤ |w|
|Πw|+1 , we have

p ‖ wa ⇐⇒ ℓp ‖ wa for any a ∈ Σ ∪Π.

Proof. By Lemma 6, the characters a1 and a2 such that p ‖ wa1 and ℓp ‖ wa2 are unique respectively.
Then, since p ‖ wa1 =⇒ ℓp ‖ wa1 (shown immediately by Lemma 1), we get a1 = a2, as required.

Now, we introduce the key concept for our algorithm: prefix periods. This is a natural extension
of the one introduced in [12] for parameterized strings. Hereafter in this section, we consider a fixed
p-string w ∈ (Σ ∪Π)∗ with Πw 6= ∅ and let k := |Πw|+ 2.

Definition 3. A positive integer p ∈ N+ is called a prefix period of w if and only if there exists a

prefix w′ of w such that period(w′) = p and p ≤ |w′|
k

.

4

Table 1: Let Π = {A, B}. A p-string w := ABABBABAABABBABAABBA has prefix periods 1 and 4. Circled
numbers in the table below are prefix periods of w with w[0 : i+ 1] as witnesses. For instance, 4 is a

prefix period of w with w[0 : 18] as a witness because period (w[0 : 18]) = 4 and 4 ≤ |w[0:18]|
k

. (Note
that k = |Πw|+ 2 = 4.)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
w[i] A B A B B A B A A B A B B A B A A B B A

period (w[0 : i+ 1]) 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 18 18

reachw(1) = 4 reachw(4) = 18

We give an example of prefix periods in Table 1. For a fixed p, only prefixes w′ of w satisfying
|w′| ≥ kp can be a witness for p being a prefix period. We show in the following lemmas that it suffices
to consider only one prefix w′ = w[0 : kp] for checking whether p is a prefix period.

Lemma 7. For any a ∈ Σ ∪Π, if period(wa) 6= period(w), we have period (wa) > |w|
|Πw|+1 .

Proof. We show the lemma by contraposition. Suppose period(wa) ≤ |w|
|Πw|+1 . Since period(wa) is

also a period of w, we can use Corollary 1 to obtain period (w) | period (wa). Therefore, we get
period (w) ‖ wa by Corollary 2, which implies period(w) ≥ period (wa). On the other hand, we have
period (w) ≤ period (wa) by definition. Thus period(w) = period(wa) holds.

Lemma 8. Consider any 0 < p ≤ |w|
k

. Then, p is a prefix period of w if and only if period (w′) = p

where w′ := w[0 : kp].

Proof. (⇐=) Immediate by the definition of prefix periods.
(=⇒) Let v be a prefix of w that witnesses p being a prefix period, i.e., |v| ≥ kp and period (v) = p.

If |v| = kp, we are done. Suppose |v| > kp and let u := v[0 : |v| − 1]. Then, period(v) = p <
|v|
k
≤

|v|
|Πu|+2 <

|u|
|Πu|+1 . By Lemma 7, we have period (u) = period(v) = p. By repeatedly applying this

discussion, we can shorten the witness up to length kp.

Next, we introduce an auxiliary function reachw.

Definition 4. For any 0 < p ≤ |w|, let

reachw(p) := max{r ∈ N : r ≤ |w| and p ‖ w[0 : r]}.

Note that p ‖ w[0 : r] ⇐⇒ reachw(p) ≥ r holds by definition. Using reachw, we get an equivalent
definition of prefix periods as follows, which is directly used in our searching algorithm.

Lemma 9. Consider any 0 < p ≤ |w|
k

. Then, p is a prefix period of w if and only if all the followings
hold:

(1) reachw(p) ≥ kp,

(2) reachw(q) < reachw(p) for any 0 < q < p.

Proof. (=⇒) (1) is by definition. We show (2). By Lemma 8, period (w[0 : kp]) = p. Thus, q < p is
not a period of w[0 : kp], i.e., reachw(q) < kp ≤ reachw(p) by (1).

(⇐=) Let w′ := w[0 : reachw(p)]. (2) implies period(w′) = p since any q satisfying 0 < q < p is not

a period of w′. Additionally, we have p ≤ |w′|
k

by (1). Thus p is a prefix period of w with w′ as a
witness.

Galil and Seiferas [11, Corollary 1] pointed out that the number of prefix periods of a word w is
O(log |w|). We show in the following lemma that it is the case for parameterized strings. It contributes
directly to reducing the space complexity of our algorithm.

5

Lemma 10. Suppose w has prefix periods p and q. If p < q, then 2p ≤ q.

Proof. We prove the theorem by contradiction. Suppose p < q < 2p. By definition, p ‖ w[0 : kp] and
q ‖ w[0 : kq] hold. Let w′ := w[0 : kp]. By Lemma 8, p is the shortest period of w′. Since both p and q

are periods of w′ and p · |Πw′ |+q < p · |Πw|+2p = kp = |w′|, we get gcd(p, q) ‖ w′ by Lemma 5. Hence,
we have gcd(p, q) ≥ period(w′) = p, which claims gcd(p, q) = p i.e. p | q. However, this contradicts to
the assumption p < q < 2p.

Corollary 3. The number of prefix periods of w ∈ (Σ ∪Π)∗ is at most log2 |w|.

4 Proposed Algorithm

In this section, we propose a sublinear-extra-space algorithm for the parameterized matching problem.
Throughout this section, let T and P be p-strings whose lengths are n and m respectively, and let
k := |ΠP | + 2. Besides, we suppose ΠP 6= ∅. Our algorithm is an extension of Galil and Seiferas’s
exact string matching algorithm [11] and runs in O(|ΠP |n+m) time and O(logm+ |Π|) extra space.
When |Π| = |ΠP | = 1, our algorithm behaves exactly as theirs.

Remark 2. We can assume ΠP 6= ∅ without loss of generality. When ΠP = ∅, choose any c ∈ Σ
appearing in P and let constant and parameter alphabets be Σ ∪Π \ {c} and {c}, respectively.

Firstly, we introduce a method for testing whether two p-strings match. While it is common to
use the prev-encoding [4] for this purpose, it is not suitable for our goal since it requires additional
space proportional to the input size. Thus we use an alternative method as follows, which requires
only O(|Π|) extra space.

Lemma 11. Consider a prefix x of P and y ∈ (Σ ∪Π)∗ with x ≡ y and any a, b ∈ Σ ∪Π. We have
xa ≡ yb if and only if one of the followings holds:

1. a ∈ Σ and a = b,

2. a ∈ Π and firstP (a) ≥ |x| and b ∈ Π and county(b) = 0,

3. a ∈ Π and firstP (a) < |x| and y[firstP (a)] = b,

where firstP : Π→ N and county : Π→ N are defined as follows:

firstP (c) =

{

min{i ∈ N : i < |x| and x[i] = c} if c ∈ ΠP ,

|P | if c ∈ Π \ ΠP ,

county(c) = |{i ∈ N : i < |y| and y[i] = c}|

Proof. By definition, we have xa ≡ yb if and only if b = f(a), where f satisfies x = f(y). If a is a
constant character or appears in x, the value f(a) is determined (Case 1 and 3). Otherwise, b must be
a parameter character not appearing in y (Case 2).

Let MATCH(x, y, a, b,firstP , county) be the function which returns whether xa ≡ yb under the con-
dition x ≡ y using Lemma 11. Clearly, one can compute it in constant time if firstP and county are
given as arrays. Note that firstP can be computed in O(m) time and O(|Π|) space.

4.1 Pattern Preprocessing

In this section, we show the preprocessing for the pattern P for our matching algorithm. The output
of the preprocessing is the list of pairs of a prefix period of P (in ascending order) and its reach, just
like Galil and Seiferas [11] introduced for exact string matching. The list plays a similar role to the
border array in the parameterized Knuth-Morris-Pratt algorithm [2]. While border array uses Θ(m)

6

Algorithm 1: PREFIX_PERIODS

Input: P ∈ (Σ ∪Π)∗ and first

Output: a list of all prefix periods of P and their reaches
1 begin

2 k ← |ΠP |+ 2
3 PP ← empty list
4 idx ← −1
5 (p, r)← (1, 1)
6 Set count [a]← 0 for each a ∈ Π
7 max_reach ← 0
8 while kp ≤ |P | do

9 while MATCH(P [0 : r − p], P [p : r], P [r − p], P [r],first , count) do

10 Increment count [P [r]]
11 r ← r + 1

12 if idx + 1 < |PP | and PP [idx + 1].val ≤ r−p
k

then Increment idx

13 end

14 if r ≥ kp and r > max_reach then

15 Push (p, r) into PP

16 end

17 max_reach ← max{max_reach , r}

18 if 0 ≤ idx < |PP | and PP [idx].reach ≥ r − p > 0 then

19 for p ≤ i < p+ PP [idx].val do Decrement count [P [i]]
20 p← p+ PP [idx].val

21 else

22 for p ≤ i < r do Decrement count [P [i]]

23 p← p+ ⌊ r−p
k
⌋+ 1

24 r ← p

25 end

26 until PP [idx].val ≤ r−p
k

or idx = −1 do Decrement idx

27 end

28 return PP

29 end

space to memorize the shortest periods of all prefixes of P , the prefix period list requires only O(logm)
space by Corollary 3.

We present the algorithm for computing the list of pairs of a prefix period and its reach in Algo-
rithm 1. The algorithm finds prefix periods and their reaches in order from the smallest to the largest
and put them into the list PP . By PP [idx].val and PP [idx].reach , we denote the idx -th prefix period
and its reach in PP , respectively. Starting with p = 1, it monotonically increases p and checks whether
an integer p is a prefix period based on Lemma 9. Throughout the algorithm run, we maintain the
invariant

p ‖ P [0 : r], i.e., P [0 : r − p] ≡ P [p : r] (♠)

We calculate reachP (p) by increasing r as long as P [0 : r − p] ≡ P [p : r] holds (Lines 9–13). To let the
function MATCH decide P [0 : r − p] ≡ P [p : r], we use two auxiliary arrays first and count that satisfy
first [a] = firstP (a) and count [a] = countP [p:r](a), defined in Lemma 11. Moreover, we maintain the
variable max_reach to be the largest reach calculated so far. By Lemma 9, the condition of Line 14 is
satisfied if and only if p is a prefix period.

7

One can construct the list PP by incrementing p one by one, but it takes too much time. Instead,
we skip calculating reachP (p) if we are sure that p is not a prefix period. For realizing an efficient shift,
we maintain a variable idx so that it points at the largest index of PP such that PP [idx].val ≤ r−p

k

(Lemma 12 below). The shift amount is determined in the following manner. If PP [idx].reach ≥
r − p > 0 at Line 18, Lemmas 14 and 13 imply PP [idx].val = period (P [0 : r − p]). Hence, Lemma 16
justifies the shift amount PP [idx].val of p at Line 20. On the other hand, if PP [idx].reach < r− p, by
Lemma 14, we have period(P [0 : r − p]) > r−p

k
. This justifies the shift ⌊ r−p

k
⌋+ 1 of p at Line 23 again

by Lemma 16. If r − p = 0, then p is incremented by just one.
We now prove the lemmas used for justifying our algorithm behavior in the above discussion.

Firstly, we assume the invariant ♠.

Lemma 12. Throughout Algorithm 1, the value of the variable idx is always the upper bound that
satisfies PP [idx].val ≤ r−p

k
. If there does not exists such index, we have idx = −1.

Proof. The variable idx is updated in conjunction with p and r to preserve the condition. See Lines 12
and 26.

Lemma 13. Let ♠ hold at Line 18 in Algorithm 1. If period (P [0 : r − p]) ≤ r−p
k

, we have PP [idx].val =
period (P [0 : r − p]).

Proof. Let w′ := P [0 : r − p], p′ := period(w′), p′′ := PP [idx].val , and w′′ = P [0 : kp′′]. By the
assumption, p′ is a prefix period of P . Additionally, we have p′ ≤ p since p ‖ w′. Thus p′ is in the
list PP , and thus we have p′ ≤ p′′ by Lemma 12. On the other hand, we have period (w′′) = p′′ by
Lemma 8. Since |w′′| = kp′′ ≤ r − p = |w′|, we have period (w′′) ≤ period (w′), i.e. p′′ ≤ p′. Hence we
get p′ = p′′.

Lemma 14. Let ♠ hold at Line 18 in Algorithm 1. We have PP [idx].reach ≥ r − p ⇐⇒
period (P [0 : r − p]) ≤ r−p

k
.

Proof. Let w′ := P [0 : r − p] and p′ := PP [idx].val .

(=⇒) We have p′ ‖ w′ by the assumption. Then period(w′) ≤ p′ ≤ r−p
k

holds by Lemma 12.
(⇐=) By Lemma 13, we have p′ = period(w′). Then PP [idx].reach = reachP (p

′) =
reachP (period (w

′)) ≥ |w′| = r − p.

Now, we show that the invariant ♠ always holds.

Lemma 15. Throughout Algorithm 1, we have P [0 : r − p] ≡ P [p : r].

Proof. One must see the condition preserved at the lines in which p or r is updated. The update at
Lines 23–24 is trivial. Line 11 preserves the condition, ensured by the condition of Line 9. For Line 20,
let q := PP [idx].val . Since q = period(P [0 : r − p]) by Lemma 13, we have P [0 : r − (p+ q)] ≡
P [q : r − p] ≡ P [p+ q : r]. Note that Lemma 13 requires ♠ only at Line 18, so the argument does not
circulate.

The following lemma justifies the shift of p at Lines 20 and 23.

Lemma 16. Consider P ∈ (Σ ∪Π)∗, p ∈ N+ and let r := reachP (p). Then, no prefix period q of P
exists such that p < q < p+ period(P [0 : r − p]).

Proof. We use Lemma 2 as x := P [p : r], y := P [0 : r − p], δ := q − p to obtain P [q : r] 6≡ P [0 : r − q],
which means q ∦ P [0 : r]. Thus we have reachP (q) < r = reachP (p), which implies that q is not a
prefix period of P by Lemma 9.

8

Algorithm 2: SEARCH

Input: T, P ∈ (Σ ∪Π)∗

Output: all 0 ≤ i ≤ |T | − |P | such that T [i : i+ |P |] ≡ P

1 begin

2 k ← |ΠP |+ 2
3 first ← firstP
4 PP ← PREFIX_PERIODS(P,first)
5 idx ← −1
6 (i, j) ← (0, 0)
7 Set count [a]← 0 for each a ∈ Π
8 while i < |T | − |P | do

9 while MATCH(P [0 : j − i], T [i : j], P [j − i], T [j],first , count) do

10 Increment count [T [j]]
11 j ← j + 1

12 if idx + 1 < |PP | and PP [idx + 1].val ≤ j−i
k

then Increment idx

13 end

14 if j − i = |P | then

15 output i

16 end

17 if 0 ≤ idx < |PP | and PP [idx].reach ≥ j − i > 0 then

18 for i ≤ u < i+ PP [idx].val do Decrement count [T [u]]
19 i← i+ PP [idx].val

20 else

21 for i ≤ u < j do Decrement count [T [u]]

22 i← i+ ⌊ j−i
k
⌋+ 1

23 j ← i

24 end

25 until PP [idx].val ≤ j−i
k

or idx = −1 do Decrement idx

26 end

27 end

We have thus far proved the validity of Algorithm 1. Now, we show that the algorithm runs in
O(m) time. Firstly, notice that the while loops at Line 8 and 9 are repeated only O(m) times in
total, since the quantity kp+ r keeps increasing and kp + r ≤ k · m

k
+m = O(m). Hence, the fact we

must show is that decrementing count and idx at Line 19, 22, and 26 takes O(m) time in total. As
their values are always greater than or equal to their initial values, the number of decrements does not
exceed the number of increments, which is O(m) since they are in Line 10–12.

Theorem 1. All prefix periods of P and their reaches can be calculated in O(m) time and O(logm+|Π|)
extra space.

4.2 Searching Parameterized Matches

Our matching algorithm is shown in Algorithm 2. As it is the case for the Galil-Seiferas algorithm, it
resembles the preprocess. Now, the invariants in Algorithm 2 are obtained by replacing p, r, and P [p : r]
in Lemma 12–15 with i, j, and T [i : j], respectively. Particularly, by the invariant that P [0 : j − i] ≡
T [i : j], one can find matching positions i when j = i+|P | (Line 14). The shift amounts are also justified
by using Lemma 2 as x := T [i : j] and y := P [0 : j − i], whose conclusion T [i+ δ : j] 6≡ P [0 : j − i− δ]
implies T [i+ δ : i+ δ + |P |] 6≡ P for any δ smaller than the shift by the algorithm.

9

Theorem 2. The parameterized matching problem can be solved in O(|ΠP |n+m) time and O(logm+
|Π|) extra space.

5 Conclusion and Future Work

We studied the periodicity of parameterized strings and extended the Galil-Seiferas algorithm [11] for
parameterized matching. The proposed algorithm requires only sublinear extra space. The properties
of periods of parameterized strings we presented in this paper may be used to design more space-
efficient algorithms for parameterized matching, as Galil and Seiferas [12] used prefix periods to design
a constant-extra-space algorithm for exact matching.

References

[1] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for the organization of infor-
mation. Technical report, Joint Publications Research Service Washintgton DC, 1963.

[2] Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in parameterized
matching. Information Processing Letters, 49(3):111–115, 1994.

[3] Alberto Apostolico and Raffaele Giancarlo. Periodicity and repetitions in parameterized strings.
Discrete Applied Mathematics, 156(9):1389–1398, 2008.

[4] Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of
Computer and System Sciences, 52(1):28–42, 1996.

[5] Maxime Crochemore. String-matching on ordered alphabets. Theoretical Computer Science,
92(1):33–47, 1992.

[6] Maxime Crochemore and Dominique Perrin. Two-way string-matching. J. ACM, 38(3):650–674,
1991.

[7] Satoshi Deguchi, Fumihito Higashijima, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Parameterized suffix arrays for binary strings. In Proceedings of the Prague Stringology Conference
2008, pages 84–94, 2008.

[8] Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and Ayumi Shinohara. Position
heaps for parameterized strings. In Proceedings of the 28th Annual Symposium on Combinatorial
Pattern Matching (CPM 2017), pages 8:1–8:13, 2017.

[9] Nathan J Fine and Herbert S Wilf. Uniqueness theorems for periodic functions. Proceedings of
the American Mathematical Society, 16(1):109–114, 1965.

[10] Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Right-
to-left online construction of parameterized position heaps. In Proceedings of the Prague Stringol-
ogy Conference 2018 (PSC 2018), pages 91–102, 2018.

[11] Zvi Galil and Joel Seiferas. Saving space in fast string-matching. SIAM Journal on Computing,
9(2):417–438, 1980.

[12] Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and System
Sciences, 26(3):280–294, 1983.

[13] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323–350, 1977.

10

[14] S Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees. In Proceedings
of the 36th Annual Symposium on Foundations of Computer Science, pages 631–638, 1995.

[15] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

[16] Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yoshinaka,
Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda. DAWGs for parame-
terized matching: Online construction and related indexing structures. In Proceedings of the 31st
Annual Symposium on Combinatorial Pattern Matching (CPM 2020), pages 26:1–26:14, 2020.

[17] Katsuhito Nakashima, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. An Extension
of Linear-size Suffix Tries for Parameterized Strings. In SOFSEM 2020 Student Research Forum,
pages 97–108, 2020.

[18] Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium
on Switching and Automata Theory, pages 1–11, 1973.

11

