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Abstract. A Wheeler automaton is a finite state automaton whose
states admit a total Wheeler order, reflecting the co-lexicographic or-
der of the strings labeling source-to-node paths. A Wheeler language is
a regular language admitting an accepting Wheeler automaton. Wheeler
languages admit efficient and elegant solutions to hard problems such
as automata compression and regular expression matching, therefore de-
ciding whether a regular language is Wheeler is relevant in applications
requiring efficient solutions to those problems. In this paper, we show
that it is possible to decide whether a DFA with n states and m tran-
sitions recognizes a Wheeler language in O(mn) time. This is a signifi-
cant improvement over the running time O(n13+m logn) of the previous
polynomial-time algorithm (Alanko et al., Information and Computation
2021). A proof-of-concept implementation of this algorithm is available
in a public repository. We complement this upper bound with a condi-
tional matching lower bound stating that, unless the strong exponential
time hypothesis (SETH) fails, the problem cannot be solved in strongly
subquadratic time. The same problem is known to be PSPACE-complete
when the input is an NFA (D’Agostino et al., Theoretical Computer Sci-
ence 2023). Together with that result, our paper essentially closes the
algorithmic problem of Wheeler language recognition.
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1 Introduction

Wheeler automata were introduced by Gagie et al. in [11] as a natural gen-
eralization of prefix-sorting techniques (standing at the core of the most suc-
cessful string processing algorithms) to labeled graphs. Informally speaking, an
automaton on alphabet Σ is Wheeler if the co-lexicographic order of the strings
labeling source-to-states paths can be “lifted” to a total order of the states (a for-
mal definition is given in Definition 5). As shown by the authors of [11], Wheeler
automata can be encoded in just O(log |Σ|) bits per edge and they support near-
optimal time pattern matching queries (i.e. finding all nodes reached by a path
labeled with a given query string). These properties make them a powerful tool
in fields such as bioinformatics, where one popular way to cope with the rapidly-
increasing number of available fully-sequenced genomes, is to encode them in a
pangenome graph: aligning short DNA sequences allows one to discover whether
the sequences at hand contain variants recorded (as sub-paths) in the graph [9].

Wheeler languages — that is, regular languages recognized by Wheeler au-
tomata — were later studied by Alanko et al. in [2]. In that paper, the authors
showed that Wheeler DFAs (WDFAs) and Wheeler NFAs (WNFAs) have the
same expressive power. As a matter of fact, the class of Wheeler languages
proved to possess several other remarkable properties, in addition to represent
the class of regular languages for which efficient indexing data structures exist.
Such properties motivated them to study the following decisional problem (as
well as the corresponding variant on NFAs / regular expressions):

Definition 1 (WheelerLanguageDFA). Given a DFA A, decide if the
regular language L(A) recognized by A is Wheeler.

Alanko et al. [2] provided the following characterization: a language L is
Wheeler if and only if, for any co-lexicographically monotone sequence of strings
α1 ≺ α2 ≺ . . . (or with reversed signs ≻) belonging to the prefix-closure of L,
on the minimum DFA for L there exists some N ∈ N and state u such that
by reading αi from the source state we end up in state u for all i ≥ N . This
characterization allowed them to devise a polynomial-time algorithm solving
WheelerLanguageDFA. This result is not trivial for two main reasons: (1)
the smallest WDFA for a Wheeler language L could be exponentially larger than
the smallest DFA for L [2], and (2) the corresponding WheelerLanguageNFA
problem (i.e., the input A is an NFA) is PSPACE-complete [8].

Our Contributions Despite being polynomial, the algorithm of Alanko et al.
has a prohibitive time complexity: O(n13 + m log n), where m and n are the
number of transitions and states of the input DFA3. In this paper, we present a
much simpler parameterized (worst-case quadratic) algorithm solving Wheel-
erLanguageDFA. The complexity of our algorithm depends on a parameter p
— the co-lex width of the minimum DFA Amin for the language [7] (Definition
11), which is never larger than n and which measures the “distance” of Amin

from being Wheeler; e.g., if Amin is itself Wheeler, then p = 1. We prove:
3 While the authors only claim mO(1) time, a finer analysis yields this bound.
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Theorem 1. WheelerLanguageDFA can be solved in O(mp + m log n) ⊆
O(mn) time on any DFA A with n states and m edges, where p ≤ n is the co-lex
width of the minimum automaton Amin equivalent to A.

The intuition behind Theorem 1 is the following. Starting from the character-
ization of Wheeler languages of Alanko et al. [2] based on monotone sequences,
we show that L(A) is not Wheeler if and only if the square automaton A2

min =
Amin × Amin contains a cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1)
such that, for all i = 1, . . . , k, the following two properties hold: (i) ui ̸= vi
and (ii) the co-lexicographic ranges of strings reaching ui and vi intersect. As
a result, after computing Amin (O(m log n) time by Hopcroft’s algorithm) and
directly building this “pruned” version of A2

min in O(mp + m log n) time using
recent techniques described in [14,4], testing its acyclicity yields the answer. A
proof-of-concept implementation of the algorithm behind Theorem 1 is available
at https://github.com/regindex/Wheeler-language-recognizer.

We complement the above upper bound with a matching conditional lower
bound. Our lower bound is obtained via a reduction from the following problem:

Definition 2 (Orthogonal Vectors problem (OV)). Given two sets A and
B, each containing N vectors from {0, 1}d, decide whether there exist a ∈ A and
b ∈ B such that aT b = 0.

By a classic reduction [16], for d ∈ ω(logN) OV cannot be solved in time
O(N2−η poly(d)) for any constant η > 0 unless the strong exponential time
hypothesis [13] (SETH) fails. We prove 4 :

Theorem 2. If WheelerLanguageDFA can be solved in time O(m2−η) for
some η > 0 on a DFA with m transitions on a binary alphabet, then the Orthog-
onal Vectors problem with d ∈ Ω(logN) can be solved in time O(N2−η poly(d)).

To prove Theorem 2, we adapt the reduction used by Equi et al. [10] to study
the complexity of the pattern matching on labeled graphs problem. The intuition
is the following. Our new characterization of Wheeler languages states that we
essentially need to find two distinct equally-labeled cycles in the minimum DFA
for the language (in addition to checking some other properties on those cycles)
in order to solve WheelerLanguageDFA. Given an instance of OV, we build
a DFA (minimum for its language) having one (non-simple) cycle for each vector
in the instance, such that the strings labeling two such cycles match if and only
if the two corresponding vectors in the OV instance are orthogonal. As a result,
a subquadratic-time solution of WheelerLanguageDFA on this DFA yields
a subquadratic-time solution for the OV instance.

4 Our lower bound states that there is no algorithm solving all instances in O(m2−η)
time. On sparse DFAs (m ∈ Θ(n)) our algorithm runs in O(mn) = O(m2) time.

https://github.com/regindex/Wheeler-language-recognizer
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2 Preliminaries

Strings Let Σ be a finite alphabet. A finite string α ∈ Σ∗ is a finite concatena-
tion of characters from Σ. The notation |α| indicates the length of the string α.
The symbol ε denotes the empty string. The notation α[i] denotes the i-th char-
acter from the beginning of α, with indices starting from 1. Letting α, β ∈ Σ∗,
α · β (or simply αβ) denotes the concatenation of strings. The notation α[i..j]
denotes α[i] ·α[i+1] · . . . ·α[j]. An ω-string β ∈ Σω (or infinite string / string
of infinite length) is an infinite numerable concatenation of characters from Σ.
In this paper, we work with left-infinite ω-strings, meaning that β ∈ Σω is con-
structed from the empty string ε by prepending an infinite number of characters
to it. In particular, the operation of appending a character a ∈ Σ at the end
of a ω-string α ∈ Σω is well-defined and yields the ω-string αa. The notation
αω, where α ∈ Σ∗, denotes the concatenation of an infinite (numerable) number
of copies of string α. The co-lexicographic (or co-lex) order ≺ of two strings
α, β ∈ Σ∗ ∪Σω is defined as follows. (i) ε ≺ α for every α ∈ Σ+ ∪Σω, and (ii)
if α = α′a and β = β′b (with a, b ∈ Σ and α′, β′ ∈ Σ∗ ∪Σω), α ≺ β holds if and
only if (a ≺ b)∨(a = b∧α′ ≺ β′). In this paper, the symbols ≺ and ⪯ will be used
to denote the total order on the alphabet and the co-lexicographic order between
strings/ω-strings. Notation [N ] indicates the set of integers {1, 2, . . . , N}.

DFAs, WDFAs, and Wheeler languages In this paper, we work with de-
terministic finite state automata (DFAs):

Definition 3 (DFA). A DFA A is a quintuple (Q,Σ, δ, s, F ) where Q is a finite
set of states, Σ is an alphabet set, δ : Q×Σ → Q is a transition function, s(∈ Q)
is a source state, and F (⊆ Q) is a set of final states.

For u, v ∈ Q and a ∈ Σ such that δ(u, a) = v, we define λ(u, v) = a. We
extend the domain of the transition function to words α ∈ Σ∗ as usual, i.e., for
a ∈ Σ, α ∈ Σ∗, and u ∈ Q: δ(u, a · α) = δ(δ(u, a), α) and δ(u, ε) = u.

In this work, n = |Q| denotes the number of states and m = |δ| = |{(u, v, a) ∈
Q×Q×Σ : δ(u, a) = v}| the number of transitions of the input DFA.

The notation Iq indicates the set of words reaching q from the initial state:

Definition 4. Let A = (Q,Σ, δ, s, F ) be a DFA. If u ∈ Q, let Iu be defined as:

Iu = {α ∈ Σ∗ : u = δ(s, α)};

The language L(A) recognized by A is defined as L(A) = ∪u∈F Iu.
A classic result in language theory [15] states that the minimum DFA —

denoted with Amin — recognizing the language L(A) of any DFA A is unique.
The DFA Amin can be computed from A in O(m log n) time with a classic
partition-refinement algorithm due to Hopcroft [12].

Wheeler automata were introduced in [11] as a generalization of prefix sorting
from strings to labeled graphs. We consider the following particular case:
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Definition 5 (Wheeler DFA). A Wheeler DFA (WDFA for brevity) [11] A
is a DFA for which there exists a total order < ⊆ Q×Q (called Wheeler order)
satisfying the following three axioms:

(i) s < u for every u ∈ Q− {s}.
(ii) If u′ = δ(u, a), v′ = δ(v, b), and a ≺ b, then u′ < v′.
(iii) If u′ = δ(u, a) ̸= δ(v, a) = v′ and u < v, then u′ < v′.

The symbol < will indicate both the total order of integers and the Wheeler
order among the states of a Wheeler DFA. The meaning of symbol < will always
be clear from the context. Definition 5 defines the Wheeler order in terms of
local axioms. On DFAs, an equivalent global definition is the following [2]:

Definition 6. Let u, v be two states of a DFA A. Let u <A v if and only if
(∀α ∈ Iu)(∀β ∈ Iv) (α ≺ β).

Lemma 1 ([2]). A is Wheeler if and only if <A is total, if and only if <A is
the (unique) Wheeler order of A.

In fact, when a Wheeler order exists for a DFA, this order is unique [2]
(as opposed to the NFA case). The class of languages recognized by Wheeler
automata is of particular interest:

Definition 7 (Wheeler language). A regular language L is said to be Wheeler
if and only if there exists a Wheeler NFA A such that L = L(A), if and only if
there exists a Wheeler DFA A′ such that L = L(A′).

The equivalence between WNFAs and WDFAs was established in [2]. In the
same paper [2], the authors provided a Myhill-Nerode theorem for Wheeler lan-
guages that is crucial for our results. Their result can be stated in terms of the
minimum accepting DFA for L. We first need the following definition:

Definition 8 (Entanglement [6]). Given a DFA A, two distinct states u ̸= v
of A are said to be entangled if there exists a monotone infinite sequence α1 ≺
β1 ≺ · · · ≺ αi ≺ βi ≺ αi+1 ≺ βi+1 ≺ · · · (or with reversed sign ≻) such that
αi ∈ Iu and βi ∈ Iv for every i ≥ 1.

The characterization of Wheeler languages of Alanko et al. [2] states that:

Lemma 2 ([2]). For a DFA A, L(A) is not Wheeler if and only if there exist
entangled states u and v in its minimum DFA Amin.

Lemma 2 is at the core of our algorithm for recognizing Wheeler languages.

2.1 Infima and suprema strings

Lemma 1 suggests that the Wheeler order can be defined by looking just at the
lower and upper bounds of Iu for each state u ∈ Q. Let us define:
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Definition 9 (Infimum and supremum [14]). For a DFA A = (Q,Σ, δ, s, F ),
let u ∈ Q be a state of A. The infimum string inf Iu and supremum string sup Iu
are the greatest lower bound and the least upper bound, respectively, of Iu:

inf Iu = γ ∈ Σ∗ ∪Σω s.t. (∀β ∈ Σ∗ ∪Σω s.t. (∀α ∈ Iu β ⪯ α) β ⪯ γ)

sup Iu = γ ∈ Σ∗ ∪Σω s.t. (∀β ∈ Σ∗ ∪Σω s.t. (∀α ∈ Iu α ⪯ β) γ ⪯ β)

Kim et al. [14] and Conte et al. [5] use the above definition to give yet another
equivalent definition of Wheeler order:

Lemma 3 ([14,5]). Let u, v be two states of a WDFA A. Let u < v if and only
if sup Iu ⪯ inf Iv. Then < is the Wheeler order of A.

Following Lemma 3, it is convenient to represent each state u ∈ Q as an open
interval I(u) = (inf Iu, sup Iu), i.e., the subset of Σ∗ ∪Σω containing all strings
co-lexicographically strictly larger than inf Iu and strictly smaller than sup Iu.
Note that, for two states u, v ∈ Q, if |Iu|, |Iv| > 1 then I(u) ∩ I(v) = ∅ if and
only if sup Iu ⪯ inf Iv or sup Iv ⪯ inf Iu. If |Iu| = 1 (analogously for |Iv| = 1),
then I(u) = ∅ so I(u) ∩ I(v) is always empty.

Following [14], in the rest of the paper the intervals I(u) = (inf Iu, sup Iu)
are encoded as pairs of integers: the co-lexicographic ranks of inf Iu and sup Iu
in {inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q}. Using this representation, the check
I(u) ∩ I(v) ̸= ∅ can be trivially performed in constant time. The authors of [4]
show that the relative co-lexicographic ranks of all infima and suprema strings
of a DFA can be computed efficiently:

Lemma 4 ([4, Sec. 4]). Given a DFA A = (Q,Σ, δ, s, F ), we can sort the set
{inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q} co-lexicographically in O(|δ| log |Q|) time.

We conclude this section by mentioning two useful properties of infima and
suprema strings which will turn out useful later on in this work.

Lemma 5. Let u be a state of a DFA A, and γ ∈ Σ∗ be a finite string. Then
the following holds:

1. If inf Iu (sup Iu) is finite, then inf Iu ∈ Iu (sup Iu ∈ Iu).
2. For any finite suffix α′ of inf Iu or sup Iu, there exists α ∈ Iu suffixed by α′.
3. Iu is a singleton if and only if inf Iu = sup Iu.
4. If inf Iu ≺ γω, then there exists α ∈ Iu such that α ≺ γω; similarly, if

γω ≺ sup Iu, then there exists α ∈ Iu such that γω ≺ α.

Proof. (1)-(3) See [14, Observation 8]. (4) Assume inf Iu ≺ γω. If inf Iu is finite,
then inf Iu ∈ Iu by (1) and the claim follows by setting α = inf Iu. Let us assume
inf Iu has infinite length. Let α′ be the shortest suffix of inf Iu such that α′ ≺ γω

and α′ is not a suffix of γω; note that α′ is finite, otherwise α′ = inf Iu = γω

by definition of ≺, which contradicts the assumption inf Iu ≺ γω. Then by (2),
there exists α ∈ Iu suffixed by α′. By definition of α′, any string suffixed by α′

is smaller than γω, hence α ≺ γω. The case with γω ≺ sup Iu is analogous.
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3 Recognizing Wheeler Languages

In this section, we present our algorithm to decide if the language accepted by
a DFA A = (Q,Σ, δ, s, F ) is Wheeler. Let Amin = (Qmin, Σ, δmin, smin, Fmin)
be the minimum-size DFA accepting L(A).

Definition 10 (Square automaton). The square automaton A2
min = Amin×

Amin = (Q2
min = Qmin ×Qmin, Σ, δ′, (smin, smin), F

2
min = Fmin × Fmin) is the

automaton whose states are pairs of states of Amin and whose transition function
is defined as δ′((u, v), a) = (δmin(u, a), δmin(v, a)) for u, v ∈ Qmin and a ∈ Σ.

We are ready to prove our new characterization of Wheeler languages. The
characterization states that A2

min can be used to detect repeated cycles in Amin,
and that we can use this fact to check if L(Amin) = L(A) is Wheeler:

Theorem 3. For a DFA A, L(A) is not Wheeler if and only if A2
min contains a

cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) such that, for 1 ≤ ∀i ≤ k,
the following hold: (i) ui ̸= vi and (ii) I(ui) ∩ I(vi) ̸= ∅.

Proof. (⇐) Assume that A2
min contains such a cycle (u1, v1) → (u2, v2) →

· · · → (uk, vk) → (u1, v1) where k is the cycle length. Then, by definition
of A2

min there exist cycles u1 → u2 → · · · → uk → u1 and v1 → v2 →
· · · → vk → v1 in Amin, both of which are labeled by the same string γ =
λ(u1, u2) · · ·λ(uk−1, uk)λ(uk, u1) = λ(v1, v2) · · ·λ(vk−1, vk)λ(vk, v1) of length k.

Let γ1 = max{inf Iu1
, inf Iv1} and γ2 = min{sup Iu1

, sup Iv1}. First, we claim
γ1 ≺ γ2. To see this, without loss of generality, assume inf Iu1

⪯ inf Iv1 . Observe
|Iu1

|, |Iv1 | > 1 because u and v are on two cycles (hence Iu1
and Iv1

contain an
infinite number of strings). By Lemma 5.3 both inf Iu1

≺ sup Iu1
and inf Iv1 ≺

sup Iv1 hold. Since I(u1)∩I(v1) ̸= ∅, inf Iv1 ≺ sup Iu1 also holds. Then, inf Iu1 ⪯
inf Iv1 ≺ sup Iu1 , sup Iv1 . Therefore γ1 = inf Iv1 ≺ min{sup Iu1 , sup Iv1} = γ2.

As a consequence, we can see that at least one of the following must hold: (i)
γ1 ≺ γω and (ii) γω ≺ γ2; note that the complement of the case (i) is γω ⪯ γ1,
which implies γω ≺ γ2 because (γω ⪯)γ1 ≺ γ2. Therefore, by Lemma 5.4, there
must exist α ∈ Iu1

and β ∈ Iv1 such that either α, β ≺ γω or γω ≺ α, β hold.
Note that it holds α ̸= β since Amin is deterministic. Without loss of gen-

erality, assume α ≺ β. We consider the case α ≺ β ≺ γω; the other case
(γω ≺ α ≺ β) is symmetric. Let l be any integer such that max{|α|, |β|} < l · |γ|.
Then we can see that, for every d ≥ 0, the following three properties hold: (i)
α(γl)d ≺ β(γl)d ≺ α(γl)d+1 ≺ β(γl)d+1, (ii) α(γl)d ∈ Iu1

(because α ∈ Iu1
and

γ labels a cycle from u1, so δmin(u1, γ
k) = u1 for any integer k ≥ 0) and, simi-

larly, (iii) β(γl)d ∈ Iv1 . Properties (i-iii) imply that there is an infinite monotone
nondecreasing sequence of strings alternating between Iu1

and Iv1 , i.e., u1 and v1
are entangled (Definition 8) and, by Lemma 2, L(Amin) = L(A) is not Wheeler.

(⇒) Assume that L(Amin) = L(A) is not Wheeler. By Lemma 2, there exist
entangled states u0 ̸= v0 in Amin (in particular, I(u0) ∩ I(v0) ̸= ∅). Without
loss of generality, we can assume that there is an infinite nondecreasing sequence
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S0 = α1 ≺ β1 ≺ α2 ≺ β2 ≺ · · · such that, for every i ≥ 1, αi ∈ Iu0
and βi ∈ Iv0

(the other case with the reversed sign is analogous).
Observe that, since the alphabet is finite, S0 must ultimately (i.e., from a

sufficiently large index i) contain strings αi, βi sharing the last character. We
can therefore assume without loss of generality that all strings in S0 end with
the same character a. Then, there exist u1, v1 such that δmin(u1, a) = u0 and
δmin(v1, a) = v0. Note that, by the determinism of Amin, it must be u1 ̸= v1.
Moreover, we can choose two entangled such u1, v1. To see this, let u1

1, . . . , u
s
1

and v11 , . . . , v
r
1 be the s and r predecessors of u0 and v0, respectively, such that

δmin(u
i
1, a) = u0 and δmin(v

j
1, a) = v0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Assume for the purpose of contradiction that ui
1 and vj1 are not entangled for

all pairs ui
1, v

j
1. Then, by definition of entanglement any monotone sequence

µ1 ≺ µ2 ≺ · · · ∈ Iui
1
∪ Ivj

1
ultimately ends up in just one of the two sets:

there exists N ∈ N such that either µN , µN+1, · · · ∈ Iui
1

or µN , µN+1, · · · ∈ Ivj
1
.

Since this is true for any pair ui
1, v

j
1, any monotone sequence µ1 ≺ µ2 ≺ · · · ∈⋃s

i=1 Iui
1
∪
⋃r

j=1 Ivj
1

ultimately ends up in either (i)
⋃s

i=1 Iui
1

or (ii)
⋃r

j=1 Ivj
1
.

But then, this implies that sequence S0 cannot exist: any monotone sequence
µ1a ≺ µ2a ≺ · · · ∈ Iu0

∪ Iv0 ultimately ends up in either (i) Iu0
or (ii) Iv0 .

Summing up, we found u1 ̸= v1 such that δmin(u1, a) = u0, δmin(v1, a) = v0,
and u1, v1 are entangled (in particular, I(u1) ∩ I(v1) ̸= ∅). We iterate this
process for k = |Qmin|2 times; this yields two paths uk → uk−1 → · · · → u0

and vk → vk−1 → · · · → v0 labeled with the same string of length k, with
ui ̸= vi and I(ui) ∩ I(vi) ̸= ∅ for all 0 ≤ i ≤ k. But then, since we chose
k = |Qmin|2, by the pigeonhole principle there must exist two indices j ≤ i
such that (ui, vi) = (uj , vj). In particular, there exists k′ ≤ k such that ui →
ui−1 → · · · → ui−k′+1 → ui and vi → vi−1 → · · · → vi−k′+1 → vi are two
cycles of the same length k′, labeled with the same string, such that ut ̸= vt and
I(ut)∩I(vt) ̸= ∅ for all indices i−k′+1 ≤ t ≤ i. This yields our main claim. ⊓⊔

4 The algorithm

Theorem 3 immediately gives a quadratic algorithm for WheelerLanguageDFA:

1. Compute Amin = (Qmin, Σ, δmin, smin, Fmin) by Hopcroft’s algorithm [12].
2. On Amin, compute intervals I(u) for each u ∈ Qmin, using 5 [4, Sec. 4].
3. Compute A2

min.
4. Remove from A2

min all states (u, v) (and incident transitions) such that either
u = v or I(u) ∩ I(v) = ∅. Let Â2

min be the resulting pruned automaton.
5. Test acyclicity of Â2

min. If Â2
min is acyclic, return "L(A) is Wheeler". Oth-

erwise, return "L(A) is not Wheeler".

Since, by its definition, Amin cannot be larger than A, in the rest of the paper
we will for simplicity assume that Amin has n nodes and m transitions. Steps
5 In Appendix A we discuss more in detail how to apply [4, Sec. 4] on Amin.
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(1) and (2) run in O(m log n) time. Note that, for each transition δmin(u, a) = u′

and for each node v ̸= u, by the determinism of Amin there exists at most one
transition δmin(v, a) = v′ labeled with a and originating in v; such a pair of
transitions define one transition of A2

min. It follows that the number of tran-
sitions (thus the size) of A2

min is O(mn), therefore steps (3-5) run in O(mn)
time (acyclicity can be tested in O(|A2

min|) time using, for example, Kahn’s
topological sorting algorithm). Overall, the algorithm runs in O(mn) time.

4.1 A parameterized algorithm

Our algorithm can be optimized by observing that we can directly build Â2
min,

and that this automaton could be much smaller than A2
min. For example observe

that, if Amin is Wheeler, then I(u) ∩ I(v) = ∅ for all states u ̸= v of Amin (see
Definition 6 and Lemma 1), so Â2

min is empty. As a matter of fact, we show that
the size of Â2

min depends on the width of the (partial [7]) order <Amin
, i.e., the

size of the largest antichain:

Definition 11 ([7]). The co-lex width width(A) of a DFA A is the width of
the order <A defined in Definition 6.

The co-lex width is an important measure parameterizing problems such as
pattern matching on graphs and compression of labeled graphs [6,7]. Note that
width(Amin) = 1 if and only if Amin is Wheeler. In Appendix B we prove:

Lemma 6. Let p = width(Amin). Then, Â2
min has at most 2n(p−1) states and

at most 2m(p− 1) transitions and can be built from Amin in O(mp) time.

The intuition behind Lemma 6 is that Â2
min contains only states (u, v) such

that I(u) ∩ I(v) ̸= ∅. By Lemma 3, this holds if and only if u and v are in-
comparable by the order <Amin

. Since the width of this order is (by definition)
p, the bounds follow easily. To build Â2

min, we sort the states of Âmin by the
strings inf Iu and observe that incomparable states are adjacent in this order. It
follows that we can easily build Â2

min in time proportional to its size, O(mp).
The details of this algorithm can be found in Appendix B. Theorem 1 follows.

Implementation We implemented the algorithm of Theorem 1. The code is
available at http://github.com/regindex/Wheeler-language-recognizer. It
takes in input either a regular expression or a DFA and checks if the recognized
language is Wheeler. We tested our algorithm on two random DFA datasets:
(i) one with different combinations of number of states and transitions where
n = {500 · 2i : i = 0, . . . , 5} and m = 3n to show the quadratic running time,
and (ii) the other with a fixed number of transitions, m = 16 · 103, and different
widths p = {400, 800, 1600, 3200} of the minimum DFAs to show the running
time with respect to p. Our experiments were run on a server with Intel(R)
Xeon(R) W-2245498 CPU @ 3.90GHz with 8 cores and 128 gigabytes of RAM
running Ubuntu 18.04 LTS 64-bit. As expected, our experimental results show

http://github.com/regindex/Wheeler-language-recognizer
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that the running time grows linearly in mp. It is worth noting that, on our input
instances in the first dataset, p is roughly similar to n, and we double n at each
step, the running time shows a quadratic growth (Fig. 1(a)). On the other hand,
when the number of transitions is fixed, the running time grows linearly to the
width p of the minimum DFA (Fig. 1(b)). This can be measured from the slopes
of the fitted lines on the log-log plots, which are 2.03 and 1.04, respectively.

5 A matching conditional lower bound

In this section, we show that an algorithm for WheelerLanguageDFA with
running time O(m2−η), yields an algorithm for the Orthogonal Vectors problem
(see Definition 2) with running time O(N2−η poly(d)), thus contradicting SETH.
This is our second main theorem (Theorem 2) formulated in the introduction.
We prove this theorem using Theorem 3 and the following proposition, which
reduces an instance of the OV problem with two sets of N d-dimensional vectors
each into an instance of our problem with a minimum DFA of size Θ(Nd).

Proposition 1. For an instance of the OV problem, we can in O(N(d+logN))
time construct a DFA A with m ∈ O(N(d+ logN)) edges that is minimum for
its language L(A) such that the OV instance is a YES-instance if and only if A2

contains a cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) such that, for
1 ≤ ∀i ≤ k, the following hold: (i) ui ̸= vi and (ii) I(ui) ∩ I(vi) ̸= ∅.
Once this proposition is established, we can take an OV instance with sets of
size N containing vectors of dimension d ∈ ω(logN) and construct the DFA A of
size Θ(m) = Θ(N(d+logN)) = Θ(Nd). Now assume that we can solve Wheel-
erLanguageDFA in O(m2−η) on A. Using Theorem 3 and Proposition 1, we
can thus solve the OV instance in O((Nd)2−η) = O(N2−η poly(d)) time, as the
OV instance is a YES instance if and only if the language recognized by A is
not Wheeler. This shows Theorem 2. The rest of this section is dedicated to
illustrate how we prove Proposition 1. The details are deferred to Appendix C.

(a) (b)

Fig. 1. Wall clock time for our algorithm on different random DFA datasets (a) different
n, m = 3n, and p is similar to n; (b) different p with fixed m.
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Construction of A For a given instance A = {a1, . . . , aN} and B = {b1, . . . , bN}
of the OV problem, we build a DFA A = (Q,Σ, δ, s, F ) with the properties in
Proposition 1 by adapting a technique of Equi et al. [10]. We first notice that
we can, w.l.o.g., make the following assumptions on the OV instance: (1) The
vectors in A are distinct, (2) N is a power of two, say N = 2ℓ. We describe
the construction of A based on a small example, while the general description
is deferred to Appendix C. We let Σ = {0, 1,#}. Later we show how to reduce
the alphabet’s size to 2.

CA
1 : a1 = 110

110 {0, 1}{0, 1} #â1

a1
1 a2

1

a3
1

q11q21

1

1

0

0

1

0

1#

CA
2 : a2 = 100

100 {0, 1}{0, 1} #â2

a1
2 a2

2

a3
2

q12q22

1

0

0

0

1

0

1#

CA
3 : a3 = 111

111 {0, 1}{0, 1} #â3

a1
3 a2

3

a3
3

q13q23

1

1

1

0

1

0

1#

CA
4 : a4 = 011

011 {0, 1}{0, 1} #â4

a1
4 a2

4

a3
4

q14q24

0

1

1

0

1

0

1#

CB
1 : b1 = 101

0{0, 1}0 00 #b̂1

b11 b21

b31

p11p21

0

1

0

0

0

0

#

CB
2 : b2 = 101

0{0, 1}0 01 #b̂2

b12 b22

b32

p12p22

0

1

0

0

0

1

#

CB
3 : b3 = 010

{0, 1}0{0, 1} 10 #b̂3

b13 b23

b33

p13p23

1

0

0

1

0

1

0

#

CB
4 : b4 = 111

000 11 #b̂4

b14 b24

b34

p14p24

0

0

0

1

1

#

Fig. 2. Illustration of the cycles generated for the bit vectors in the example A =
{110, 100, 111, 011} and B = {101, 101, 010, 111}. The two cycles CA

2 and CB
3 generate

a match, i.e., can read the same string, as the vectors a2 and b3 are orthogonal.

Let A = {110, 100, 111, 011} and B = {101, 101, 010, 111} be the given in-
stance of the OV problem. Thus N = 4 and ℓ = log2 N = 2. Notice that the
only pair of orthogonal vectors in A and B are a2 = 100 and b3 = 010. In our
DFA A we build (non-simple) cycles CA

i and CB
j for every vector ai and bj in

A and B respectively. As an example, for a2 we build the cycle CA
2 labeled with

100{0, 1}{0, 1}#, i.e. the bit string 100 of a2, followed by a sub-graph recognizing
any bit string of length ℓ = 2, followed by #. For b3 we build the (non-simple)
cycle CB

3 labeled with {0, 1}0{0, 1}10#, i.e., the bits 0 of b3 are converted to
a sub-graph recognizing both 0 and 1, and the bits 1 of b3 are converted to
an edge recognizing 0; this subgraph is followed by a path of length ℓ spelling
10, which is the 3rd smallest among the length-ℓ binary strings (i.e. the iden-
tifier for CB

3 to prevent it from any match with CB
j for j ̸= 3 while allowing

matches with CA
i ’s), which is followed by an edge labeled with #. Notice that

these two cycles indeed generate a match (underlined characters indicate the
match): 100{0, 1}{0, 1}# and {0, 1}0{0, 1}10#. It is not hard to see that a cycle
CA

i and CB
j built in this way will match if and only if the two corresponding



12 R. Becker et al.

A: s

1

0

0

1

0

1

. . .

. . .

V out

xN

...

x1

y1

y2

...

yN

y′
1

y′
2

y′
N

x′′
N

x′
N

x′′
1

x′
1

â′
1

â′
N

b̂′1

b̂′2

b̂′N

â1

âN

b̂1

b̂2

b̂N

0 1

0 1

0 1

0

1

0

1

0

1

0

1

0

0

0

0

0

I

CB
1

CB
2

...

CB
N

CA
1

...

CA
N

C

t1

...

tN

z1

z2

...

zN

0

0

0

0

0

t

1

0
. . .

. . .

0

1

0

1

V in

Fig. 3. Illustration of our construction of A for an arbitrary instance A = {a1, . . . , aN}
and B = {b1, . . . , bN} of the OV problem. The cycles CA

1 , . . . , CA
N , CB

1 , . . . , CB
N are

expanded in Figure 2 on a particular OV instance.

vectors are orthogonal. Characters # are introduced to synchronize the match
(otherwise, other rotations of the cycles could match). The subgraphs between
the part corresponding to the input vectors and the character # are introduced
to avoid that two distinct cycles CB

i and CB
j (i ̸= j) generate a match. Note

that, since we assume that A contains distinct vectors, distinct cycles CA
i and

CA
j (i ̸= j) will never generate a match.

The remaining details of the reduction ensure that (1) the graph is a con-
nected DFA, (2) corresponding nodes (i.e. same distance from # in the cycles)
u, v in any pair of cycles CA

i and CB
j that correspond to orthogonal vectors ai

and bj , respectively, have a non-empty co-lexicographic intersection I(u)∩I(v),
(3) the DFA is indeed minimum for its recognized language, and (4) the alphabet
can be reduced to {0, 1} by an opportune mapping.

An illustration of the overall construction for an arbitrary instance of the
OV problem can be found in Figure 3. The complete proof is deferred to the
appendix. We proceed with a sketch on how we achieve the above properties.
Property (1) is achieved by connecting the above described cycles (we call the
set of all cycles’ nodes C), to the source node s through a binary out-tree of
logarithmic depth (we call these nodes V out). Property (2) is achieved by con-
necting V out to C through the nodes in I that ensure that nodes u ∈ CA

i , v ∈ CB
j

in the same relative positions (i.e. same distance from #) in their cycles that
correspond to orthogonal vectors ai and bj are reached by strings of alternating
co-lexicographic order, i.e., for a suitable string τ , Iu contains two strings suf-
fixed by 00τ and 11τ , while Iv contains a string suffixed by 01τ . This implies
I(u) ∩ I(v) ̸= ∅. Property (3) is instead achieved by connecting one node from
each cycle CA

i and CB
j (the one with out-edge #) with an edge labeled 0 to

a complete binary in-tree (we call these nodes V in) with root being the only
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accepting state t. Observe that the reversed automaton (i.e. the automaton ob-
tained by reversing the direction of all the edges) is deterministic; this ensures
that any two nodes in the graph can reach t through a distinct binary string,
witnessing that A is indeed minimal (by the Myhill-Nerode characterization of
the minimum DFA [15]). Property (4) can be easily satisfied by transforming the
instance as follows. Edges labeled 0 (1) are replaced with a directed path labeled
with 00 (11), while edges labeled # are replaced with a directed path labeled 101.
The pattern 101 then appears only on the paths that originally corresponded
to # and thus two transformed cycles match if and only if they used to match
before the transformation. We note that also forward- and reverse- determinism
(thus minimality) are maintained under this transformation (the nodes â′i and
b̂′j in I are introduced for maintaining reverse-determinism).
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A Computing I(u) using [4, Sec. 4]

We compute I(u) for each u ∈ Qmin of the minimum DFA Amin using the
partition refinement algorithm described in [4, Sec. 4].

In [4], it is assumed that some properties hold of the input automaton. In
particular, (i) every state is reachable from the source state; (ii) the source
state does not have any incoming transition; and (iii) input consistency, i.e. all
transitions entering in a given state bear the same label. It is worth noting that
[4] does not assume the input automaton to be deterministic; their solution works
for arbitrary NFAs.

The algorithm described in [4, Sec. 4] works in three steps: (1) the infima
strings are computed using [4, Alg. 2], (2) the suprema strings are computed
using [4, Alg. 2], and finally (3) the two sets of strings are merged and sorted
using the suffix doubling algorithm of [14] (running in linearithmic time on the
pseudo-forests output by [4, Alg. 2]). Since, in our paper, we run [4, Sec. 4] on the
minimum DFA Amin. This automaton satisfies (1), but it does not necessarily
satisfy (ii) and (iii). We now show that any DFA A satisfying (i) and (ii) can
be transformed into two NFAs Ainf and Asup satisfying conditions (i-iii) and
preserving the infima/suprema strings of A, respectively. The transformation
takes linear time in the input automaton.

We describe how to transform A into Ainf = (Qinf , Σinf , δinf , sinf , Finf )
that will be fed into [4, Alg. 2] to compute the infima strings of A. The procedure
for Asup is symmetric. In summary, we add two new states s′, s′′, two new
symbols $ and # to the alphabet, and we define the transition function δinf
appropriately in order to make Ainf satisfy (i-iii) while also preserving the infima
strings of A.

1. We define Qinf = Q ∪ {sinf , s′}, Σinf = Σ ∪ {$,#}, sinf , Finf = F .
2. To make Ainf input-consistent, for each state we keep only the incoming

transitions with the minimum label. More formally, for u, v ∈ Q ∪ {s′} and
a ∈ Σ such that δ(v, a) = u, δinf (v, a) = u iff a = λ(u), where λ(u) =
min{c ∈ Σ : ∃w ∈ Q ∪ {s′} δ(w, c) = u} is the minimum label of u’s
incoming transitions; for convenience, we define δ(s′, $) = s where $ is a
special symbol with $ ≺ a for all a ∈ Σ.

3. To make Ainf connected, we connect the state s′ to every u ∈ Qinf \{sinf , s′}
with a transition δinf (s

′, λ(u)) = u.
4. Finally, we create a transition from the new source sinf to s′ with label #,

and the order on Σinf is defined as: $ ≺ a ≺ # for all a ∈ Σ. This prevents
the transitions defined in the previous step from affecting the infima strings
of the automaton.

We show that the infima strings are preserved after this transformation. More
precisely, for any given state u ∈ Q, let α and β be the infimum string of u on
Ainf and A, respectively. Then we claim that (i) α = β if β has infinite length,
and (ii) α = #$β if β is a finite string. Note that the order between a finite
string and a string of infinite length is also preserved because $ is smaller than
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any symbol a ∈ Σ. Let us assume for a contradiction that there exists u ∈ Q
such that this is not satisfied. We consider two cases: (i) the condition is falsified
because we removed transitions in Step 2 or (ii) the infimum string is preserved
in Step 2 but adding the new state s′ and sinf with new transitions in Steps
3 and 4 affects the infimum string. (i) If Step 2 affects the infimum string, β
must end with some b(∈ Σ) with b ̸= a = min{c ∈ Σ : ∃w ∈ Q δ(w, c) = u},
which implies there exists α′ ∈ Σ∗ ∪ Σω entering u such that α′ ends with a
thereby being α′ ≺ β, contradicting the definition of the infimum string. (ii) If
added states and transitions in Steps 3 and 4 affect the infimum string, then
we can observe that it must be α = # · λ(u), and it must also hold α ⪯ β by
definition of infimum string. However, this can happen only for the source state
s of A. To see this, we observe that every state u( ̸= s) in A has at least one
incoming transitions because it is reachable from the source, thus β = β′ · λ(u)
for some non-empty string β′ ∈ Σ+ ∪ Σω. Because a ≺ # for every a ∈ Σ, we
have β′ ≺ #, which implies β′ · λ(u) ≺ # · λ(u); thus the infimum string is not
affected by Step 3 except on state s. Note that only the state s can have the
empty string as its infimum string on A, i.e. β = ε, which is a finite string. Now
we show α = #$β holds in the case that β is finite string, which also includes
the case u = s. For any u that has a finite infimum string β, we can observe
that δinf (s, β) = u by Lemma 5.1 and there is no string γ ∈ Σ∗ such that γ ≺ β
and δinf (s, γ) = u because the infimum string is preserved in Step 2. Since #$
is the unique string labeling the path from the new source s′′ and s, #$β is the
smallest string labeling the path from s′′ to u.

Transforming A info Asup is symmetric. In Step 2, we keep only the transi-
tions with maximum labels. In Step 4, we define # as the smallest symbol; i.e.
# ≺ $ ≺ a for every a ∈ Σ.

As far as the running time of the transformation is concerned, the number
of states is increased by just 2 and the number of transitions is increased by at
most n+1 = O(m), so the process takes linear time. Computing the co-lex order
of the infima and suprema strings takes therefore O(O(m) lg(n+2)) = O(m lg n)
time as claimed.

B Parameterized algorithm

Proof of Lemma 6

We first prove the following lemma.

Lemma 7. Let S = {(xi, yi) : i ∈ [n]} be a (multi-)set of n open intervals
over domain xi, yi ∈ [2n] with xi < yi. For an integer p ≥ 1, suppose there
exist no p + 1 pairwise intersecting intervals in S. Let J = {(i, j) ∈ [n]2 : i ̸=
j ∧ (xi, yi) ∩ (xj , yj) ̸= ∅} be the set of (indices of) intersecting intervals of S.
Then |J | ≤ 2n(p− 1).

Proof. Consider the open-interval graph G constructed from S (that is, the undi-
rected graph with set of nodes S and edges connecting intersecting intervals).
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Since no p + 1 intervals in S are pairwise intersecting, there is no clique of size
p+ 1 in such an interval graph.

We apply the transformation of [14, Lem. 12] to the set of open intervals
S = {(xi, yi) : i ∈ [n]} mapping each (xi, yi) into a closed interval [xi, yi] over
domain x′

i, y
′
i ∈ [4n+1] with the property that (xi, yi)∩ (xj , yj) ̸= ∅ if and only

if [x′
i, y

′
i] ∩ [x′

j , y
′
j ] ̸= ∅. Let S′ = {[x′

i, y
′
i] : i ∈ [n]} be the transformed interval

set. As a result, no p+ 1 intervals in S′ are pairwise intersecting.
The number of edges of a closed-interval graph (i.e. constructed from closed

intervals) that does not contain a clique of size p′ = p + 1 is known to be not
greater than 1

2 (p
′ − 1)(p′ − 2) + (n− p′ + 1)(p′ − 2) ≤ n(p− 1) [1, Sec. 2]. Then,

by [14, Lem. 12], also the open-interval graph G corresponding to intervals S
contains at most n(p − 1) edges. Note that the size of J is equal to twice the
number of edges of G. Our claim follows. ⊓⊔

We proceed with the proof of Lemma 6. Recall that p = width(Amin) implies
that there exist no p+ 1 pairwise incomparable states with respect to the order
<Amin

defined in Definition 6. From Lemma 3, this is equivalent to the fact that
there are no p+ 1 pairwise intersecting open intervals I(u) = (inf Iu, sup Iu) in
Amin. From Lemma 7, the set {I(u) = (inf Iu, sup Iu) : u ∈ Qmin} contains at
most 2n(p−1) pairs of intersecting intervals, implying that the number of states
of Â2

min is |{(u, v) ∈ Q2
min : u ̸= v ∧ I(u) ∩ I(v) ̸= ∅}| ≤ 2n(p− 1).

Now we shall show the number of transitions of Â2
min is at most 2m(p− 1).

For each a ∈ Σ, consider the set Qa = {u ∈ Qmin : ∃v ∈ Qmin : δ′(u, a) = v}
of states of Qmin that have an outgoing transition labeled with a. Since Qa is
a subset of Qmin, there are no p + 1 pairwise intersecting intervals in the set
{I(u) = (inf Iu, sup Iu) : u ∈ Qa}. By Lemma 7, this implies that Qa contains at
most 2|Qa|(p−1) pairs of intersecting intervals. Observe that the pruned square
automaton Â2

min has a transition from (u, v) ∈ Q2
min to (u′, v′) ∈ Q2

min labeled
by a only if (u, v) ∈ Q2

a and I(u) ∩ I(v) ̸= ∅. Since Â2
min is a DFA, the state

(u, v) ∈ Q2
min and letter a uniquely determine this transition, so the number of

transitions with label a in Â2
min is at most 2|Qa|(p − 1). The total number of

transitions in Â2
min is therefore at most

∑
a∈Σ 2|Qa|(p−1) ≤ 2m(p−1) because∑

a∈Σ |Qa| = m. ⊓⊔

The algorithm We now present an algorithm to build Â2
min in a time propor-

tional to its size O(mp).
We first show how to build the O(np) states of Â2

min in O(np) time. We
sort intervals6 I(u) = (inf Iu, sup Iu) for u ∈ Q in increasing order by their
first components inf Iu. Let I(u1), . . . , I(un) be the resulting order. Notice that,
given a state ui, all states uj such that I(ui) ∩ I(uj) ̸= ∅ are adjacent in this
order. Then, the O(np) states (u, v) of Â2

min can be built in O(np) time with the
following algorithm: (1) initialize i = 1 and j = 2. (2) If j ≤ n and I(ui)∩I(uj) ̸=
6 Recall that we represent each inf Iu and sup Iu with an integer in the range [1, 2n]: the

co-lexicographic rank of those strings in the set {inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q}.
As a result, we can radix-sort these intervals in O(n) time.
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∅, then create states7 (ui, uj) and (uj , ui) and increment j. Otherwise, increment
i and set j = i+ 1. (3) If i < n, go to step (2).

Each step of the algorithm either creates a new state of Â2
min or increments

i (i can be incremented at most n times). It follows that its running time is
proportional to the number of states, O(np).

To conclude, we show how to build the O(mp) transitions of Â2
min in O(mp)

time; let us denote with δ′′ the transition function of Â2
min. Let I(u1), . . . , I(un)

be the order defined above. For each a ∈ Σ, we build an array La defined as
follows: La contains all states ui such that ui has an outgoing edge labeled with
a, sorted by increasing index i. Let ma denote the number of nodes in array La.
Clearly, the total number of nodes in all arrays is

∑
a∈Σ ma = m since we add

a node in one of those arrays for each edge of Amin; moreover, those arrays can
be built in O(m) time by simply visiting all nodes in the order u1, . . . , un: when
visiting ui, for all a ∈ Σ labeling an outgoing edge of ui, append ui at the end
of La.

To build the transition function δ′′ of Â2
min in O(mp) time, for each a ∈ Σ

we run the following algorithm. (1) initialize i = 1 and j = 2. (2) We distinguish
three cases (A-C):

(A) If j ≤ ma and (La[i], La[j]) and (δmin(La[i], a), δmin(La[j], a)) are both
states of Â2

min (as computed above), create the two symmetric transitions

δ′′((La[i], La[j]), a) = (δmin(La[i], a), δmin(La[j], a))
δ′′((La[j], La[i]), a) = (δmin(La[j], a), δmin(La[i], a))

and increment j.
(B) If j ≤ ma and (La[i], La[j]) is a state while (δmin(La[i], a), δmin(La[j], a))

is not, just increment j.
(C) If none of (La[i], La[j]) and (δmin(La[i], a), δmin(La[j], a)) are states in

A2
min or if j > ma, increment i and set j = i+ 1.

Each step of the algorithm either creates a new transition of Â2
min (case A),

visits a state (La[i], La[j]) of Â2
min (case B: note that in this case j is incre-

mented, so no state is visited twice), or increments i (case C: note that i can be
incremented at most ma times). It follows that its running time is proportional
to the number of states plus the number of transitions, O(mp). ⊓⊔

C Reduction Details

We start with a detailed description of the DFA A = (Q,Σ, δ, s, F ) constructed
for an OV instance A = {a1, . . . , aN} and B = {b1, . . . , bN}. The states Q of A
consist of four disjoint sets V out, I, C, and V in. We will now define these four
sets and the transitions connecting them (thus defining δ). We refer the reader
back to Figure 3 for an illustration. Throughout the description, for an integer
7 Note that Â2

min is symmetric: if (u, v) is a state, then also (v, u) is a state (a similar
property holds for its transition function). Although we could further prune it by
removing this symmetry, this would slightly complicate our notation.



Optimal Wheeler Language Recognition 19

i ∈ [N ], we denote by ρ(i) the bit-string of length ℓ that represents the integer
i− 1 in binary.

V out: The set V out is connected as a complete binary out-tree of depth ℓ+1 with
root being the source node s. This tree has 2N leaves that we call x1, . . . , xN

and y1, . . . , yN and is such that a leaf node xi is reached from s by a unique
path labeled 0ρ(i), while a leaf node yj is reached from s by a unique path
labeled 1ρ(j).

I: The set I consists of 5N nodes, x′
i, x′′

i , and â′i for i ∈ [N ] and y′j and b̂′j for
j ∈ [N ]. A node â′i is reachable from xi ∈ V out by two paths through x′

i and
x′′
i labeled 11 and 00, respectively. A node b̂′j is reachable from yj ∈ V out by

a path labeled 01 through y′j .
C: The set C is composed of 2N disjoint sets (cycles), CA

i for i ∈ [N ] and CB
j

for j ∈ [N ]. Each set CA
i contains a node âi and each set CB

j contains a
node b̂j . Every node âi (b̂j) is reachable from â′i ∈ I (b̂′j ∈ I) by an edge
labeled 0. Each set CA

i and CB
j consists of d + ℓ + 1 nodes. These nodes

are connected in a cycle-like way as illustrated in Figure 4: (1) From node
âi, we can exactly read the bit string ai that is equal to the d bits in the
input vector ai (note that we slightly abuse notation here by denoting with
ai both the string and the vector) by passing through the subsequent states
(âi = a0i ), a

1
i , . . . , a

d
i . From adi , we can then read any sequence of d bits in

{0, 1}ℓ by passing through the states q1i , . . . , q
ℓ
i followed by the character #

and arriving back at node âi. The latter sequence of nodes is the gadget
Qi from Figure 4. (2) From node b̂j , we can also read strings of length d
that however depend on the input vector bj , this time by passing through
subsequent states (b̂j = b0j ), b

1
j , . . . , b

d
j . If bj [r] = 1, node brj−1 is connected to

node brj with one edge labeled with 0. If bj [r] = 0, node brj−1 is connected to
node brj with two edges, labeled with 0 and 1 respectively. From bdj , we can
then read the string ρ(j) by passing through the states p1j , . . . , pℓj followed by
the character # and arriving back at node b̂j . The latter sequence of nodes
is the gadget Pj from Figure 4.

V in: The set V in is connected as a complete binary in-tree of depth ℓ+ 1 with
root being a state t. This tree again has 2N leaves that we call t1, . . . , tN and
z1, . . . , zN and is such that a leaf node ti can reach the root t by a unique
path labeled ρ(i)0, while a leaf node zj can reach t by a unique path labeled
ρ(j)1. Every node ti is reachable from qℓi ∈ CA

i by an edge labeled 0 and
every node zj is reachable from pℓj ∈ CB

j by an edge labeled 0.

Finally we define the set of final states as F := {t}. We proceed with the following
observation: The constructed DFA A is in fact minimal, i.e., A = Amin. This
is an easy observation from inspecting the reversed automaton Ar that has the
same set of states, t as source node, and all transitions reversed compared to A.
We observe that Ar is also deterministic and thus every state in Ar is reached
by a unique string from the source state t. It follows that every two states u, v
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are clearly distinguishable in A by the Myhill-Nerode relation8 [15] as they can
reach the only final state t using a unique string.

CA
i :

âi

a1
i

a2
i

a3
i

a4
i

ad
i

a
i [1]

ai [2] ai[3
]

a i
[4
]

. . .

ai [d− 1]ai[d
]

Q
i

CB
j :

b̂j

b1j

b2j

b3j

b4j

bdj

0

0

0

0

. . .

0

0

P
j

1

1

1

Qi : ad
i q1i q2i . . . qℓi âi

0 0 0

1 1 1

#

Pj : bdj p1j p2j . . . pℓj b̂j

ρ(j)[1] ρ(j)[2] ρ(j)[ℓ] #

Fig. 4. Illustration of CA
i and CB

j containing the subgraphs Qi and Pj , respectively.

Proof of Proposition 1

We are now ready to prove Proposition 1. We start with the following lemma.

Lemma 8. Let (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) be a cycle in A2

such that, for 1 ≤ ∀i ≤ k, ui ̸= vi. Then, there exist r, s ∈ [N ] and ℓ ∈ [k] such
that âr = uℓ and b̂s = vℓ (or vice versa) and furthermore {u1, . . . , uk} = CA

r

and {v1, . . . , vk} = CB
s (or vice versa).

Proof. For simplicity let us call C = {u1, . . . , uk} and C ′ = {v1, . . . , vk} and
let us take the indices of those nodes modulo k, i.e., ui+k = ui. We first notice
that the only directed cycles in A are CA

r for r ∈ [N ] and CB
s for s ∈ [N ] and

they are all of length d + ℓ. Hence k = d + ℓ + 1. As the character # appears
only once in every such cycle, it follows that there exists ℓ ∈ [k] such that
uℓ, vℓ ∈ {âr : r ∈ [N ]}∪{b̂s : s ∈ [N ]}. We now proceed by showing that it cannot
be that C = CA

r and C ′ = CA
r′ for some r, r′ ∈ [N ] or C = CB

s and C ′ = CB
s′ for

some s, s′ ∈ [N ]. First assume that C = CA
r and C ′ = CA

r′ for some r, r′ ∈ [N ].
Notice that r ̸= r′ by the assumption that ui ̸= vi for 1 ≤ ∀i ≤ k. We now directly
get a contradiction as the labels of the edges (uℓ, uℓ+1), . . . , (uℓ+d−1, uℓ+d) and
(vℓ, vℓ+1), . . . , (vℓ+d−1, vℓ+d) cannot match by the assumption that A contains

8 Two states are Myhill-Nerode equivalent — i.e. they can be collapsed in the minimum
DFA — if and only if they allow reaching final states with the same set of strings.
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no two identical vectors. Now assume that C = CB
s and C ′ = CB

s′ for some
s, s′ ∈ [N ]. This analogously yields to a contradiction as s ̸= s′ and the paths
Ps and Ps′ cannot have matching labels. It thus follows that C = CA

r for some
r ∈ [N ] and C ′ = CB

s for some s ∈ [N ] (or vice versa). Consequently also âr = uℓ

and b̂s = vℓ (or vice versa) and this completes the proof.

(⇒) As the OV instance is a YES-instance, there exist vectors ar ∈ A and
bs ∈ B, r, s ∈ [N ] such that ar[i] · bs[i] = 0 for all i ∈ [d]. Let CA

r and CB
s

be the node sets corresponding to ar and bs in A and let u1, . . . , uℓ+d+1 and
v1, . . . , vℓ+d+1 be the nodes in CA

r and CB
s , respectively, starting from u1 = âr

and v1 = b̂s. We now need to show that these two cycles can be traversed using
the same labels. For i ∈ [d], transition (ui, ui+1) is labeled ar[i]. If bs[i] = 0, there
exist transitions from vi to vi+1 with both labels 0 and 1 and so we can always
choose a transition matching ar[i]. If bs[i] = 1, there exist only a transition
labeled 0 from vi to vi+1, however in this case it must hold that ar[i] = 0 and
thus the transition from ui to ui+1 is again matched. Now for d+1 ≤ i ≤ d+ ℓ,
node ui+1 can be reached from node ui using any suitable transition. Then,
it is clear that both cycles on the last transition (ud+ℓ+1, u1) and (vd+ℓ+1, v1)
do the transition # resepctively. We call the string that can be read in both
cycles γ. It remains to show that, for 1 ≤ ∀i ≤ ℓ + d + 1, (i) ui ̸= vi and (ii)
I(ui)∩I(vi) ̸= ∅. Property (i) is clearly true. For (ii), we let s1 = 0ρ(r)000γ[1..i],
s2 = 1ρ(s)010γ[1..i], and s3 = 0ρ(r)110γ[1..i] and observe that s1 < s2 < s3 and
s1, s3 ∈ Iui as well as s2 ∈ Ivi . It thus follows that I(ui) ∩ I(vi) ̸= ∅.

(⇐) Let (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) be a cycle in A2 such
that, for all i ∈ [k], (i) ui ̸= vi and (ii) I(ui) ∩ I(vi) ̸= ∅. From Lemma 8 it
follows that there exist r, s ∈ [N ] and ℓ ∈ [k] such that ar = uℓ and bs = vℓ
(or vice versa) and furthermore {u1, . . . , uk} = CA

r and {v1, . . . , vk} = CB
s (or

vice versa). Furthermore k = d + ℓ + 1. W.l.o.g., assume that ar = u1, bs = v1
and {u1, . . . , uk} = CA

r and {v1, . . . , vk} = CB
s . From (u1, v1) → (u2, v2) →

. . . (ud+1, vd+1) we conclude that the label of (vi, vi+1) is equal to ar[i] for every
i ∈ [d]. We are now ready to argue that ar[i] · bs[i] = 0 for every i ∈ [d] and thus
ar and bs are orthogonal. If ar[i] = 0, there is nothing to show. If ar[i] = 1, the
previous claim yields that the label of (vi, vi+1) is 1, which by definition of the
transitions in CB

s implies that bs[i] = 0. Hence ar[i] · bs[i] = 0 also in this case.

Alphabet size 2 Finally, we observe that the constructed DFA A is over an
alphabet of size 3 as we introduced the letter # in addition to 0 and 1. We now
apply the following transformation to A in order to obtain a DFA over the binary
alphabet {0, 1}. We replace every edge labeled with 0 with a directed path of
length 2 labeled with 00, every edge labeled with 1 with a directed path of length
2 labeled with 11, and the edges labeled with # with a directed path of length 3
labeled with 101. Since the pattern 101 appears only on the paths that originally
corresponded to the character #, it is easy to see that two transformed cycles
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match if and only if they used to match before the transformation. We note
that this transformation preserves determinism of A as the nodes with outgoing
edges labeled # have only two outgoing transitions, the one labeled # and one
labeled 0 going to the nodes in V in. Recall that we used also determinism of the
reversed graph Ar in order to argue that A is minimal. It is easy to see that the
transformation also maintains determinism of the reversed graph as the nodes
with ingoing transitions labeled # have only one second ingoing transition that
is labeled 0 (the one from the nodes in I).
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