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Abstract. The annotation scarcity of medical image segmentation poses
challenges in collecting sufficient training data for deep learning models.
Specifically, models trained on limited data may not generalize well to
other unseen data domains, resulting in a domain shift issue. Conse-
quently, domain generalization (DG) is developed to boost the perfor-
mance of segmentation models on unseen domains. However, the DG
setup requires multiple source domains, which impedes the efficient de-
ployment of segmentation algorithms in clinical scenarios. To address this
challenge and improve the segmentation model’s generalizability, we pro-
pose a novel approach called the Frequency-mixed Single-source Domain
Generalization method (FreeSDG). By analyzing the frequency’s effect
on domain discrepancy, FreeSDG leverages a mixed frequency spectrum
to augment the single-source domain. Additionally, self-supervision is
constructed in the domain augmentation to learn robust context-aware
representations for the segmentation task. Experimental results on five
datasets of three modalities demonstrate the effectiveness of the pro-
posed algorithm. FreeSDG outperforms state-of-the-art methods and sig-
nificantly improves the segmentation model’s generalizability. Therefore,
FreeSDG provides a promising solution for enhancing the generalization
of medical image segmentation models, especially when annotated data
is scarce. The code is available at https://github.com/liamheng/Non-
IID Medical Image Segmentation.

Keywords: Medical image segmentation, single-source domain general-
ization, domain augmentation, frequency spectrum.
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1 Introduction

Due to the superiority in image representation, tremendous success has been
achieved in medical image segmentation through recent advancements of deep
learning [10]. Nevertheless, sufficient labeled training data is necessary for deep
learning to learn state-of-the-art segmentation networks, resulting in the burden
of costly and labor-intensive pixel-accurate annotations [2]. Consequently, anno-
tation scarcity has become a pervasive bottleneck for clinically deploying deep
networks, and existing similar datasets have been resorted to alleviate the anno-
tation burden. However, networks trained on a single-source dataset may suffer
performance dropping when applied to clinical datasets, since neural networks
are sensitive to domain shifts.

Consequently, domain adaptation (DA) and DG [14] have been leveraged to
mitigate the impact of domain shifts between source and target domains/datasets.
Unfortunately, DA relies on a strong assumption that source and target data are
simultaneously accessible [4], which does not always hold in practice. Thereby,
DG has been introduced to overcome the absence of target data, which learns a
robust model from distinct source domains to generalize to any target domain. To
efficiently transfer domain knowledge across various source domains, FACT [12]
has been designed to adapt the domains by swapping the low-frequency spec-
trum of one with the other. Considering privacy protection in medical scenarios,
federated learning and continuous frequency space interpolation were combined
to achieve DG on medical image segmentation [5]. More recently, single-source
domain generalization (SDG) [9] has been proposed to implement DG with-
out accessing multi-source domains. Based on global intensity non-linear aug-
mentation (GIN) and interventional pseudocorrelation augmentation (IPA), a
causality-inspired SDG was designed in [7]. Although DG has boosted the clin-
ical practice of deep neural networks, troublesome challenges still remain in
clinical deployment. 1) Data from multi-source domains are commonly required
to implement DG, which is costly and even impractical to collect in clinics. 2)
Medical data sharing is highly concerned, accessing multi-source domains exacer-
bates the risk of data breaching. 3) Additional generative networks may constrain
algorithms’ efficiency and versatility, negatively impacting clinical deployment.

To circumvent the above challenges, a frequency-mixed single-source domain
generalization strategy, called FreeSDG, is proposed in this paper to learn gen-
eralizable segmentation models from a single-source domain. Specifically, the
impact of frequency on domain discrepancy is first explored to test our hypothe-
ses on domain augmentation. Then based on the hypotheses, diverse frequency
views are extracted from medical images and mixed to augment the single-source
domain. Simultaneously, a self-supervised task is posed from frequency views to
learn robust context-aware representations. Such that the representations are
injected into the vanilla segmentation task to train segmentation networks for
out-of-domain inference. Our main contributions are summarised as follows:

– We design an efficient SDG algorithm named FreeSDG for medical image
segmentation by exploring the impact of frequency on domain discrepancy
and mixing frequency views for domain augmentation.
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Fig. 1. Overview of FreeSDG, which learns a generalizable segmentation network from
a single-source domain. FMAug extends the domain margin by mixing patches (or-
ange boxes) from diverse frequency views, and poses a self-supervised task to learn
context-aware representations. The representations are injected into segmentation us-
ing attention mechanisms in the coupled network to achieve a generalizable model.

– Through identifying the frequency factor for domain discrepancy, a frequency-
mixed domain augmentation (FMAug) is proposed to extend the margin of
the single-source domain.

– A self-supervised task is tailored with FMAug to learn robust context-aware
representations, which are injected into the segmentation task.

– Experiments on various medical image modalities demonstrate the effective-
ness of the proposed approach, by which data dependency is alleviated and
superior performance is presented when compared with state-of-the-art DG
algorithms in medical image segmentation.

2 Methodology

Aiming to robustly counter clinical data from unknown domains, an SDG al-
gorithm for medical image segmentation is proposed, as shown in Fig. 1. A
generalizable segmentation network is attempted to be produced from a single-
source domain (x,m) ∼ D(x,m), where m ∈ RH×W is the segmentation mask
for the image x ∈ RH×W×3. By mixing frequency spectrums, FMAug is executed
to augment the single-source domain, and self-supervision is simultaneously ac-
quired to learn context-aware representations. Thus a medical image segmen-
tation network capable of out-of-domain generalization is implemented from a
single-source domain.

2.1 Frequency-controlled Domain Discrepancy

Generalizable algorithms have been developed using out-of-domain knowledge to
circumvent the clinical performance dropping caused by domain shifts. Never-
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Fig. 2. Data distribution visualized by t-SNE. Uniformly removing LFS reduces shifts
between DRIVE, IOSTAR, and LES-AV. Discriminatively removing the LFS increases
the discrepancy in DRIVE. FMAug extends the margin of DRIVE.

theless, extra data dependency is often inevitable in developing the generalizable
algorithms, limiting their clinical deployment. To alleviate the data dependency,
a single source generalization strategy is designed inspired by the Fourier domain
adaption [13] and generalization [12].

According to [12,13], the domain shifts between the source and target could
be reduced by swapping/integrating the low-frequency spectrum (LFS) of one
with the other. Thus we post two hypotheses:

1) uniformly removing the LFS reduces inter- and inner-domain shifts;

2) discriminatively removing the LFS from a single domain increases inner-
domain discrepancy.

Various frequency views are thus extracted from medical images with chang-
ing parameters to verify the above hypotheses. Denote the frequency filter with
parameters θn as Fn (·), where n ∈ RN+1 refers to the index of parameters.
Following [3,4], a frequency view acquired with θn from an image x is given by
x̃n = Fn (x) = x− x ∗ g(rn, σn), where g(rn, σn) denotes a Gaussian filter with
radius rn ∈ [5, 50] and spatial constant σn ∈ [2, 22]. Then the frequency views
are converted to vectors by a pre-trained ResNet-18 and t-SNE is employed to
demonstrate the domain discrepancy controlled by the low-frequency spectrum.

As shown in Fig. 2, compared to the raw images, the distribution of various
datasets is more clustered after the uniform LFS removement, which indicates
domain shift reduction. While the domain discrepancy in DRIVE is increased
by discriminatively removing the LFS. Accordingly, these hypotheses can be
leveraged to implement SDG.

2.2 Frequency-mixed domain augmentation

Motivated by the hypotheses, domain augmentation is implemented by Fn (·)
with perturbed parameters. Moreover, the local-frequency-mix is executed to
further extend the domain margin, as shown in Fig. 2 (d). As exhibited in the
blue block of Fig. 1, random patches are cut from a frequency view and mixed
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with diverse ones to conduct FMAug, which is given by

x̄k = M (x̃i, x̃j) = M ⊙ x̃i + (1−M)⊙ x̃j , (1)

where M ∈ 0, 1W×H is a binary mask controlling where to drop out and fill in
from two images, and ⊙ is element-wise multiplication. k = (i− 1)×N +(j− 1)
denotes the index of the augmentation outcomes, where i, j ∈ RN , i ̸= j.

Notably, self-supervision is simultaneously acquired from FMAug, where only
patches from N frequency views x̃n, n ∈ RN are mixed, and the rest one x̃0 is
cast as a specific view to be reconstructed from the mixed ones, where (rn, σn) =
(27, 9). Under the self-supervision, an objective function for learning context-
aware representations from view reconstruction is defined as

Lsel = E
[∑K

k=1 ∥x̃0 − x̂k∥1
]
. (2)

where x̂k refers to the view reconstructed from x̄k, K = N × (N − 1).
Consequently, FMAug not only extends the domain discrepancy and margin,

but also poses a self-supervised pretext task to learn generalizable context-aware
representations from view reconstruction.

2.3 Coupled segmentation network

As the FMAug promises domain-augmented training data and generalizable
context-aware representations, a segmentation model capable of out-of-domain
inference is waiting to be learned. To inject the context-aware representations
into the segmentation model seamlessly, a coupled network is designed with at-
tention mechanisms (shown in the purple block of Fig. 1), which utilize the most
relevant parts of representation in a flexible manner.

Concretely, the network comprises an encoder E and two decoders Dsel,
Dseg, where skip connection bridges E and Dsel while Dsel marries Dseg using
attention mechanisms. For the above pretext task, E and Dsel compose a U-Net
architecture to reconstruct x̃0 from x̄k with the objective function given in Eq. 2.
On the other hand, the segmentation task shares E with the pretext task, and
introduces representations from Dsel to Dseg. The features outcomes from the
l-th layer of Dseg are given by

f l
seg = Dl

seg([f
l−1
seg , f

l−1
sel ]), l = 1, 2, ..., L, (3)

where f l
sel refers to the features from the l-th layer of Dsel. Additionally, at-

tention modules are implemented to properly couple the features from Dsel and
Dseg. D

l
seg imports and concatenates f l−1

seg and f l−1
sel as a tensor. Subsequently,

the efficient channel and spatial attention modules proposed by [11] are executed
to couple the representations learned from the pretext and segmentation task.
Then convolutional layers are used to generate the final outcome f l

seg. Accord-
ingly, denote the segmentation result from x̄k as m̂k, the objective function for
segmentation task is given by

Lseg = E
[∑K

k=1[−m log m̂k − (1−m) log (1− m̂k)]
]
. (4)
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where m denotes the ground-truth segmentation mask corresponding to the orig-
inal source sample x. Therefore, the overall objective function for the network
is defined as

Ltotal = Lsel(E,Dsel) + αLseg(E,Dsel, Dseg), (5)

where α is the hyper-parameter to balance Lsel and Lseg.

3 Experiments

Implementation: Five image datasets of three modalities were collected to
conduct segmentation experiments on fundus vessels and articular cartilage. For
fundus vessels, training was based on 1) DRIVE1 and 2) EyePACS2, where
DRIVE is a vessel segmentation dataset on fundus photography used as the
single source domain to learn a generalizable segmentation model, EyePACS is
a tremendous fundus photography dataset employed as extra multiple source
domains to implement DG-based algorithms. 3) LES-AV3 and 4) IOSTAR4 are
vessel segmentation datasets respectively on fundus photography and Scanning
Laser Ophthalmoscopy (SLO), which were used to verify the generalizability
of models learned from DRIVE. For articular cartilage, 5) ultrasound images
of joints with cartilage masks were collected by Southern University of Science
and Technology Hospital, under disparate settings to validate the algorithm’s
effectiveness in multiple medical scenarios, where the training, generalization,
and test splits respectively contain 517, 7530, 1828 images.

The image data were resized to 512 × 512, the training batch size was 2,
and Adam optimizer was used. The model was trained according to an early-
stop mechanism, which means the optimal parameter on the validation set was
selected in the total 200 epochs, where the learning rate is 0.001 in the first
80 epochs and decreases linearly to 0 in the last 120 epochs. The encoder and
two decoders are constructed based on the U-net architecture with 8 layers. The
comparisons were conducted with the same setting and were quantified by DICE
and Matthews’s correlation coefficient (Mcc).

Comparison and Ablation Study: The effectiveness of the proposed algo-
rithm is demonstrated in comparison with state-of-the-art methods and an ab-
lation study. The Fourior-based DG methods FACT [12], FedDG [5], and the
whitening-based DG method SAN-SAW [8], as well as the SGD method GIN-
IPA [7] were compared, where CE-Net [1] and CS-Net [6] were served as the base
models cooperated with FACT [12]. Then in the ablation study, FMAug, self-
supervised learning (SSL), and attention mechanisms (ATT) were respectively
removed from the proposed algorithm.

1 http://www.isi.uu.nl/Research/Databases/DRIVE/
2 https://www.kaggle.com/c/diabetic-retinopathy-detection
3 https://figshare.com/articles/dataset/LES-AV dataset/11857698/1
4 http://www.retinacheck.org/datasets
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Fig. 3. Segmentation comparison in three medical image modalities.

(1) Comparison Quantified comparison of our algorithm with the compet-
ing methods is summarized in Table 1, where segmentation results in three
modalities and data dependency are exhibited. Due to the domain shifts between
DRIVE and LES-AV as well as IOSTAR, interior performance are presented by
CE-Net [1] and CS-Net [6], which are only learned from DRIVE without DG. Due
to the substantial domain discrepancy, EyePACS were treated as multiple source
domains to implement DG. FACT [12] boosts the generalization by transferring
LFS across the multi-source domains, and efficiently promotes the performance
of CE-Net [1] and CS-Net [6]. FedDG [5] were then respectively trained using
DRIVE perturbed by EyePACS. As SAN-SAW [8] was designed for region struc-
ture segmentation, it appears redundant in the vessel structure task. Thanks to
coupling federated learning and contrastive learning, reasonable performance are
provided by FedDG [5]. GIN-IPA [7] and our FreeSDG were learned based on the
single source domain of DRIVE. Through augmenting the source domain with
intensity variance and consistency constraint, GIN-IPA [7] performs decently on
out-of-domain inference. The proposed FreeSDG allows for learning efficient seg-
mentation models only from DRIVE. Therefore, our FreeSDG outperforms the
state-of-the-art methods without extra data dependency. Additionally, an iden-
tical situation is observed from the results of ultrasound data, further validating
the effectiveness of our algorithm.

Visualized comparison is shown in Fig. 3. Uneven brightness in LES-AV im-
pacts the segmentation performance, vessels in the highlight box are ignored by
most algorithms. Cooperating with FACT [12], CE-Net [1] achieves impressive
performance. The remarkable performance of GIN-IPA [7] indicates that SDG is
a promising paradigm for generalizable segmentation. In the cross-modality seg-
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Table 1. Comparisons and ablation study

Algorithms
Dependency* LES-AV IOSTAR Ultrasound

IID MSD DICE Mcc DICE Mcc DICE Mcc

CE-Net ⋆ 0.636 0.618 0.505 0.514 0.788 0.796

CS-Net ⋆ 0.593 0.559 0.520 0.521 0.699 0.721

CE-Net+FACT ⋆ 0.730 0.711 0.728 0.705 0.846 0.846

CS-Net+FACT ⋆ 0.725 0.705 0.580 0.572 0.829 0.827

SAN-SAW ⋆ 0.629 0.599 0.617 0.585 0.819 0.822

Feddg ⋆ 0.745 0.725 0.720 0.697 0.872 0.871

GIN-IPA 0.683 0.665 0.641 0.650 0.827 0.824

FreeSDG(ours) 0.795 0.778 0.736 0.716 0.913 0.912

FreeSDG w/o FMAug, SSL, ATT 0.720 0.705 0.687 0.665 0.875 0.873

FreeSDG w/o SSL, ATT 0.751 0.734 0.724 0.701 0.881 0.881

FreeSDG w/o ATT 0.777 0.760 0.731 0.709 0.898 0.897

* Independent and identically distributed data (IID) and multi-source domains (MSD).

mentation in IOSTAR, CE-Net [1] married with FACT [12] and GIN-IPA [7] still
performs outstandingly. In addition, decent segmentation is also observed from
FedDG [5] via DG with multi-source domains. FreeSDG efficiently recognizes
the variational vessels in LES-AV and IOSTAR, indicating its robustness and
generalizability in the quantitative comparison. Furthermore, FreeSDG outper-
forms the competing methods in accurately segmenting low-contrast cartilage of
ultrasound images. In nutshell, our SDG strategy promises FreeSDG prominent
performance without extra data dependency.

(2) Ablation Study According to Table 1, the ablation study also validates
the effectiveness of the three designed modules. Through FMAug, an augmented
source domain with adequate discrepancy is constructed for training general-
izable models. Robust context-aware representations are extracted from self-
supervised learning, boosting the downstream segmentation task. Attention mech-
anisms seamlessly inject the context-aware representations into segmentation,
further improving the proposed algorithm. Therefore, a promising segmentation
model for medical images is learned from a single-source domain.

4 Conclusion

Pixel-accurate annotations have long been a common bottleneck for develop-
ing medical image segmentation networks. Segmentation models learned from a
single-source dataset always suffer performance dropping on out-of-domain data.
Leveraging DG solutions bring extra data dependency, limiting the deployment
of segmentation models. In this paper, we proposed a novel SDG strategy called
FreeSDG that leverages a frequency-based domain augmentation technique to
extend the single-source domain discrepancy and injects robust representations
learned from self-supervision into the network to boost segmentation perfor-
mance. Our experimental results demonstrated that the proposed algorithm
outperforms state-of-the-art methods without requiring extra data dependen-
cies, providing a promising solution for developing accurate and generalizable
medical image segmentation models. Overall, our approach enables the devel-
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opment of accurate and generalizable segmentation models from a single-source
dataset, presenting the potential to be deployed in real-world clinical scenarios.
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