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Abstract. Aortic stenosis (AS) is a common heart valve disease that
requires accurate and timely diagnosis for appropriate treatment. Most
current automatic AS severity detection methods rely on black-box mod-
els with a low level of trustworthiness, which hinders clinical adoption.
To address this issue, we propose ProtoASNet, a prototypical network
that directly detects AS from B-mode echocardiography videos, while
making interpretable predictions based on the similarity between the
input and learned spatio-temporal prototypes. This approach provides
supporting evidence that is clinically relevant, as the prototypes typi-
cally highlight markers such as calcification and restricted movement of
aortic valve leaflets. Moreover, ProtoASNet utilizes abstention loss to
estimate aleatoric uncertainty by defining a set of prototypes that cap-
ture ambiguity and insufficient information in the observed data. This
provides a reliable system that can detect and explain when it may fail.
We evaluate ProtoASNet on a private dataset and the publicly available
TMED-2 dataset, where it outperforms existing state-of-the-art methods
with an accuracy of 80.0% and 79.7%, respectively. Furthermore, Pro-
toASNet provides interpretability and an uncertainty measure for each
prediction, which can improve transparency and facilitate the interactive
usage of deep networks to aid clinical decision-making. Our source code
is available at: https://github.com/hooman007/ProtoASNet.

Keywords: Aleatoric Uncertainty · Aortic Stenosis · Echocardiography
· Explainable AI · Prototypical Networks

1 Introduction

Aortic stenosis (AS) is a common heart valve disease characterized by the cal-
cification of the aortic valve (AV) and the restriction of its movement. It affects
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5% of individuals aged 65 or older [2] and can progress rapidly from mild or
moderate to severe, reducing life expectancy to 2 to 3 years [20]. Echocardio-
graphy (echo) is the primary diagnostic modality for AS. This technique mea-
sures Doppler-derived clinical markers [16] and captures valve motion from the
parasternal long (PLAX) and short axis (PSAX) cross-section views. However,
obtaining and interpreting Doppler measurements requires specialized training
and is subject to significant inter-observer variability [14,15].

To alleviate this issue, deep neural network (DNN) models have been pro-
posed for automatic assessment of AS directly from two-dimensional B-mode
echo, a modality more commonly used in point-of-care settings. Huang et al. [9,10]
proposed a multitask model to classify the severity of AS using echo images.
Ginsberg et al. [6] proposed an ordinal regression-based method that predicts
the severity of AS and provides an estimate of aleatoric uncertainty due to uncer-
tainty in training labels. However, these works utilized black-box DNNs, which
could not provide an explanation of their prediction process.

Explainable AI (XAI) methods can provide explanations of a DNN’s deci-
sion making process and can generally be categorized into two classes. Post-hoc
XAI methods explain the decisions of trained black-box DNNs. For example,
gradient-based saliency maps [18,19] show where a model pays attention to,
but these methods do not necessarily explain why one class is chosen over an-
other [17], and at times result in misleading explanations [1]. Ante-hoc XAI
methods are explicitly designed to be explainable. For instance, prototype-based
models [4,8,11,12,22,23], which the contributions of our paper fall under, analyze
a given input based on its similarity to learned discriminative features (or “pro-
totypes”) for each class. Both the learned prototypes and salient image patches
of the input can be visualized for users to validate the model’s decision making.

There are two limitations to applying current prototype-based methods to
the task of classifying AS severity from echo cine series. First, prototypes should
be spatio-temporal instead of only spatial, since AS assessment requires attention
to small anatomical regions in echo (such as the AV) at a particular phase of the
heart rhythm (mid-systole). Second, user variability in cardiac view acquisition
and poor image quality can complicate AV visualization in standard PLAX and
PSAX views. The insufficient information in such cases can lead to more plausible
diagnoses than one. Therefore, a robust solution should avoid direct prediction
and notify the user. These issues have been largely unaddressed in previous work.

We propose ProtoASNet (Fig. 1), a prototype-based model for classifying AS
severity from echo cine series. ProtoASNet discovers dynamic prototypes that
describe shape- and movement-based phenomena relevant to AS severity, outper-
forming existing models that only utilize image-based prototypes. Additionally,
our model can detect ambiguous decision-making scenarios based on similarity
with less informative samples in the training set. This similarity is expressed as
a measure of aleatoric uncertainty. To the best of our knowledge, the only prior
work for dynamic prototypes published to-date is [7]. ProtoASNet is the first
work to use dynamic prototypes in medical imaging and the first to incorporate
aleatoric uncertainty estimation with prototype-based networks.
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Fig. 1. (A) An overview of our proposed ProtoASNet architecture. ProtoASNet ex-
tracts spatio-temporal feature vectors fpc

k
(x) from the video, which are compared with

learned prototypes. Similarity values between features and prototypes are aggregated
to produce a score for class membership and aleatoric uncertainty. (B) Prototypes
representing aleatoric uncertainty (blue) can capture regions of the data distribution
with inherent ambiguity (intersection between green and yellow regions). In practice,
this region consists of videos with poor visual quality.

2 Methods

2.1 Background: Prototype-Based Models

Prototype-based models explicitly make their decisions using similarities to cases
in the training set. These models generally consist of three key components
structured as h(g(f(x))). Firstly, f(.) is a feature encoder such as a ConvNet
that maps images x ∈ RHo×Wo×3 to f(x) ∈ RH×W×D, where H, W , and D
correspond to the height, width, and feature depth of the ConvNet’s intermediate
layer, respectively. Secondly, g(.) ∈ RH×W×D → RP is a prototype pooling
function that computes the similarity of encoded features f(x) to P prototype
vectors. There are K learnable prototypes defined for each of C classes, denoted
as pck. Finally, h(.) ∈ RP → RC is a fully-connected layer that learns to weigh
the input-prototype similarities against each other to produce a prediction score
for each class. To ensure that the prototypes pck reflect those of true examples in
the training distribution, they are projected (“pushed”) towards the embeddings
of the closest training examples of class c.

pck ← argmin
z∈Zc

∥z − pck∥2,where Zc = {z : z ∈ fpc
k
(xi) s.t. yi ∈ c} (1)

Such models are inherently interpretable since they are enforced to first search
for similar cases in the training set and then to compute how these similarities
contribute to the classification. As a result, they offer a powerful approach for
identifying and classifying similar patterns in data.
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2.2 ProtoASNet

Feature Extraction. The overall structure of ProtoASNet is shown in Fig. 1.
The feature extraction layer consists of a convolutional backbone, in our case
the first three blocks of a pre-trained R(2+1)D-18 [21] model, followed by two
branches of feature and region of interest (ROI) modules made up of two and
three convolutional layers respectively. In both modules, the convolutional layers
have ReLU activation function, except the last layers which have linear activa-
tions. Given an input video x ∈ RHo×Wo×To×3 with To frames, the first branch
learns a feature F (x) ∈ RH×W×T×D, where each D-dimensional vector in F (x)
corresponds to a specific spatio-temporal region in the video. The second branch
generates P regions of interest, Mpc

k
(x) ∈ RH×W×T , that specify which regions

of F (x) are relevant for comparing with each prototype pck.
The features from different spatio-temporal regions must be pooled before

being compared to prototypes. As in [12], we perform a weighted average pooling
with the learned regions of interest as follows:

fpc
k
(x) =

1

HWT

∑

H,W,T

|Mpc
k
(x)| ◦ F (x), (2)

where |.| is the absolute value and ◦ is the Hadamard product.

Prototype Pooling. The similarity score of a feature vector fpc
k

and prototype
pck is calculated using cosine similarity, which is then shifted to [0, 1]:

g(x, pck) =
1

2
(1 +

< fpc
k
(x), pck >

∥fpc
k
(x)∥2∥pck∥2

). (3)

Prototypes for Aleatoric Uncertainty Estimation. In Fig. 1, trainable
uncertainty prototypes (denoted puk) are added to capture regions in the data
distribution that are inherently ambiguous (Fig. 1.B). We use similarity between
fpu

k
(x) and puk to quantify aleatoric uncertainty, denoted α ∈ [0, 1]. We use an

“abstention loss” (Eq. (6)) method inspired by [5] to learn α and thereby puk .
In this loss, α is used to interpolate between the ground truth and prediction,
pushing the model to “abstain” from its own answer at a penalty.

ŷ = σ(h(g(x, pck))), α = σ(h(g(x, puk))); (4)
ŷ′ = (1− α)ŷ + αy; (5)

Labs = CrsEnt(ŷ′, y)− λabs log(1− α), (6)

where σ denotes Softmax normalization in the output of h(.), y and ŷ are the
ground truth and the predicted probabilities, respectively, and λabs is a regular-
ization constant.

When projecting puk to the nearest extracted feature from training examples,
we relax the requirement in Eq. (1) allowing the uncertainty prototypes to be
pushed to data with the ground truth of any AS severity class.
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Class-Wise Similarity Score. The fully connected (FC) layer h(.) is a dense
mapping from prototype similarity scores to prediction logits. Its weights, wh,
are initialized to be 1 between class c and the corresponding prototypes and 0
otherwise to enforce the process to resemble positive reasoning. h(.) produces a
score for membership in each class and for α.

Loss Function. As in previous prototype-based methods [4,12], the following
losses are introduced to improve performance: 1) Clustering and separation losses
(Eq. (7)), which encourage clustering based on class, where Py denotes the set
of prototypes belonging to class y. Due to lack of ground truth uncertainties,
these losses are only measured on pck, not puk ; 2) Orthogonality loss (Eq. (8)),
which encourages prototypes to be more diverse; 3) Transformation loss Ltrns

(described in [12]), which regularizes the consistency of the predicted occurrence
regions under random affine transformations; 4) Finally, Lnorm (described in [4])
regularizes wh to be close to its initialization and penalizes relying on similarity
to one class to influence the logits of other classes. Eq. (9) describes the overall
loss function where λ represent regularization coefficients for each loss term. The
network is trained end-to-end. We conduct a “push” stage (see Eq. (1)) every 5
epochs to ensure that the learned prototypes are consistent with the embeddings
from real examples.

Lclst = − max
pc
k∈Py

g(x, pck), Lsep = max
pc
k /∈Py

g(x, pck); (7)

Lorth =
∑

i>j

< pi, pj >

∥pi∥2∥pj∥2
; (8)

L = Labs + λclstLclst + λsepLsep + λorthLorth + λtrnsLtrns + λnormLnorm. (9)

3 Experiments and Results

3.1 Datasets

We conducted experiments on a private AS dataset and the public TMED-2
dataset [10]. The private dataset was extracted from an echo study database of
a tertiary care hospital with institutional review ethics board approval. Videos
were acquired with Philips iE33, Vivid i, and Vivid E9 ultrasound machines. For
each study, the AS severity was classified using clinically standard Doppler echo
guidelines [3] by a level III echocardiographer, keeping only cases with concor-
dant Doppler measurements. PLAX and PSAX view cines were extracted from
each study using a view-detection algorithm [13], and subsequently screened by
a level III echocardiographer to remove misclassified cines. For each cine, the
echo beam area was isolated and image annotations were removed. The dataset
consists of 5055 PLAX and 4062 PSAX view cines, with a total of 2572 stud-
ies. These studies were divided into training, validation, and test sets, ensuring
patient exclusivity and following an 80-10-10 ratio. We performed randomized
augmentations including resized cropping and rotation.
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The TMED-2 dataset [10] consists of 599 fully labeled echo studies containing
17270 images in total. Each study consists of 2D echo images with clinician-
annotated view labels (PLAX/PSAX/Other) and Doppler-derived study-level
AS severity labels (no AS/early AS/significant AS). Though the dataset includes
an unlabeled portion, we trained on the labeled set only. We performed data
augmentation similar to the private dataset without time-domain operations.

3.2 Implementation Details

To better compare the results with TMED-2 dataset, we adopted their labeling
scheme of no AS (normal), early AS (mild), and significant AS (moderate and
severe) in our private dataset. We split longer cines into 32-frame clips which
are approximately one heart cycle long. In both layers of the feature module,
we used D convolutional filters, while the three layers in the ROI module had
D, D

2 , and P convolutional filters, preventing an abrupt reduction of channels
to the relatively low value of P . In both modules, we used kernel size of 1×1×1.
We set D = 256 and K = 10 for AS class and aleatoric uncertainty prototypes.
Derived from the hyperparameter selection of ProtoPNet [4], we assigned the
values of 0.8, 0.08, and 10−4 to λclst, λsep, and λnorm respectively. Through a
search across five values of 0.1, 0.3, 0.5, 0.9, and 1.0, we found the optimal λabs

to be 0.3 based on the mean F1 score of the validation set. Additionally, we
found λorth and λtrns to be empirically better as 10−2 and 10−3 respectively.
We implemented our framework in PyTorch and trained the model end-to-end
on one 16 GB NVIDIA Tesla V100 GPU.

3.3 Evaluations on Private Dataset

Quantitative Assessment. In Table 1, we report the performance of ProtoAS-
Net in AS severity classification against the black-box baselines for image (Huang
et al. [9]), video (Ginsberg et al. [6]), as well as other prototypical methods, i.e.
ProtoPNet [4] and XProtoNet [12]. In particular, for ProtoASNet, ProtoPNet [4],
and XProtoNet [12], we conduct both image-based and video-based experiments
with ResNet-18 and R(2+1)D-18 backbones respectively. We apply softmax to
normalize the ProtoASNet output scores, including α, to obtain class probabil-
ities that account for the presence of aleatoric uncertainty. We aggregate model
predictions by averaging their probabilities from the image- (or clip-) level to
obtain cine- and study-level predictions. We believe the uncertainty probabili-
ties reduce the effect of less informative datapoints on final aggregated results.
Additionally, the video-based models perform better than the image-based ones
because the learnt prototypes can also capture AV motion which is an indica-
tor of AS severity. These two factors may explain why our proposed method,
ProtoASNet, outperforms all other methods for study-level classification.

Qualitative Assessment. The interpretable reasoning process of ProtoASNet
for a video example is shown in Fig. 2. We observe that ProtoASNet places sig-
nificant importance on prototypes corresponding to thickened AV leaflets due to
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Table 1. Quantitative results on the test set of our private dataset in terms of balanced
accuracy (bACC), mean F1 score, and balanced mean absolute error (bMAE). bMAE
is the average of the MAE of each class, assuming labels of 0, 1, 2 for no AS, early AS
and significant AS respectively. Study-level results were calculated by averaging the
prediction probabilities over all cines of each study. Results are shown as "mean(std)"
calculated across five repetitions for each experiment. Best results are in bold.

Method Cine-level (N=973) Study-level (N=258)
bACC↑ F1 ↑ bMAE↓ bACC↑ F1 ↑ bMAE↓

Huang et al. [10] 70.2(1.5) 0.70(.02) 0.33(.02) 74.7(1.6) 0.75(.02) 0.28(.02)
ProtoPNet [4] 67.8(3.7) 0.66(.05) 0.36(.05) 70.9(4.7) 0.69(.07) 0.32(.05)
XProtoNet [12] 69.2(1.3) 0.69(.01) 0.34(.01) 73.8(0.8) 0.74(.01) 0.29(.01)

ProtoASNet (Image)* 70.1(1.6) 0.70(.02) 0.33(.02) 73.9(3.5) 0.74(.04) 0.29(.04)

Ginsberg et al. [6] 76.0(1.4) 0.76(.01) 0.26(.01) 78.3(1.6) 0.78(.01) 0.24(.02)
XProtoNet (Video)* 74.1(1.1) 0.74(.01) 0.29(.01) 77.2(1.4) 0.77(.01) 0.25(.02)

ProtoASNet 75.4(0.9) 0.75(.01) 0.27(.01) 80.0(1.1) 0.80(.01) 0.22(.01)
* Feature extraction modified to the corresponding input type.

calcification, which is a characteristic of both early and significant AS. Addition-
ally, prototypes mostly capture the part of the heart cycle that aligns with the
opening of the AV, providing a clinical indication of how well the valve opens up
to be able to pump blood to the rest of the body. This makes ProtoASNet’s rea-
soning process interpretable for the user. Note how the uncertainty prototypes
focusing on AV regions where the valve leaflets are not visible, are contributing
to the uncertainty measure, resulting in the case being flagged as uncertain.

Ablation Study. We assessed the effect of removing distinct components of our
design: uncertainty prototypes (Labs, p

u
k), clustering and separation (Lclst,Lsep),

and push mechanism. As shown in Table 2, keeping all the aforementioned com-
ponents results in superior performance in terms of bACC and bMAE. We eval-
uated whether the model is capable of detecting its own misclassification using
the value of α (or entropy of the class predictions in the case without Labs, p

u
k).

This is measured by the AUROC of detecting (y ̸= ŷ). Learning puk may benefit
accuracy by mitigating the overfitting of pck to poor-quality videos. Furthermore,
α seems to be a stronger indicator for misclassification than entropy. Moreover,
we measured prototype quality using diversity and sparsity [8], normalized by
the total number of prototypes. Ideally, each prediction can be explained by a
low number of prototypes (low sspars) but different predictions are explained
with different prototypes (high Diversity). When Lclst and Lsep are removed,
the protoypes are less constrained, which contributes to stronger misclassifica-
tion detection and more diversity, but reduce accuracy and cause explanations
to be less sparse. Finally, the push mechanism improves performance, countering
the intuition of an interpretability-performance trade-off.
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Fig. 2. Visualization of the ProtoASNet decision-making process for a test cine video
showing significant AS but poor valve leaflet visualization. We visualize most similar
video parts by overlaying the upsampled model-generated ROI, Mpc

k
(xtest), on the test

cine video. Likewise, we visualize prototypes by finding the training clip each prototype
is drawn from, xp, and overlaying Mpc

k
(xp). ProtoASNet explains which spatio-temporal

parts of the test echo are most similar to the prototypes and how accumulation of these
supporting evidence results in the prediction probabilities. More visualizations of our
model’s performance are included in the supplementary material in video format.

3.4 Evaluation on TMED-2, a Public Dataset

We also applied our method to TMED-2, a public image-based dataset for AS
diagnosis. Consistent with [10], images were fed to a WideResNet-based proto-
type model with two output branches. The view classifier branch used average-
pooling of patches followed by a fully connected layer. However, the AS diagnosis
branch used the prototype setup outlined in Methods. A diagram of the overall
architecture is available in the supplementary material. We trained the model
end-to-end with images from all views. During inference, images with high en-
tropy in the predicted view and high aleatoric uncertainty for AS classification
were discarded. Then, probabilities for PLAX and PSAX were used for weighted
averaging to determine the study-level prediction. Addition of the prototypical
layer and thresholding on predicted uncertainty achieves 79.7% accuracy for AS
severity, outperforming existing black-box method [10] at 74.6%.

4 Conclusion

We introduce ProtoASNet, an interpretable method for classifying AS severity
using B-mode echo that outperforms existing black-box methods. ProtoASNet
identifies clinically relevant spatio-temporal prototypes that can be visualized
to improve algorithmic transparency. In addition, we introduce prototypes for
estimating aleatoric uncertainty, which help flag difficult-to-diagnose scenarios,
such as videos with poor visual quality. Future work will investigate methods
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Table 2. Ablation study on the validation set of our private dataset.

Method Clip-level (N=1280)
bACC ↑ bMAE ↓ AUROCy ̸=ŷ ↑ sspars ↓ Diversity ↑

w/o Labs, p
u
k 76.1 0.25 0.73 0.37 0.50

w/o Lclst,Lsep 74.8 0.26 0.79 0.49 0.50
w/o push 77.9 0.23 0.75 0.35 0.43

All parts (ours) 78.4 0.23 0.75 0.33 0.45

to optimize the number of prototypes, or explore out-of-distribution detection
using prototype-based methods.
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Engineering Research Council of Canada (NSERC).
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Fig. 1: Visualization of the ProtoASNet decision-making process for a test cine
video showing significant AS. Mp4 video clip of this visualization is included in
the supplementary material.

Table 1: Diagnostic performance on the test set of the TMED-2 dataset. Image
predictions are derived with probabilities with prioritized view averaging and
thresholding.

Method
Aggregation Method Study-level

Proto Layer Prioritized View View Thresh Abs Thresh View BACC AS BACC

Huang et al x ✓ ✓ x 96.2% 74.6%
Ours ✓ ✓ ✓ ✓ 96.1% 79.7%
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Fig. 2: Study-level diagnosis of TMED2 dataset - Given image-level trained
network we get the study-level diagnosis by aggregating images with low view
classification entropy and uncertainty probability while prioritizing diagnoses
from images with PLAX and PSAX view.
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Table 2: Most prototypes focus on areas around the aortic valve. Three example
prototypes for healthy and significant AS have been demonstrated. Three un-
certainty prototypes are also shown. Most uncertainty prototypes capture views
other than PLAX and PSAX or images that contain extra information such as
EKG or patient information.


