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Abstract. Survival prediction is crucial for cancer patients as it provides early 
prognostic information for treatment planning. Recently, deep survival models 
based on deep learning and medical images have shown promising performance 
for survival prediction. However, existing deep survival models are not well 
developed in utilizing multi-modality images (e.g., PET-CT) and in extracting 
region-specific information (e.g., the prognostic information in Primary Tumor 
(PT) and Metastatic Lymph Node (MLN) regions). In view of this, we propose 
a merging-diverging learning framework for survival prediction from multi-
modality images. This framework has a merging encoder to fuse multi-modality 
information and a diverging decoder to extract region-specific information. In 
the merging encoder, we propose a Hybrid Parallel Cross-Attention (HPCA) 
block to effectively fuse multi-modality features via parallel convolutional lay-
ers and cross-attention transformers. In the diverging decoder, we propose a 
Region-specific Attention Gate (RAG) block to screen out the features related 
to lesion regions. Our framework is demonstrated on survival prediction from 
PET-CT images in Head and Neck (H&N) cancer, by designing an X-shape 
merging-diverging hybrid transformer network (named XSurv). Our XSurv 
combines the complementary information in PET and CT images and extracts 
the region-specific prognostic information in PT and MLN regions. Extensive 
experiments on the public dataset of HEad and neCK TumOR segmentation and 
outcome prediction challenge (HECKTOR 2022) demonstrate that our XSurv 
outperforms state-of-the-art survival prediction methods. 
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1 Introduction 

Head and Neck (H&N) cancer refers to malignant tumors in H&N regions, which is 

among the most common cancers worldwide [1]. Survival prediction, a regression 

task that models the survival outcomes of patients, is crucial for H&N cancer patients: 

it provides early prognostic information to guide treatment planning and potentially 

improves the overall survival outcomes of patients [2]. Multi-modality imaging of 
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Positron Emission Tomography – Computed Tomography (PET-CT) has been shown 

to benefit survival prediction as it offers both anatomical (CT) and metabolic (PET) 

information about tumors [3, 4]. Therefore, survival prediction from PET-CT images 

in H&N cancer has attracted wide attention and serves as a key research area. For 

instance, HEad and neCK TumOR segmentation and outcome prediction challenges 

(HECKTOR) have been held for the last three years to facilitate the development of 

new algorithms for survival prediction from PET-CT images in H&N cancer [5-7]. 

Traditional survival prediction methods are usually based on radiomics [8], where 

handcrafted radiomics features are extracted from pre-segmented tumor regions and 

then are modeled by statistical survival models, such as the Cox Proportional Hazard 

(CoxPH) model [9]. In addition, deep survival models based on deep learning have 

been proposed to perform end-to-end survival prediction from medical images, where 

pre-segmented tumor masks are often unrequired [10]. Deep survival models usually 

adopt Convolutional Neural Networks (CNNs) to extract image features, and recently 

Visual Transformers (ViT) have been adopted for its capabilities to capture long-

range dependency within images [11, 12]. These deep survival models have shown 

the potential to outperform traditional survival prediction methods [13]. For survival 

prediction in H&N cancer, deep survival models have achieved top performance in 

the HECKTOR 2021/2022 and are regarded as state-of-the-art [14-16]. Nevertheless, 

we identified that existing deep survival models still have two main limitations. 

Firstly, existing deep survival models are underdeveloped in utilizing complemen-

tary multi-modality information, such as the metabolic and anatomical information in 

PET and CT images. For survival prediction in H&N cancer, existing methods usually 

use single imaging modality [17, 18] or rely on early fusion (i.e., concatenating multi-

modality images as multi-channel inputs) to combine multi-modality information [11, 

14-16, 19]. In addition, late fusion has been used for survival prediction in other dis-

eases such as gliomas and tuberculosis [20, 21], where multi-modality features were 

extracted by multiple independent encoders with resultant features fused. However, 

early fusion has difficulties in extracting intra-modality information due to entangled 

(concatenated) images for feature extraction, while late fusion has difficulties in ex-

tracting inter-modality information due to fully independent feature extraction. Re-

cently, Tang et al. [22] attempted to address this limitation by proposing a Multi-scale 

Non-local Attention Fusion (MNAF) block for survival prediction of glioma patients, 

in which multi-modality features were fused via non-local attention mechanism [23] 

at multiple scales. However, the performance of this method heavily relies on using 

tumor segmentation masks as inputs, which limits its generalizability. 
Secondly, although deep survival models have advantages in performing end-to-

end survival prediction without requiring tumor masks, this also incurs difficulties in 

extracting region-specific information, such as the prognostic information in Primary 

Tumor (PT) and Metastatic Lymph Node (MLN) regions. To address this limitation, 

recent deep survival models adopted multi-task learning for joint tumor segmentation 

and survival prediction, to implicitly guide the model to extract features related to 

tumor regions [11, 16, 24-26]. However, most of them only considered PT segmenta-

tion and ignored the prognostic information in MLN regions [11, 24-26]. Meng et al. 

[16] performed survival prediction with joint PT-MLN segmentation and achieved 
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one of the top performances in HECKTOR 2022. However, this method extracted 

entangled features related to both PT and MLN regions, which incurs difficulties in 

discovering the prognostic information in PT-/MLN-only regions. 
In this study, we design an X-shape merging-diverging hybrid transformer network 

(named XSurv, Fig. 1) for survival prediction in H&N cancer. Our XSurv has a merg-

ing encoder to fuse complementary anatomical and metabolic information in PET and 

CT images and has a diverging decoder to extract region-specific prognostic infor-

mation in PT and MLN regions. Our technical contributions in XSurv are three folds: 

(i) We propose a merging-diverging learning framework for survival prediction. This 

framework is specialized in leveraging multi-modality images and extracting region-

specific information, which potentially could be applied to many survival prediction 

tasks with multi-modality imaging. (ii) We propose a Hybrid Parallel Cross-Attention 

(HPCA) block for multi-modality feature learning, where both local intra-modality 

and global inter-modality features are learned via parallel convolutional layers and 

cross-attention transformers. (iii) We propose a Region-specific Attention Gate 

(RAG) block for region-specific feature extraction, which screens out the features 

related to lesion regions. Extensive experiments on the public dataset of HECKTOR 

2022 [7] demonstrate that our XSurv outperforms state-of-the-art survival prediction 

methods, including the top-performing methods in HECKTOR 2022.  

 

2 Method 

Fig. 1 illustrates the overall architecture of our XSurv, which presents an X-shape 

architecture consisting of a merging encoder for multi-modality feature learning and a 

diverging decoder for region-specific feature extraction. The encoder includes two 

PET-/CT-specific feature learning branches with HPCA blocks (refer to Section 2.1), 

while the decoder includes two PT-/MLN-specific feature extraction branches with 

RAG blocks (refer to Section 2.2). Our XSurv performs joint survival prediction and 

segmentation, where the two decoder branches are trained to perform PT/MLN seg-

 

Fig. 1. The architecture of our XSurv. The architecture parameters !!"#$, !%&'(, and !!)"%% are 
set as 1, 1, and 3 for illustration. Survival prediction head is omitted here for clarity. 
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mentation and provide PT-/MLN-related deep features for survival prediction (refer to 

Section 2.3). Our XSurv also can be enhanced by leveraging the radiomics features 

extracted from the XSurv-segmented PT/MLN regions (refer to Section 2.4). Our 

implementation is provided at https://github.com/MungoMeng/Survival-XSurv. 

2.1 PET-CT Merging Encoder 

Assuming !!"#$ , !%&'( , and !!)"%%  are three architecture parameters, each encoder 

branch consists of !!"#$  Conv blocks, !%&'(  Hybrid Parallel Self-Attention (HPSA) 

blocks, and !!)"%%  HPCA blocks. Max pooling is applied between blocks and the 

features before max pooling are propagated to the decoder through skip connections. 

As shown in Fig. 2(a), HPCA blocks perform parallel convolution and cross-attention 

operations. The convolution operations are realized using successive convolutional 

layers with residual connections, while the cross-attention operations are realized 

using Swin Transformer [27] where the input "*# (from the same encoder branch) is 

projected as # and the input "!)"%% (from the other encoder branch) is projected as $ 

and %. In addition, Conv blocks perform the same convolution operations as HPCA 

blocks but discard cross-attention operations; HPSA blocks share the same overall 

architecture with HPCA blocks but perform self-attention within the input "*# (i.e., 

the "*# is projected as #, $ and %). Conv and HPSA blocks are used first and then 

followed by HPCA blocks, which enables the XSurv to learn both intra- and inter-

modality information. In this study, we set !!"#$, !%&'(, and !!)"%% as 1, 1, and 3, as 

this setting achieved the best validation results (refer to the supplementary materials). 

Other architecture details are also presented in the supplementary materials.  

The idea of adopting convolutions and transformers in parallel has been explored 

for segmentation [28], which suggests that parallelly aggregating global and local 

information is beneficial for feature learning. In this study, we extend this idea to 

multi-modality feature learning, which parallelly aggregates global inter-modality and 

local intra-modality information via HPCA blocks, to discover inter-modality interac-

tions while preserving intra-modality characteristics. 

 

 

Fig. 2. The detailed architecture of the proposed (a) Hybrid Parallel Cross-Attention (HPCA) 
block and (b) Region-specific Attention Gate (RAG) block. 
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2.2 PT-MLN Diverging Decoder 

As shown in Fig. 1, each decoder branch is symmetric to the encoder branch and thus 

includes a total of  (!!"#$+!%&'(+!!)"%%) Conv blocks. The features propagated from 

skip connections are fed into RAG blocks for feature diverging before entering the 

Conv blocks in two decoder branches, where the output of the former Conv block is 

upsampled and concatenated with the output of the RAG block. As shown in Fig. 

2(b), RAG blocks generate three softmax-activated spatial attention maps &+,, &-./, 

and &0 that correspond to PT, MLN, and background regions. These attention maps 

are computed based on the contextual information provided by the gating signals '+, 

and '-./  (which are the outputs of the former Conv blocks in the PT and MLN 

branches). The attention maps &+,  and &-./  are multiplied with the features "%1*2 

that are propagated from skip connections, which spatially diverge the features "%1*2 

into PT- and MLN-related features "+, and "-./. Different from the vanilla Attention 

Gate (AG) block [29], RAG blocks leverage the gating signals from two decoder 

branches and generate mutually exclusive (softmax-activated) attention maps. 

The output of the last Conv block in the PT/MLN branch is fed into a segmentation 

head, which generates PT/MLN segmentation masks using a sigmoid-activated 1×1×1 

convolutional layer. In addition, the outputs of all but not the first Conv blocks in the 

PT/MLN branches are fed into global averaging pooling layers to derive PT-/MLN-

related deep features. Finally, all deep features are fed into a survival prediction head, 

which maps the deep features into a survival score using two fully-connected layers 

with dropout, L2 regularization, and sigmoid activation. 

2.3 Multi-task Learning 

Following existing multi-task deep survival models [11, 16, 24-26], our XSurv is end-

to-end trained for survival prediction and PT-MLN segmentation using a combined 

loss: ℒ = ℒ34)$ + +(ℒ+, + ℒ-./), where the + is a parameter to balance the survival 

prediction term ℒ34)$ and the PT/MLN segmentation terms ℒ+,/-./. We follow [15] 

to adopt a negative log-likelihood loss [30] as the ℒ34)$. For the ℒ+,/-./, we adopt 

the sum of Dice [31] and Focal [32] losses. The loss functions are detailed in the sup-

plementary materials. The + is set as 1 in the experiments as default.  

2.4 Radiomics Enhancement 

Our XSurv also can be enhanced by leveraging radiomics features (denoted as Radio-

XSurv). Following [16], radiomics features are extracted from the XSurv-segmented 

PT/MLN regions via Pyradiomics [33] and selected by Least Absolute Shrinkage and 

Selection Operator (LASSO) regression. The process of radiomics feature extraction 

is provided in the supplementary materials. Then, a CoxPH model [9] is adopted to 

integrate the selected radiomics features and the XSurv-predicted survival score to 

make the final prediction. In addition, clinical indicators (e.g., age, gender) also can 

be integrated by the CoxPH model.  
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3 Experimental Setup 

3.1 Dataset and Preprocessing 

We adopted the training dataset of HECKTOR 2022 (refer to https://hecktor.grand-

challenge.org/), including 488 H&N cancer patients acquired from seven medical 

centers [7], while the testing dataset was excluded as its ground-truth labels are not 

released. Each patient underwent pretreatment PET/CT and has clinical indicators. 

We present the distributions of all clinical indicators in the supplementary materials. 

Recurrence-Free Survival (RFS), including time-to-event in days and censored-or-not 

status, was provided as ground truth for survival prediction, while PT and MLN anno-

tations were provided for segmentation. The patients from two centers (CHUM and 

CHUV) were used for testing and other patients for training, which split the data into 

386/102 patients in training/testing sets. We trained and validated models using 5-fold 

cross-validation within the training set and evaluated them in the testing set. 

We resampled PET-CT images into isotropic voxels where 1 voxel corresponds to 

1 mm3. Each image was cropped to 160×160×160 voxels with the tumor located in 

the center. PET images were standardized using Z-score normalization, while CT 

images were clipped to [−1024, 1024] and then mapped to [−1, 1]. In addition, we 

performed univariate and multivariate Cox analyses on the clinical indicators to 

screen out the prognostic indicators with significant relevance to RFS (P<0.05). 

3.2 Implementation Details 

We implemented our XSurv using PyTorch on a 12GB GeForce GTX Titan X GPU. 

Our XSurv was trained for 12,000 iterations using an Adam optimizer with a batch 

size of 2. Each training batch included the same number of censored and uncensored 

samples. The learning rate was set as 1e-4 initially and then reset to 5e−5 and 1e−5 at 

the 4,000th and 8,000th training iteration. Data augmentation was applied in real-time 

during training to minimize overfitting, including random affine transformations and 

random cropping to 112×112×112 voxels. Validation was performed after every 200 

training iterations and the model achieving the highest validation result was pre-

served. In our experiments, one training iteration (including data augmentation) took 

roughly 4.2 second, and one inference iteration took roughly 0.61 second.  

3.3 Experimental Settings 

We compared our XSurv to six state-of-the-art survival prediction methods, including 

two traditional radiomics-based methods and four deep survival models. The included 

traditional methods are CoxPH [9] and Individual Coefficient Approximation for Risk 

Estimation (ICARE) [34]. For traditional methods, radiomics features were extracted 

from the provided ground-truth tumor regions and selected by LASSO regression. 

The included deep survival models are Deep Multi-Task Logistic Regression and 

CoxPH ensemble (DeepMTLR-CoxPH) [14], Transformer-based Multimodal net-
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works for Segmentation and Survival prediction (TMSS) [11], Deep Multi-task Sur-

vival model (DeepMTS) [24], and Radiomics-enhanced DeepMTS (Radio-DeepMTS) 

[16]. DeepMTLR-CoxPH, ICARE, and Radio-DeepMTS achieved top performance in 

HECKTOR 2021 and 2022. For a fair comparison, all methods took the same prepro-

cessed images and clinical indicators as inputs. Survival prediction and segmentation 

were evaluated using Concordance index (C-index) and Dice Similarity Coefficient 

(DSC), which are the standard evaluation metrics in the challenges [6, 7, 35].  
We also performed two ablation studies on the encoder and decoder separately: (i) 

We replaced HPCA/HPSA blocks with Conv blocks and compared different strategies 

to combine PET-CT images. (ii) We removed RAG blocks and compared different 

strategies to extract PT/MLN-related information.  

 

4 Results and Discussion 

The comparison between our XSurv and the state-of-the-art methods is presented in 

Table 1. Our XSurv achieved a higher C-index than all compared methods, which 

demonstrates that our XSurv has achieved state-of-the-art performance in survival 

prediction of H&N cancer. When radiomics enhancement was adopted in XSurv and 

DeepMTS, our Radio-XSurv also outperformed the Radio-DeepMTS and achieved 

the highest C-index. Moreover, the segmentation results of multi-task deep survival 

models (TMSS, DeepMTS, and XSurv) are also reported in Table 1. Our XSurv 

achieved higher DSCs than TMSS and DeepMTS, which demonstrates that our XSurv 

can locate PT and MLN more precisely and this infers that our XSurv has better learn-

ing capability. We attribute these performance improvements to the use of our pro-

posed merging-diverging learning framework, HPCA block, and RAG block, which 

can be evidenced by ablation studies. 

The ablation study on the PET-CT merging encoder is shown in Table 2. We found 

that using PET alone resulted in a higher C-index than using both PET-CT with early 

or late fusion. This finding is consistent with Wang et al. [19]’s study, which suggests 

that early and late fusion cannot effectively leverage the complementary information 

in PET-CT images. As we have mentioned, early and late fusion have difficulties in 

extracting intra- and inter-modality information, respectively. Our encoder first adopts 

Table 1. Comparison between XSurv and state-of-the-art survival prediction methods. 

Methods Survival prediction 
(C-index) 

 PT segmentation 
(DSC) 

MLN segmentation 
(DSC) 

CoxPH [9] Radiomics 0.745±0.024* / / 
ICARE [34] Radiomics 0.765±0.019* / / 

DeepMTLR-CoxPH [14] CNN 0.748±0.025* / / 
TMSS [11] ViT+CNN 0.761±0.028* 0.784±0.015* 0.724±0.018* 

DeepMTS [24] CNN 0.757±0.022* 0.754±0.010* 0.715±0.013* 
XSurv (Ours) Hybrid 0.782±0.018 0.800±0.006 0.754±0.008 

Radio-DeepMTS [16] CNN+Radiomics 0.776±0.018‡ 0.754±0.010‡ 0.715±0.013‡ 
Radio-XSurv (Ours) Hybrid+Radiomics 0.798±0.015 0.800±0.006 0.754±0.008 

Bold: the best result in each column is in bold. ±: standard deviation. 
*: "<0.05, in comparison to XSurv. ‡: "<0.05, in comparison to Radio-XSurv. 
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Conv/HPSA blocks to extract intra-modality information and then leverages HPCA 

blocks to discover their interactions, which achieved the highest C-index. For PT and 

MLN segmentation, our encoder also achieved the highest DSCs, which indicates that 

our encoder also can improve segmentation. In addition, MNAF blocks [22] were 

compared and showed poor performance. This is likely attributed to the fact that lev-

eraging non-local attention at multiple scales has corrupted local spatial information, 

which degraded the segmentation performance and distracted the model from PT and 

MLN regions. To relieve this problem, in Tang et al.’s study [22], tumor segmentation 

masks were fed into the model as explicit guidance to tumor regions. However, it is 

intractable to have segmentation masks at the inference stage in clinical practice. 

The ablation study on the PT-MLN diverging decoder is shown in Table 3. We 

found that, even without adopting AG, using a dual-branch decoder for PT and MLN 

segmentation resulted in a higher C-index than using a single-branch decoder, which 

demonstrates the effectiveness of our diverging decoder design. Adopting vanilla AG 

[29] or RAG in the dual-branch decoder further improved survival prediction. Com-

pared to the vanilla AG, our RAG contributed to a larger improvement, and this ena-

bled our decoder to achieve the highest C-index. In the supplementary materials, we 

visualized the attention maps produced by RAG blocks, where the attention maps can 

precisely locate PT/MLN regions and screen out PT-/MLN-related features. For PT 

and MLN segmentation, using a single-branch decoder for PT- or MLN-only segmen-

tation achieved the highest DSCs. This is expected as the model can leverage all its 

capabilities to segment only one target. Nevertheless, our decoder still achieved the 

second-best DSCs in both PT and MLN segmentation with a small gap.  

 

 

Table 2. Ablation study on the PET-CT merging encoder. 

Methods Survival prediction 
(C-index) 

 PT segmentation 
(DSC) 

MLN segmentation 
(DSC) 

SBE with 
!!=[16, 32, 64, 

128, 256] 

Only PET 0.767 0.753 0.699 
Only CT 0.637 0.630 0.702 

Early fusion 0.755 0.783 0.722 
DBE with 

!!=[8, 16, 32, 64, 
128] 

Late fusion 0.762 0.796 0.744 
MNAF [22] 0.688 0.741 0.683 

Ours 0.782 0.800 0.754 
Bold: the best result in each column is in bold. SBE: single-branch encoder. DBE: dual-branch 
encoder. #&: the channel numbers or embedding dimensions used in the encoder. 

Table 3. Ablation study on the PT-MLN diverging decoder. 

Methods Survival prediction 
(C-index) 

 PT segmentation 
(DSC) 

MLN segmentation 
(DSC) 

SBD with 
!"=[256, 128, 64, 

32, 16] 

Only PT 0.751 0.803 / 
Only MLN 0.746 / 0.758 

PT and MLN 0.765 0.790 0.734 
DBD with 

!"=[128, 64, 32, 
16, 8] 

No AG 0.770 0.792 0.740 
Vanilla AG [29] 0.774 0.795 0.745 

Ours 0.782 0.800 0.754 
Bold: the best result in each column is in bold. SBD: single-branch decoder. DBD: dual-branch 
decoder. #*: the channel numbers used in the decoder. 
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5 Conclusion 

We have outlined an X-shape merging-diverging hybrid transformer network (XSurv) 

for survival prediction from PET-CT images in H&N cancer. Within the XSurv, we 

propose a merging-diverging learning framework, a Hybrid Parallel Cross-Attention 

(HPCA) block, and a Region-specific Attention Gate (RAG) block, to learn comple-

mentary information from multi-modality images and extract region-specific prognos-

tic information for survival prediction. Extensive experiments have shown that the 

proposed framework and blocks enable our XSurv to outperform state-of-the-art sur-

vival prediction methods on the well-benchmarked HECKTOR 2022 dataset. 
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Supplementary Materials for “Merging-Diverging Hybrid Transformer 
Networks for Survival Prediction in Head and Neck Cancer” 

A. Loss Function Details 

The survival prediction loss term ℒ!"#$ is a negative log-likelihood function: 

ℒ!"#$ 	= −∑ log)max)1 + 𝑆%)𝑆%
&#'( − 10, 𝜀00)

%*+ + log)max)1 − 𝑆%̅𝑆%
&#'( , 𝜀00,                 (1) 

where 𝑆&#'(, 𝑆, 𝑆̅ ∈ ℝ).  The 𝑆&#'( is the output of the survival prediction head, which represent the condi-
tional probabilities of patient surviving in 𝑁 time intervals. In this study, we set 𝑁 = 10, where the RFS of 
all training samples are evenly distributed in 10 intervals. 𝑆 and 𝑆̅ are two label vectors generated from RFS 
labels (time-to-event in days and censored-or-not status): For 𝑆, all the time intervals preceding the events 
are set to 1 while other are 0; For 𝑆̅, the time interval with event occurring (for uncensored patients only) is 
set to 1 while other are 0. With the predicted 𝑆&#'(, the estimated RFS can be calculated with: 

𝑅𝐹𝑆&#'( 	= ∑ (∏ 𝑆%
&#'(,

%*+ ) × 𝑇,)
,*+ ,                                                     (2) 

where 𝑇 ∈ ℝ) is the durations of 𝑁 time intervals. The 𝑅𝐹𝑆&#'( was regarded as the survival score and was 
used to calculate the C-index during evaluation. 

For the segmentation loss terms ℒ-. and ℒ/0), we sum the Dice loss and Focal loss: 

ℒ-.//0/ = ℒ2%3' + ℒ45367,                                                              (3) 

ℒ2%3' =
8∑ &!:!

"
!

∑ &!#"
! ;∑ :!#"

!
,                                                                   (4) 

ℒ45367 = −∑ 𝛼𝑔%(1 − 𝑝%)< log(𝑝%) − (1 − 𝑔%)𝑝%<log	(1 − 𝑝%))
% ,                              (5) 

where 𝑁 is the sample size, 𝑝 is the output of the segmentation head, 𝑝 is the ground-truth segmentation 
labels. In the ℒ45367, 𝛼 is a parameter for the trade-off between precision and recall (set to 0.25 as default), 
and 𝛾 is a focusing parameter (set to 2 as default). 

B. Radiomics Feature Extraction 

For radiomics enhancement, radiomics features are extracted from the XSurv-predicted PT/MLN regions of 
PET/CT images. The predicted PT and MLN masks are merged into a single mask (1 for PT/MLN and oth-
erwise 0) for feature extraction. The extracted features include the features from First Order Statistics (FOS), 
Neighboring Grey Tone Difference Matrix (NGTDM), Grey-Level Run Length Matrix (GLRLM), Grey-
Level Size Zone Matrix (GLSZM), Grey-Level Cooccurrence Matrix (GLCM), and 3D shape-based fea-
tures. In addition to the original PET/CT, eight wavelet decompositions of PET/CT are also used, resulting 
in a total of 1689 radiomics features. All radiomics features are standardized using Z-score normalization. 

C. Visualization of Attention Maps 

 

 

Fig. S1. Visualization of the attention maps 𝛼!" and 𝛼#$% produced in the diverging decoder. PET-CT images are 
presented with PT (red) and MLN (blue) ground-truth annotations. 



D. Architecture Details 

 

E. Selection of Architecture Parameters 

  

F. Clinical Characteristics 

 

Table S1. Architecture details of the XSurv used in the experiments. 

𝐶!  𝐶" 𝑛#$%& 𝑛'()%* Head numbers Window size 
[8, 16, 32, 64, 128]  [128, 64, 32, 16, 8] [2, 3, 3, 4, 4] [0, 2, 2, 2, 2] [0, 2, 4, 8, 16] [5, 5, 5] 
𝐶&: the channel numbers/embedding dimensions used in the encoder. 𝐶': the channel numbers used in the decoder. 
𝑛()*+	: The number of convolution operations. 𝑛,-.*/: The number of Swin Transformer blocks. 

Table S2. Cross-validation results of the XSurv with different architecture parameters settings. 

𝑁#$%& 𝑁*!+, 𝑁#($** 
Survival prediction 

(C-index) 
 PT segmentation 

(DSC) 
MLN segmentation 

(DSC) 
5 0 0 0.720 0.795 0.739 
2 3 0 0.722 0.796 0.743 
1 4 0 0.728 0.800 0.745 
2 0 3 0.730 0.798 0.748 
1 0 4 0.711 0.794 0.735 
1 1 3 0.737 0.802 0.753 

Bold: the best result in each column is in bold.  

Table S3. Clinical characteristics of patients in the training and testing sets. 

Characteristics Training set Testing set 
    Number of Patients 386 102 
    RFS, Number (%)   
         Uncensored 81 (21.0) 15 (14.7) 
         Censored 305 (79.0) 87 (85.3) 
    Age (year), median (range) 60 (32-85) 64 (44-90) 
    Weight (kg), median (range) 81.5 (41-160) 74 (34-120) 
    Gender, Number (%)   
         Male 322 (83.4) 80 (78.4) 
         Female 64 (16.6) 22 (21.6) 
    Alcohol consumption, Number (%)   
         Yes 95 (24.6) 0 (0.0) 
         No 59 (15.3) 0 (0.0) 
         Unknown 232 (60.1) 102 (100.0) 
    Tobacco consumption, Number (%)   
         Yes 85 (22.0) 0 (0.0) 
         No 105 (27.2) 0 (0.0) 
         Unknown 196 (50.8) 102 (100.0) 
     HPV status, Number (%)   
         Positive 252 (65.3) 22 (21.6) 
         Negative 41 (10.6) 2 (2.0) 
         Unknown 93 (24.1) 78 (76.4) 
     Performance status, Number (%)   
         0 86 (22.3) 0 (0.0) 
         1 114 (29.5) 0 (0.0) 
         2 11 (2.8) 0 (0.0) 
         3 3 (0.8) 0 (0.0) 
         4 1 (0.3) 0 (0.0) 
         Unknown 171 (44.3) 102 (100.0) 
     Surgery, Number (%)   
         Yes 50 (13.0) 0 (0.0) 
         No 202 (52.3) 46 (45.1) 
         Unknown 134 (34.7) 56 (54.9) 
     Chemotherapy, Number (%)   
         Yes 324 (83.9) 98 (96.1) 
         No 62 (16.1) 4 (3.9) 

  


