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Abstract. Automatic examination of thin-prep cytologic test (TCT)
slides can assist pathologists in finding cervical abnormality for accurate
and efficient cancer screening. Current solutions mostly need to localize
suspicious cells and classify abnormality based on local patches, con-
cerning the fact that whole slide images of TCT are extremely large. It
thus requires many annotations of normal and abnormal cervical cells, to
supervise the training of the patch-level classifier for promising perfor-
mance. In this paper, we propose CellGAN to synthesize cytopatholog-
ical images of various cervical cell types for augmenting patch-level cell
classification. Built upon a lightweight backbone, CellGAN is equipped
with a non-linear class mapping network to effectively incorporate cell
type information into image generation. We also propose the Skip-layer
Global Context module to model the complex spatial relationship of the
cells, and attain high fidelity of the synthesized images through adver-
sarial learning. Our experiments demonstrate that CellGAN can produce
visually plausible TCT cytopathological images for different cell types.
We also validate the effectiveness of using CellGAN to greatly augment
patch-level cell classification performance. Our code and model check-
point are available at https://github.com/ZhenrongShen/CellGAN.

Keywords: Conditional Image Synthesis · Generative Adversarial Net-
work · Cytopathological Image Classification · Data Augmentation.

1 Introduction

Cervical cancer accounts for 6.6% of the total cancer deaths in females world-
wide, making it a global threat to healthcare [6]. Early cytology screening is
highly effective for the prevention and timely treatment of cervical cancer [23].
Nowadays, thin-prep cytologic test (TCT) [1] is widely used to screen cervical
cancers according to the Bethesda system (TBS) rules [21]. Typically there are
five types of cervical squamous cells under TCT examinations [5], including nor-
mal class or negative for intraepithelial malignancy (NILM), atypical squamous
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cells of undetermined significance (ASC-US), low-grade squamous intraepithelial
lesion (LSIL), atypical squamous cells that cannot exclude HSIL (ASC-H), and
high-grade squamous intraepithelial lesion (HSIL). The NILM cells have no cyto-
logical abnormalities while the others are manifestations of cervical abnormality
to a different extent. By observing cellular features (e.g., nucleus-cytoplasm ra-
tio) and judging cell types, pathologists can provide a diagnosis that is critical
to the clinical management of cervical abnormality.

After scanning whole-slide images (WSIs) from TCT samples, automatic
TCT screening is highly desired due to the large population versus the limited
number of pathologists. As the WSI data per sample has a huge size, the idea of
identifying abnormal cells in a hierarchical manner has been proposed and inves-
tigated by several studies using deep learning [27,31,3]. In general, these solutions
start with the extraction of suspicious cell patches and then conduct patch-level
classification. The promising performance of cell classification at the patch level
is critical, which contributes to sample-level diagnosis after integrating outcomes
from many patches in a WSI. However, such a patch-level classification task re-
quires a large number of annotated training data. And the efforts in collecting
reliably annotated data can hardly be negligible, which requires high expertise
due to the intrinsic difficulty of visually reading WSIs.

To alleviate the shortage of sufficient data to supervise classification, one
may adopt traditional data augmentation techniques, which yet may bring little
improvement due to scarcely expanded data diversity [26]. Thus, synthesizing
cytopathological images for cervical cells is highly desired to effectively augment
training data. Existing literature on pathological image synthesis has explored
the generation of histopathological images [10,28]. In cytopathological images,
on the contrary, cervical cells can be spatially isolated from each other, or are
highly squeezed and even overlapped. The spatial relationship of individual cells
is complex, adding diversity to the image appearance of color, morphology, tex-
ture, etc. In addition, the differences between cell types are mainly related to
nuanced cellular attributes, thus requiring fine granularity in modulating syn-
thesized images toward the expected cell types. Therefore, the task to synthesize
realistic cytopathological images becomes very challenging.

Aiming at augmenting the performance of cervical abnormality screening, we
develop a novel conditional generative adversarial network in this paper, namely
CellGAN, to synthesize cytopathological images for various cell types. We lever-
age FastGAN [16] as the backbone for the sake of training stability and compu-
tational efficiency. To inject cell type for fine-grained conditioning, a non-linear
mapping network embeds the class labels to perform layer-wise feature modu-
lation in the generator. Meanwhile, we introduce the Skip-layer Global Context
(SGC) module to capture the long-range dependency of cells for precisely mod-
eling their spatial relationship. We adopt an adversarial learning scheme, where
the discriminator is modified in a projection-based way [20] for matching condi-
tional data distribution. To the best of our knowledge, our proposed CellGAN is
the first generative model with the capability to synthesize realistic cytopatho-
logical images for various cervical cell types. The experimental results validate
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Fig. 1. Overall architecture of the proposed CellGAN. The numbers in the center and
the bottom right corner of each square indicate the feature map size and the channel
number, respectively.

the visual plausibility of CellGAN synthesized images, as well as demonstrate
their data augmentation effectiveness on patch-level cell classification.

2 Method

The dilemma of medical image synthesis lies in the conflict between the lim-
ited availability of medical image data and the high demand for data amount
to train reliable generative models. To ensure the synthesized image quality
given relatively limited training samples, the proposed CellGAN is built upon
FastGAN [16] towards stabilized and fast training for few-shot image synthesis.
By working in a class-conditional manner, CellGAN can explicitly control the
cervical squamous cell types in the synthesized cytopathological images, which
is critical to augment the downstream classification task. The overall architec-
ture of CellGAN is presented in Fig. 2, and more detailed structures of the key
components are displayed in Supplementary Materials.

2.1 Architecture of the Generator

The generator of CellGAN has two input vectors. The first input of the class
label y, which adopts one-hot encoding, provides class-conditional information to
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indicate the expected cervical cell type in the synthesized image Isyn. The second
input of the 128-dimensional latent vector z represents the remaining image
information, from which Isyn is gradually expanded. We stack six UpBlocks to
form the main branch of the generator.

To inject cell class label y into each UpBlock, we follow a similar design to
StyleGAN [13]. Specifically, the class label y is first projected to a class embed-
ding c via a non-linear mapping network, which is implemented using four groups
of fully connected layers and LeakyReLU activations. We set the dimensions of
class embedding c to the same as the latent vector z. Then, we pass c through
learnable affine transformations, such that the class embedding is specialized
to the scaling and bias parameters controlling Adaptive Instance Normalization
(AdaIN) [13] in each UpBlock. The motivation for the design above comes from
our hypothesis that the class-conditional information mainly encodes cellular at-
tributes related to cell types, rather than common image appearance. Therefore,
by modulating the feature maps at multiple scales, the input class label can
better control the generation of cellular attributes.

We further introduce the Skip-layer Global Context (SGC) module into the
generator (see Fig.2 in Supplementary Materials), to better handle the diver-
sity of the spatial relationship of the cells. Our SGC module reformulates the
idea of GCNet [4] with the design of SLE module from FastGAN [16]. It first
performs global context modeling on the low-resolution feature maps, then trans-
forms global context to capture channel-wise dependency, and finally merges the
transformed features into high-resolution feature maps. In this way, the proposed
SGC module learns a global understanding of the cell-to-cell spatial relationship
and injects it into image generation via computationally efficient modeling of
long-range dependency.

2.2 Discriminator and Adversarial Training

In an adversarial training setting, the discriminator forces the generator to faith-
fully match the conditional data distribution of real cervical cytopathological
images, thus prompting the generator to produce visually and semantically re-
alistic images. For training stability, the discriminator is trained as a feature
encoder with two extra decoders. In particular, five ResNet-like [7] DownBlocks
are employed to convert the input image into an 8× 8× 512 feature map. Two
simple decoders reconstruct downscaled and randomly cropped versions of input
images I ′crop and I ′resize from 82 and 162 feature maps, respectively. These de-
coders are optimized together with the discriminator by using a reconstruction
loss Lrecon that is represented below:

Lrecon = Ef∼Dis(x),x∼Ireal

[
∥Dec(f)− T (x)∥ℓ1

]
, (1)

where T denotes the image processing (i.e., 1
2 downsampling and 1

4 random crop-
ping) on real image Ireal, f is the processed intermediate feature map from the
discriminator Dis, and Dec stands for the reconstruction decoder. This simple
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self-supervised technique provides a strong regularization in forcing the discrim-
inator to extract a good image representation.

To provide more detailed feedback from the discriminator, PatchGAN [12]
architecture is adopted to output an 8×8 logit map by using a 1×1 convolution
on the last feature map. By penalizing image content at the scale of patches, the
color fidelity of synthesized images is guaranteed as illustrated in our ablation
study (see Fig. 3). To align the class-conditional fake and real data distributions
in the adversarial setting, the discriminator directly incorporates class labels
as additional inputs in the manner of projection discriminator [20]. The class
label is projected to a learned 512-dimensional class embedding and takes inner-
product at every spatial position of the 8× 8× 512 feature map. The resulting
8×8 feature map is then added to the aforementioned 8×8 logit map, composing
the final output of the discriminator.

For the objective function, we use the hinge version [15] of the standard
adversarial loss Ladv. We also employ R1 regularization Lreg [17] as a slight
gradient penalty for the discriminator. Combining all the loss functions above,
the total objective Ltotal to train the proposed CellGAN in an adversarial manner
can be expressed as:

Ltotal = Ladv + Lrecon + λregLreg, (2)

where λreg is empirically set to 0.01 in our experiments.

3 Experimental Results

3.1 Dataset and Experimental Setup

Dataset In this study, we collect 14,477 images with 256×256 pixels from three
collaborative clinical centers. All the images are manually inspected to contain
different cervical squamous cell types. In total, there are 7,662 NILM, 2,275
ASC-US, 2,480 LSIL, 1,638 ASC-H, and 422 HSIL images. All the 256 × 256
images with their class labels are selected as the training data.

Implementation Details We use the learning rate of 2.5× 10−4, batch size of
64, and Adam optimizer [14] to train both the generator and the discriminator
for 100k iterations. Spectral normalization [19], differentiable augmentation [30]
and exponential-moving-average optimization [29] are included in the training
process. Fréchet Inception Distance (FID) [8] is used to measure the overall
semantic realism of the synthesized images. All the experiments are conducted
using an NVIDIA GeForce RTX 3090 GPU with PyTorch [22].

3.2 Evaluation of Image Synthesis Quality

We compare CellGAN with the state-of-the-art generative models for class-
conditional image synthesis, i.e., BigGAN [2] from cGANs [18] and Latent Dif-
fusion Model (LDM) [25] from diffusion models [9]. As shown in Fig. 2, BigGAN
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Fig. 2. Qualitative comparison between state-of-the-art generative models and the
proposed CellGAN. Different rows stand for different cervical squamous cell types.

Table 1. Quantitative comparison between state-of-the-art generative models and the
proposed CellGAN (↓: Lower is better).

Method FID↓
NILM ASC-US LSIL ASC-H HSIL Mean

BigGAN 29.5076 37.9543 35.5058 48.0228 85.6230 47.3227
LDM 53.4307 56.1689 49.0969 59.6406 84.9522 60.6579

CellGAN(Ours) 26.0135 33.5718 33.3401 46.2965 68.3458 41.5136

cannot generate individual cells with clearly defined cell boundaries. And it also
fails to capture the morphological features of HSIL cells that are relatively lim-
ited in training data quantity. LDM only yields half-baked cell structures since
the generated cells are mixed, and there exists negligible class separability among
abnormal cell types. On the contrary, our proposed CellGAN is able to synthe-
size visually plausible cervical cells and accurately model distinguishable cellular
features for each cell type. The quantitative comparison by FID in Table 1 also
demonstrates the superiority of CellGAN in synthesized image quality.

To verify the effects of key components in the proposed CellGAN, we conduct
an ablation study on four model settings in Table 2 and Fig. 3. We denote the
models in Fig. 3 from left to right as Model i, Model ii, Model iii, and CellGAN.
The visual results of Model i suffer from severe color distortions while the other
models do not, indicating that the PatchGAN-based discriminator can guarantee
color fidelity by patch-level image content penalty. The abnormal cells generated
by Model i and Model ii tend to have highly similar cellular features. In contrast,
Model iii and CellGAN can accurately capture the morphological characteristics
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Fig. 3. Generated images from ablation study of the following key components: (a)
PatchGAN architecture, (b) class mapping network, (c) SGC module.

Table 2. Quantitative ablation study of the following key component: (a) PatchGAN
architecture, (b) class mapping network, (c) SGC module. (↓: Lower is better).

Model Setting FID↓
(a) (b) (c) NILM ASC-US LSIL ASC-H HSIL Mean
- - - 39.7048 45.9424 42.2336 58.3448 84.0265 54.0504√

- - 42.7974 36.1800 38.1507 52.0282 74.4304 48.7173√ √
- 31.1720 38.1468 39.5540 47.2584 68.6068 44.9476√ √ √

26.0135 33.5718 33.3401 46.2965 68.3458 41.5136

of different cell types. This phenomenon suggests that the implementation of the
class mapping network facilitates more distinguishable feature representations
for different cell types. By comparing the synthesized images from Model iii
with CellGAN, it is observed that adopting SGC modules can yield more clear
cell boundaries, which demonstrates the capability of SGC module in modeling
complicated cell-to-cell relationships in image space. The quantitative results
further state the effects of the components above.

3.3 Evaluation of Augmentation Effectiveness

To validate the data augmentation capacity of the proposed CellGAN, we con-
duct 5-fold cross-validations on the cell classification performances of two classi-
fiers (ResNet-34 [7] and DenseNet-121 [11]) using four training data settings for
comparison: (1) real data only (the baseline); (2) baseline + BigGAN synthe-
sized images; (3) baseline + LDM synthesized images; (4) baseline + CellGAN
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Table 3. Data augmentation comparison between the proposed CellGAN and other
synthesis-based methods (↑: Higher is better).

Classifier Method Accuracy↑ Precision↑ Recall↑ F1-Score↑

ResNet

baseline 74.30±1.69 68.00±1.79 70.94±2.28 68.88±1.78

+ BigGAN 76.30±2.80 72.96±2.58 75.11±2.20 73.89±2.44

+ LDM 75.80±1.12 71.14±0.72 73.89±1.36 72.29±0.91

+ CellGAN 79.55±1.20 74.88±1.60 75.42±1.74 74.70±1.79

DenseNet

baseline 72.10±0.66 65.23±1.17 68.28±1.26 66.33±1.25

+ BigGAN 75.40±1.73 68.47±1.78 70.13±1.21 68.94±1.97

+ LDM 74.95±1.94 68.03±2.11 69.32±1.65 68.55±2.37

+ CellGAN 76.15±1.38 70.37±1.52 72.42±1.95 70.99±1.75

synthesized images. For each cell type, we randomly select 400 real images and
divide them into 5 groups. In each fold, one group is selected as the testing data
while the other four are used for training. For different data settings, we synthe-
size 2,000 images for each cell type using the corresponding generative method,
and add them to the training data of each fold. We use the learning rate of
1.0 × 10−4, batch size of 64, and SGD optimizer [24] to train all the classifiers
for 30 epochs. Random flip is applied to all data settings since it is reasonable
to use traditional data augmentation techniques simultaneously in practice.

The experimental accuracy, precision, recall, and F1 score are listed in Ta-
ble 3. It is shown that both the classifiers achieve the best scores in all metrics
using the additional synthesized data from CellGAN. Compared with the base-
lines, the accuracy values of ResNet-34 and DenseNet-121 are improved by 5.25%
and 4.05%, respectively. Meanwhile, the scores of other metrics are all improved
by more than 4%, indicating that our synthesized data can significantly enhance
the overall classification performance. Thanks to the visually plausible and se-
mantically realistic synthesized data, CellGAN is conducive to the improvement
of cell classification, thus serving as an efficient tool for augmenting automatic
abnormal cervical cell screening.

4 Conclusion and Discussion

In this paper, we propose CellGAN for class-conditional cytopathological image
synthesis of different cervical cell types. Built upon FastGAN for training sta-
bility and computational efficiency, incorporating class-conditional information
of cell types via non-linear mapping can better represent distinguishable cellular
features. The proposed SGC module provides the global contexts of cell spatial
relationships by capturing long-range dependencies. We have also found that the
PatchGAN-based discriminator can prevent potential color distortion. Qualita-
tive and quantitative experiments validate the semantic realism as well as the
data augmentation effectiveness of the synthesized images from CellGAN.

Meanwhile, our current CellGAN still has several limitations. First, we can-
not explicitly control the detailed attributes of the synthesized cell type, e.g.,
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nucleus size, and nucleus-cytoplasm ratio. Second, in this paper, the synthesized
image size is limited to 256×256. It is worth conducting more studies for expand-
ing synthesized image size to contain much more cells, such that the potential
applications can be extended to other clinical scenes (e.g., interactively training
pathologists) in the future.
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Fig. 1. (a) UpBlock in the generator, where ys and yb stand for the scaling and bias
parameters of AdaIN, respectively. (b) DownBlock in the discriminator. (c) Recon-
struction Decoder in the discriminator for self-supervised regularization.

Fig. 2. Skip-layer Global Context (SGC) Module in the generator.
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