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Abstract. Forensic pathology is critical in analyzing death manner and
time from the microscopic aspect to assist in the establishment of reli-
able factual bases for criminal investigation. In practice, even the man-
ual differentiation between different postmortem organ tissues is chal-
lenging and relies on expertise, considering that changes like putrefac-
tion and autolysis could significantly change typical histopathological
appearance. Developing AI-based computational pathology techniques
to assist forensic pathologists is practically meaningful, which requires
reliable discriminative representation learning to capture tissues’ fine-
grained postmortem patterns. To this end, we propose a framework called
FPath, in which a dedicated self-supervised contrastive learning strategy
and a context-aware multiple-instance learning (MIL) block are designed
to learn discriminative representations from postmortem histopatholog-
ical images acquired at varying magnification scales. Our self-supervised
learning step leverages multiple complementary contrastive losses and
regularization terms to train a double-tier backbone for fine-grained and
informative patch/instance embedding. Thereafter, the context-aware
MIL adaptively distills from the local instances a holistic bag/image-
level representation for the recognition task. On a large-scale database of
19, 607 experimental rat postmortem images and 3, 378 real-world human
decedent images, our FPath led to state-of-the-art accuracy and promis-
ing cross-domain generalization in recognizing seven different postmortem
tissues. The source code will be released on https://github.com/ladderlab-
xjtu/forensic_pathology.
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1 Introduction

Computational pathology powered by artificial intelligence (AI) shows promising
applications in various clinical studies [18,14], significantly easing the workload
and promoting the development of clinical pathology. Inspired by such exciting
progress, let’s think step by step, so why not leverage advanced AI techniques to
boost the research and applications in another important discipline, i.e., foren-
sic pathology? Forensic pathology focuses on investigating the cause, manner,
and time of (non-natural) deaths based on histopathological examinations of
postmortem organ tissues [5]. As an indispensable part of the medicolegal au-
topsy, it provides critical evidence from the microscopic aspect to confirm, per-
fect, or refute macroscopic findings, establishing a reliable factual basis for fu-
ture inferences [4]. Histopathological analysis in forensic pathology is challenging
and time-consuming, since postmortem changes (e.g., putrefaction and autoly-
sis) severely destroy tissues’ typical image appearance, even making the manual
differentiation between the tissues of different organs very difficult.

Although diverse deep-learning approaches have been proposed in clinical
studies to process and analyze histopathological images [18,14], no similar work
has yet in the forensic pathology community. The main reason could be three-
fold. 1) Forensic and clinical pathology have distinct purposes. The former case
analyzes the tissue images from multiple organs concurrently. In contrast, clin-
ical diagnosis/prognosis usually focuses on one tissue type in one task [6]. 2)
Due to postmortem changes, histopathological images in forensic pathology have
atypical appearances and more complex distributions than in clinical pathology,
bringing additional challenges to deep representation learning [21,25]. 3) Data
in forensic pathology are more difficult to obtain and have relatively lower qual-
ity. Therefore, to deploy a reliable computational pathology system for forensic
investigation, fine-grained discriminative representation learning from complex
postmortem histopathological images is a very precondition.

In this paper, we introduce a deep computational pathology framework (dubbed
as FPath) for forensic histopathological analysis. As shown in Fig. 1, FPath
leverages the idea of self-supervised contrastive learning and multiple instance
learning (MIL) to learn discriminative histopathological representations. Specifi-
cally, we propose a self-supervised contrastive learning strategy to learn a double-
tier backbone network for fine-grained feature embedding of local image patches
(i.e., instances in MIL). After that, a context-aware MIL block is designed, which
adopts a self-attention mechanism to refine instance-level representations by ag-
gregating contextual information, and then applies an adaptive-pooling opera-
tion to produce a holistic image-level representation for prediction. Our FPath
performs efficient predictions without the need for tedious pre-processing (e.g.,
foreground extraction/segmentation). To the best of our knowledge, this paper
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Fig. 1: Our FPath that consists of a self-supervised double-tier backbone (Step
1) and a context-aware MIL branch for postmortem recognition (Step 2).

is the first attempt that shows promising applications of advanced AI techniques
(e.g., self-supervised contrastive learning) to forensic pathology.

The main technical contributions of our work are:

1) We design a double-tier backbone and a dedicated self-supervised learning
strategy to capture discriminative instance-level histopathological patterns
of postmortem organ tissues. The double-tier backbone combines CNN and
transformer for local and non-local information fusion. To effectively train
such a backbone to handle images acquired with varying microscopic mag-
nifications, the dedicated self-supervised learning strategy leverages multi-
ple complementary contrastive losses and regularization terms to concur-
rently maximize global and spatially fine-grained similarities between dif-
ferent views of the same instances/patches in an informative representation
space.

2) We design a context-aware MIL branch to produce the bag-level discrimina-
tive representations for accurate and efficient postmortem histopathological
recognition. Our MIL branch first refines instance embedding by leveraging
a self-attention mechanism integrating positional embedding to model cross-
patch associations for contextual information enhancement. Thereafter, an
adaptive pooling operation is designed to learn deformable spatial attention
to distill from contextually enhanced patch-level representations a holistic
image-level representation for recognition.

3) Our FPath was applied to recognize postmortem organ tissues, a funda-
mental task in forensic pathology. To this end, we established a relatively
large-scale multi-domain database consisting of an experimental rat post-
mortem dataset and a real-world human decedent dataset, each with 19, 607
and 3, 378 images acquired at a specific microscopic magnification (e.g., 5×,
10×, 20×, and 40×), respectively. On such a multi-domain database, our
FPath led to promising cross-domain generalization and state-of-the-art ac-
curacy in recognizing seven different postmortem organs.
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2 Method
The schematic diagram of our FPath is shown in Fig. 1, which consists of two
steps: 1) Self-supervised contrastive learning of a double-tier backbone, and 2)
Context-aware multiple instance learning for postmortem tissue recognition.

2.1 Self-Supervised Contrastive Patch Embedding
Double-Tier Backbone Given patches from a postmortem histopathologi-
cal image acquired at a specific magnification (i.e., 5×, 10×, 20×, or 40×), we
adopt a backbone with a local branch (LB) and a global branch (GB) for in-
stance/patch feature embedding. The LB is a ResNet50 [10] consisting of 16
successive bottlenecks, each with three convolutional layers with the kernel size
of 1× 1, 3× 3, and 1× 1, respectively. The GB is a Swin Transformer [17] that
contains of a series of 12 window-based multi-head self-attention modules. Let an
input patch be X ∈ RH×W×3. The corresponding feature embedding produced
by the double-tier backbone will be M = MLB⊕MGB (∈ Rh×w×C), where MLB
and MGB denotes the representations from the LB and GB branch, respectively,
and ⊕ stands for the channel-wise concatenation operation.
Self-Supervised Contrastive Learning Strategy We leverage the idea of
self-supervised representation learning to establish the double-tier backbone. Re-
ferring to MoCo [9], our self-supervised learning is constructed by a teacher
branch and a student branch. The student branch consists of six components,
including a double-tier backbone (i.e., fθ(·)), three projection layers (i.e., gsg(·),
gso(·), gsp(·)), and two prediction layers (i.e., psg(·) and pso(·)). The teacher
branch contains four components, including a double-tier backbone fη(·), and
three projection layers (i.e., gtg(·), gto(·), and gtp(·)). By feeding the two branches
with different views of same patches, fθ(·) in the student branch (i.e., parameter-
ized by θ) is trained via back-propagation to update fη(·) in the teacher branch
(i.e., parameterized by η) in a momentum-based moving average fashion, such
as η ← m · η + (1−m) · θ, where m = 0.99 is the momentum parameter.

Another key issue that determines the quality of the embedding from such
a self-supervised strategy is the formulation of respective contrastive loss func-
tions and regularization terms. Accordingly, we design a thorough contrastive
learning strategy to capture fine-grained discriminative patterns of postmortem
tissues under varying microscopic magnifications. That is, let Xs and Xt be
two different views of an image patch X generated by a random data augmen-
tation process. Our contrastive learning strategy concurrently encourages the
global similarity and spatially fine-grained similarity between the corresponding
feature embedding Ms = fθ(Xs) and Mt = fη(Xt) (∈ Rh×w×C). Also, two regu-
larization terms are applied as auxiliary guidance to protect the informativeness
and avoid collapses of the embedding learned by the backbone.

Specifically, the global similarity between Ms and Mt is encouraged by min-
imizing a general cosine contrastive loss, such as

Lglobal = 2− 2 · < zg
s , z

g
t >

||zg
s ||2 · ||z

g
t ||2

, (1)

where zg
s = psg(gsg(GAP(Ms))) and zg

t = gtg(GAP(Mt)), with GAP(·) standing
for the global average pooling that produces feature vectors.
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In practice, forensic pathologists typically infer postmortem tissue type by
evaluating the cellular compositions in multiple local regions. Accordingly, in-
spired by cross-view learning [11], we design a spatially fine-grained contrastive
loss to explicitly encourage multi-parts similarity between Ms and Mt. Assume
M′

s and M′
t are two (h · w) × C tensors flattened from Ms and Mt across the

spatial dimension, respectively. They are further processed by gso(·) and gto(·)
(followed by softmax normalization), respectively, to produce two (h · w) × K
attention matrices, i.e., As = gso(M′

s) and At = gto(M′
t), where K denotes the

predefined number of parts. Thereafter, we aggregate the backbone representa-
tions in terms of the attention matrices to deduce multi-parts representations,
i.e., Zo

s = pso(gsp(AT
s ⊗M′

s)) and Zo
t = gtp(AT

t ⊗M′
t), where ⊗ denotes tensor

multiplication. Finally, the spatially fine-grained contrastive loss is quantified
as

Lparts =

K∑
k=1

(
2− 2 · < Zo

s [k, :],Z
o
t [k, :] >

||Zo
s [k, :]||2 · ||Zo

t [k, :]||2

)
(2)

where Zo[k, :] denotes the kth part representation in Zo ∈ RK×D.
Besides, two additional regularization terms are further included to stabilize

contrastive representation learning. Following [1], we penalize small changes be-
tween the global representations of different image patches across each feature di-
mension. Also, we encourage the global representations to be diverse/orthogonal
across different feature dimensions. Let Zg

s be a set of feature representations
for an input mini-batch of patches in the student branch, and Z̃g

s and Zg
s denote

their channel-wise variation and mean. The regularization terms are defined as

Lvar =
1

D

D∑
d=1

max

(
0, 1−

√
Z̃g

s [d] + ϵ

)
(3)

Lcov =
1

D2 −D

∑
i̸=j

({
(zg

s −Z
g
s )

T (zg
s −Z

g
s )
}
[i, j]

)2

(4)

where ϵ is a small scalar to stabilize numerical computation, Z̃g
s [d] denotes the

dth dimension of Z̃g
s , and {(zg

s − Z
g
s )T (zg

s − Z
g
s )}[i, j] is the [i, j]th element in

such a covariance matrix. According to [1], Eqs. (3) and (4) jointly encourage
the diversity across patches and feature dimensions, thus protecting the infor-
mativeness and avoid collapse of self-supervised contrastive learning.

Overall, we combine Eqs. (1) to (4) as the final loss function to train the
double-tier backbone, such as Lall = Lglobal + Lparts + γLvar + λLcov, where γ
and λ are two tuning parameters balancing different terms.

2.2 Context-Aware MIL

Given the patch/instance-level representations of a histopathological image from
the double-tier backbone, we further design a context-aware MIL framework
to aggregate their information for postmortem tissue recognition. Given patch
embeddings of a Microscope image, our context-aware MIL part contains two
main steps, i.e., a multi-head self-attention to refine each patch’s feature and an
adaptive pooling step to distill all patches’ information.
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In detail, we first adopt a multi-head self-attention (MSA) mechanism [19]
integrating relative positional embedding to explicitly model cross-patch associ-
ations for contextual enhancement of the instance representations from the back-
bone. Let Z = {zi}Ii=1 be a set of the contextually enhanced instance embedding
from an image. Thereafter, inspired by Deformable DETR [28], we further de-
sign an adaptive pooling operation, which is simple but effective to distill from
Z a bag-level holistic representation for the classification purpose. Specifically,
the bag-level holistic representation determined by the adaptive pooling is

zbag =
1

I

I∑
i=1

(softmax(hω1
(zi)) ◦ hω2

(zi)), (5)

where hω1(·) and hω2(·) are two linear projections with the same number of
output units, symbol ◦ denotes the Hadamard product between two tensors,
and softmax(·) is performed across different instances to filter out uninformative
patches and preserve discriminative patches in quantifying zbag for classification.

3 Experiments
3.1 Data & Experimental Setup
Rat postmortem histopathology dataset Ninety Sprague-Dawley adult
male rats were executed by the spinal cord dislocation and placed in a constant
temperature and humidity environment for 6-8 hours. The animal experiments
were approved by the Laboratory Animal Care Committee of the anonymous
institution. Seven organs, i.e., brain, heart, kidney, liver, lung, pancreas, and
spleen, were removed and placed in the formalin solution. Briefly, paraffin sec-
tions of these organ tissues were stained with the H&E solution. The H&E-
stained sections were then analyzed by three forensic pathologists, who used
Lercai LAS EZ microscopes to record the areas according to their expertise.
Overall, five to ten images were recorded from a section at each magnification
(i.e., 5×, 10×, 20×, and 40×). Finally, we split the 90 rats as training, valida-
tion, and test sets of 60, 10, and 20 rats, respectively, each with 13, 137, 2, 235,
and 4, 325 images.
Human forensic histopathology dataset The real forensic images were pro-
vided by the Forensic Judicial Expertise Center of the anonymous institution,
after getting the informed consent of relatives. All procedures followed the re-
quirements of local laws and institutional guidelines, and were approved and
supervised by the Ethics Committee. A total of 32 decedents participated in
this study. Four to six images were recorded at each of three magnifications (5×,
10×, and 20×) per H&E stained section. Similar to the rat dataset, the human
dataset was selected from the same seven organs. Finally, the training, validation
and test sets contain 1, 691 images, 628, and 1059 images, corresponding to 16,
6, and 10 different decedents, respectively.
Experimental details Notably, the double-tier backbone was self-supervised
and learned on the rat training set for 100 epochs by setting the mini-batch
size as 1024, with the parameters initialized by the ImageNet pre-trained mod-
els. The training data were augmented by a histopathology-oriented strategy
by combining different kinds of staining jitters, random affine transformation,
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Table 1: Linear classification results obtained by different self-supervised learning
approaches on the rat and human testing sets, respectively.

Competing methods Rat dataset Human dataset
ACC F1 MCC Precision ACC F1 MCC Precision

balow twins [27] 0.9232 0.9123 0.9076 0.9070 0.7306 0.7311 0.6854 0.7345
swin transformer(SSL) [26] 0.9450 0.9369 0.9299 0.9330 0.8079 0.8088 0.7758 0.8125

Transpath [23] 0.7351 0.7397 0.6958 0.7481 0.5838 0.5657 0.5264 0.6050
CTransPath [24] 0.9635 0.9610 0.9535 0.9596 0.8794 0.8799 0.8591 0.8842

RetCCL [22] 0.9794 0.9801 0.9768 0.9810 0.7796 0.7789 0.7448 0.7961
MOCOV3 [3] 0.9732 0.9738 0.9681 0.9745 0.8103 0.8124 0.7790 0.8187

Ours 0.9831 0.9831 0.9796 0.9831 0.9049 0.9044 0.8886 0.9056

Table 2: Ablation studies to evaluate the contributions of different self-supervised
contrastive losses and regularization terms.

Loss functions Rat dataset Human dataset
Lglobal Lparts Lvar Lcov ACC F1 MCC Precision ACC F1 MCC Precision

✓ 0.9732 0.9713 0.9660 0.9689 0.8918 0.8913 0.8734 0.8935
✓ ✓ 0.9817 0.9819 0.9778 0.9822 0.8953 0.8956 0.8779 0.8981
✓ ✓ ✓ 0.9793 0.9799 0.9757 0.9806 0.8978 0.8976 0.8802 0.8983
✓ ✓ ✓ ✓ 0.9831 0.9831 0.9796 0.9831 0.9049 0.9044 0.8886 0.9056

Gaussian blurring, resizing, etc. The image(patch) dimension in our implemen-
tation was 224*224. The tuning parameters γ and λ in Lall were set as 5 and
0.005, respectively. Thereafter, the MIL blocks on two different datasets were
both trained by minimizing the cross-entropy loss for 20 epochs with the mini-
batch size setting as 32. The experiments were conducted on three PCs with
twenty NVIDIA GEFORCE RTX 3090 GPUs.

3.2 Results of Self-Supervised Contrastive Learning

Our self-supervised double-tier backbone was compared with other state-of-
the-art self-supervised learning approaches, including balow twins [27], swin
transformer (SSL) [26], TransPath [23], CTransPath [24],RetCCL [22]
and MOCOV3 [3]. To evaluate the discriminative power of these competing
methods, we adopted GAP to aggregate their instance representations from a
whole image to train simple linear classifiers for the recognition of seven dif-
ferent organ tissues on both the rat and human datasets, with the test per-
formance quantified in terms of four general classification metrics (i.e., ACC,
F1 score, MCC(Matthews Correlation Coefficient), and Precision). The
corresponding results are summarized in Table 1, from which we can have two
observations. First, our self-supervised double-tier backbone consistently out-
performed all other competing methods in terms of all metrics on two datasets.
Second, our method led to better generalization, as the backbone trained on the
rat dataset shows promising performance on the challenging real-world human
dataset (e.g., resulting in an ACC higher than 90%). These results suggest the
effectiveness of our self-supervised learning strategy.

For a more detailed evaluation, we further conducted a series of ablation
studies to evaluate the contributions of the contrastive losses (i.e., Lglobal and
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Table 3: Multiple-instance learning results obtained by the competing methods
and our Context-Aware MIL with different pooling strategies.

Competing methods Rat dataset Human dataset
ACC F1 MCC Precision ACC F1 MCC Precision

AB-MIL[12] 0.9815 0.9828 0.9793 0.9844 0.9011 0.9005 0.8838 0.9050
DSMIL [15] 0.9951 0.9948 0.9937 0.9945 0.9176 0.9166 0.9030 0.9170
Transmil [19] 0.9899 0.9888 0.9875 0.9878 0.8824 0.8813 0.8622 0.8821
MSA [16,2] 0.9875 0.9883 0.9861 0.9892 0.9082 0.9082 0.8921 0.9100
MSA-LP [7] 0.9879 0.9875 0.9853 0.9873 0.9097 0.9087 0.8945 0.9109
MSA-SP [8] 0.9851 0.9839 0.981 0.9832 0.8915 0.8905 0.8748 0.8948
MSA-RP [17] 0.9915 0.9915 0.9896 0.9916 0.9218 0.9213 0.9085 0.9218
Ours + Max pool 0.9910 0.9909 0.9888 0.9909 0.9144 0.9147 0.9001 0.9191
Ours + Soft pool [20] 0.9935 0.9929 0.9915 0.9924 0.9047 0.9023 0.8883 0.9056
Ours + Adaptive pool 0.9956 0.9952 0.9943 0.9949 0.9229 0.9218 0.9093 0.9263

Lparts) and regularization strategy (i.e., Lvar +Lcov). The corresponding results
are summarized in Table 2, from which we can see that, given the baseline
of Lglobal, both the inclusion of the spatially fine-grained contrastive loss (i.e.,
Lparts) and informativeness regularization (i.e., Lvar and Lcov) led to respective
performance gains. These results further justify our self-supervised design.

3.3 Results of Multiple-Instance Learning

Based upon the double-tier backbone learned on the rat training set, we com-
pared our context-aware MIL with other MIL methods, including the gated
attention-based approach (i.e., AB-MIL [12], DSMIL [15], Transmil [19] and
MSA [16,2]) approaches with/without different positional embedding strategies,
i.e., relative position embedding (MSA-RP [17]), learnable position embedding
(MSA-LP [7]), and 2D sine-cosine position embedding (MSA-SP [8]). Notably,
our approach used MSA-RP as the baseline, based on which an adaptive pool-
ing operation is designed to produce the final bag-level representation. To check
the efficacy of adaptive pool, we further conducted a corresponding set of ab-
lation studies by replacing it with other operations, including max pool, and
soft pool [20]. These comparison and ablations results are shown in Table 3,
from which we can observe that our method led to the best results on both
datasets, with relatively more significant improvements on the challenging hu-
man dataset. Also, compared with other pooling operations, the adaptive pool
design brought consistent performance gains. These results suggest the efficacy
of our context-aware MIL for postmortem tissue recognition.

In addition, we conducted LayerCAM-based analysis [13] to check the ex-
plainability and reliability of our postmortem histopathological recognition re-
sults. From the representative examples shown in Fig. 2, we can have an inter-
esting observation that our method tends to focus on tissue-specific postmortem
patterns at different microscopic scales. For example, the spatial attention maps
reliably highlighted the meningeal structures of the brain tissue, the glomeruli
in the kidney cortex, and the central vein area between the liver lobules. On
the other hand, based on the pancreas example, we can see that our network
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Pancreas (5X_rat)

Brain (10X_rat)

Kidney (20X_rat)

Liver (40X_rat)

Lung (10X_human)

Pancreas (20X_human)

Kidney (40X_rat)

Liver (5X_rat)

Fig. 2: Explainability analysis based on LayerCAM [13] for representative post-
mortem tissue images acquired at different microscopic scales.

can sensitively localize the pancreas glandular structure while filtering out the
uninformative background in an end-to-end fashion, without the need for any
pre-processing to segment first the foreground. These observations support our
assumption that the proposed method is reliable and efficient in learning dis-
criminative histopathological representations of postmortem organ tissues.

4 Conclusion
In this study, we have proposed a context-aware MIL framework powered by
self-supervised contrastive learning to learn fine-grained discriminative repre-
sentations for postmortem histopathological recognition. The dedicated self-
supervised learning strategy concurrently maximizes multiple contrastive losses
and regularization terms to deduce informative and discriminative instance em-
bedding. Thereafter, the context-aware MIL framework adopts MSA followed by
an adaptive pooling operation to distill from all instances a holistic bag/image-
level representation. The experimental results on a relatively large-scale database
suggest the state-of-the-art postmortem recognition performance of our method.
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