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Abstract. Contrastive learning has gained popularity due to its robust-
ness with good feature representation performance. However, cosine dis-
tance, the commonly used similarity metric in contrastive learning, is
not well suited to represent the distance between two data points, es-
pecially on a nonlinear feature manifold. Inspired by manifold learn-
ing, we propose a novel extension of contrastive learning that leverages
geodesic distance between features as a similarity metric for histopathol-
ogy whole slide image classification. To reduce the computational over-
head in manifold learning, we propose geodesic-distance-based feature
clustering for efficient contrastive loss evaluation using prototypes with-
out time-consuming pairwise feature similarity comparison. The efficacy
of the proposed method is evaluated on two real-world histopathology
image datasets. Results demonstrate that our method outperforms state-
of-the-art cosine-distance-based contrastive learning methods.

Keywords: Contrastive learning· Manifold learning· Geodesic distance
· Histopathology image classification· Multiple instance learning.

1 Introduction

Whole slide image (WSI) classification is a crucial process to diagnose diseases
in digital pathology. Owing to the huge size of a WSI, the conventional WSI clas-
sification process consists of patch decomposition and per-patch classification,
followed by the aggregation of per-patch results using multiple instance learn-
ing (MIL) for the final per-slide decision [11]. MIL constructs bag-of-features
(BoF) that effectively handles imperfect patch labels, allowing weakly super-
vised learning using per-slide labels for WSI classification. Although MIL does
not require perfect per-patch label assignment, it is important to construct good
feature vectors that are easily separated into different classes to make the clas-
sification more accurate. Therefore, extensive research has been conducted on
metric and representation learning [17,21] aimed at developing improved feature
representation.

Recently, contrastive learning has demonstrated its robustness in the repre-
sentational ability of the feature extractor, which employs self-supervised learn-
ing with a contrastive loss that forces samples from the same class to stay closer
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Fig. 1. Comparison of geodesic and cosine distance in n-dimensional space.

in the feature space (and vice versa). SimCLR [4] introduced the utilization of
data augmentation and a learnable nonlinear transformation between the feature
embedding and the contrastive loss to generally improve the quality of feature
embedding. MoCo [10] employed a dynamic dictionary along with a momentum
encoder in the contrastive learning model to serve as an alternative to the su-
pervised pre-trained ImageNet model in various computer vision tasks. PCL [15]
and HCSC [8] integrated the k-means clustering and contrastive learning model
by introducing prototypes as latent variables and assigning each sample to multi-
ple prototypes to learn the hierarchical semantic structure of the dataset. These
prior works used cosine distance as their distance measurement, which computes
the angle between two feature vectors as shown in Fig. 1(a). Although cosine
distance is a commonly used distance metric in contrastive learning, we observed
that the cosine distance approximates the difference between local neighbors and
is insufficient to represent the distance between far-away points on a complicated,
nonlinear manifold.

The main motivation of this work is to extend the current contrastive learn-
ing to represent the nonlinear feature manifold inspired by manifold learning.
Owing to the manifold distribution hypothesis [13], the relative distance between
high-dimensional data is preserved on a low-dimensional manifold. ISOMAP [18]
is a well-known manifold learning approach that represents the manifold struc-
ture by using geodesic distance (i.e., the shortest path length between points on
the manifold). There are several previous works that use manifold learning for
image classification and reconstruction tasks, such as Lu et al. [16] and Zhu et
al. [22]. However, the use of geodesic distance on the feature manifold for image
classification is a recent development. Aziere et al. [2] applied the random walk
algorithm on the nearest neighbor graph to compute the pairwise geodesic dis-
tance and proposed the N-pair loss to maximize the similarity between samples
from the same class for image retrieval and clustering applications. Gong et al. [7]
employed the geodesic distance computed using the Dijkstra algorithm on the k-
nearest neighbor graph to measure the correlation between the original samples
and then further divided each class into sub-classes to deal with the problems
of high spectral dimension and channel redundancy in the hyperspectral im-
ages. However, this method captured the nonlinear data manifold structure on
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the original data (not on the feature vectors) only once at the beginning stage,
which is not updated in the further training process.

In this study, we propose a hybrid method that combines manifold learn-
ing and contrastive learning to generate a good feature extractor (encoder) for
histopathology image classification. Our method uses the sub-classes and proto-
types as in conventional contrastive learning, but we propose the use of geodesic
distance in generating the sub-classes to represent the non-linear feature mani-
fold more accurately. By doing this, we achieve better separation between fea-
tures with large margins, resulting in improved MIL classification performance.
The main contributions of our work can be summarized as follows:

– We introduce a novel integration of manifold geodesic distance in contrastive
learning, which results in better feature representation for the non-linear
feature manifold. We demonstrate that the proposed method outperforms
conventional cosine-distance-based contrastive learning methods.

– We propose a geodesic-distance-based feature clustering for efficient con-
trastive loss evaluation using prototypes without brute-force pairwise feature
similarity comparison while approximating the overall manifold geometry
well, which results in reduced computation.

– We demonstrate that the proposed method outperforms other state-of-the-
art (SOTA) methods with a much smaller number of sub-classes without
complicated prototype assignment (e.g., hierarchical clustering).

To the best of our knowledge, this work is the first attempt to leverage manifold
geodesic distance in contrastive learning for histopathology WSI classification.

2 Method

The overview of our proposed model is illustrated in Fig. 2. It is composed of two
stages: (1) train the feature extractor using deep manifold embedding learning
and (2) train the WSI classifier using the deep manifold embedding extracted
from the first stage. The input WSIs are pre-processed to extract 256× 256× 3
dimensional patches from the tumor area at a 10x magnification level. Patches
with less than 50% tissue coverage are excluded from the experiment.

2.1 Deep Manifold Embedding Learning

As illustrated in Fig. 2(a), we first feed the patches into a feature extractor f ,
which is composed of an encoder, a pooling layer, and a multi-perceptron layer.
The output is then passed through two different paths, namely, deep manifold
and softmax paths.

Deep manifold. In this stage, the patches from each class are further grouped
into sub-classes based on manifold geodesic distance. First, an undirected near-
est neighbor graph Gc = (Vc, Ec) is constructed, where Vc is a set of nodes made
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Fig. 2. Overview of our proposed method, which is composed of two stages: (a) deep
manifold embedding learning and (b) MIL classification.

from the patch feature of the c-th class extracted by f , and Ec is the set of edges
in the graph. Each node (patch feature) is connecting to its k-nearest neighbors
(KNN) based on the weighted edges computed with Euclidean distance, given
that the neighbor samples on the manifold should have a higher potential to be
in the same sub-class. The geodesic distance matrix M on the manifold is then
computed between each sample pair by using Dijkstra’s algorithm based on the
Gc. The samples of each class are then further clustered into several sub-classes
with agglomerative clustering based on the geodesic distance. In agglomerative
clustering, all the patch features are initially treated as individual clusters and
the nearest two individual clusters are merged based on the geodesic distance
matrix to form new clusters. The distance matrix M is then updated with the
newly formed clusters. With the updated distance matrix M , the nearest two in-
dividual clusters are again merged to form new clusters. These steps are repeated
until the desired number n of sub-classes is achieved.

Loss functions. For the deep manifold training, we adopted two losses: (1)
intra-subclass loss Lintra and (2) inter-subclass loss Linter. The main idea in
intra-subclass loss is to make the samples from the same sub-class stay near
their respective sub-class prototype. Lintra is formulated as follows:

Lintra =
1

J · I

J∑
j=1

I∑
i=1

(f(xi
j)− p+)T (f(xi

j)− p+) (1)

where xi
j is the i-th patch in the j-th batch, J represents the total number of

batches, I represents the total number of patches per batch, f(·) is the feature
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extractor, and p+ indicates the positive prototype of the patch (i.e., the proto-
type of the subclass containing xi

j). The prototype of each sub-class is computed
by simply taking the mean of all the patch features that belong to each sub-class.
Inter-subclass loss Linter is proposed to make the sub-classes from a different
class far apart from one another. The formulation of Linter is as shown below:

Linter =
1

J

J∑
j=1

(△−D(f(QA
j ), P

B)) (2)

D(Y, Z) = max{sup
y∈Y

d(y, Z), sup
z∈Z

d(z, Y )} (3)

where f(QA
j ) is a set of patch features in batch j from class A, PB is a set of

prototypes from the sub-classes of class B, and △ is a positive margin between
classes on data manifold. D(·) is the Hausdorff distance, where sup indicates
supremum, inf indicates infimum, and d(t, R) = inf

r∈R
||t− r|| which measures the

distance from a data point t ∈ Y to the subset R ⊆ Y . Then, the manifold loss
is formulated as

Lmanifold = Lintra + Linter (4)

Another path via softmax is simply trained on outputs from the feature
extractor with the ground truth slide-level labels y by the cross-entropy loss
LCE , which is defined as follows:

LCE = − 1

J · I

J∑
j=1

I∑
i=1

yij · log ŷij + (1− yij) · log(1− ŷij) (5)

where y is the ground truth slide-level label and ŷ is predicted label.

Finally, the total loss for the first stage is defined as follows:

Ltotal = Lmanifold + LCE (6)

2.2 MIL Classification

As illustrated in Fig. 2(b), in the second stage, the pre-trained feature extractor
from the previous stage is then deployed to extract features for bag generation.
A total of 50 bags are generated for each WSI, in which each bag is composed
of the concatenation of the features from 100 patches in 512 dimensions. These
bags are fed into a classifier with two layers of multiple perceptron layers (512
neurons) and a Softmax layer and then trained with a binary cross-entropy loss.
After the classification, majority voting is applied to the predicted labels of the
bags to derive the final predicted label for each WSI.
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3 Result

3.1 Datasets

We tested our proposed method on two different tasks: (1) intrahepatic cholan-
giocarcinomas(IHCCs) subtype classification and (2) liver cancer type classifica-
tion. The dataset for the former task was collected from 168 patients with 332
WSIs from (anonymized) hospital. IHCCs can be further categorized into small
duct type (SDT) and large duct type (LDT). Using gene mutation information
as prior knowledge, we collected WSIs with wild KRAS and mutated IDH genes
for use as training samples in SDT, and WSIs with mutated KRAS and wild
IDH genes for use in LDT. The rest of the WSIs were used as testing samples.
The liver cancer dataset for the latter task was composed of 323 WSIs, in which
the WSIs can be further classified into hepatocellular carcinomas (HCCs) (col-
lected from Pathology AI Platform [1]) and IHCCs. We collected 121 WSIs for
the training set, and the remaining WSIs were used as the testing set.

3.2 Implementation Detail

We used a pre-trained VGG16 with ImageNet as the initial encoder, which was
further modified via deep manifold model training using the proposed manifold
and cross-entropy loss functions. The number of nearest neighbors k and the
number of sub-classes n were set to 5 and 10, respectively. In the deep manifold
embedding learning model, the learning rates were set to 1e-4 with a decay rate
of 1e-6 for the IHCCs subtype classification and to 1e-5 with a decay rate of
1e-8 for the liver cancer type classification. The k-nearest neighbors graph and
the geodesic distance matrix are updated once every five training epochs, which
is empirically chosen to balance running time and accuracy. To train the MIL
classifier, we set the learning rate to 1e-3 and the decay rate to 1e-6. We used
batch sizes 64 and 4 for training the deep manifold embedding learning model and
the MIL classification model, respectively. The number of epochs for the deep
manifold embedding learning model was 50, while 50 and 200 epochs for the
IHCCs subtype classification and liver cancer type classification, respectively.
As for the optimizer, we used stochastic gradient decay for both stages. The
result shown in the tables is the average result from 10 iterations of the MIL
classification model.

3.3 Experimental Results

The performance of different models from two different datasets is reported in
this section. For the baseline model, we chose the pre-trained VGG16 feature ex-
tractor with an MIL classifier, which is the same as our proposed model except
that the encoder is retrained using the proposed loss. Two SOTA methods using
contrastive learning and clustering, PCL [15] and HCSC [8], are compared with
our method in this study. The MIL classification result of the IHCCs subtype
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Table 1. Classification performance on IHCCs subtype and liver cancer type dataset.
(Acc.: Accuracy, Prec.: Precision, Rec.: Recall, F1: F1 Score, NA: Not Applicable)

Method
Prototype IHCC Subtype Liver Cancer Type
Number Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

CNN NA 0.7315 0.7372 0.7315 0.7270 0.7710 0.7781 0.7719 0.7657
PCL 500-800-1000 0.7386 0.7478 0.7394 0.7354 0.8146 0.7898 0.8146 0.7979
HCSC 2-10-100 0.7230 0.7265 0.7230 0.7231 0.7995 0.8524 0.7995 0.7825

Ours 20 0.7703 0.7710 0.7678 0.7668 0.8239 0.8351 0.8239 0.8227

Table 2. Ablation study of prototype assignment strategies.

Prototype Prototype Number Accuracy Precision Recall F1 Score

Global 2 0.7365 0.7390 0.7365 0.7353
Local 20 0.7703 0.7710 0.7678 0.7668
Global + Local 22 (20 + 2) 0.7698 0.7735 0.7698 0.7692

classification is shown in Table 1. Our proposed method outperformed the base-
line CNN by about 4% increment in accuracy, precision, recall, and F1 score.
Note that our method only used 20 sub-classes but outperformed PCL (using
2300 sub-classes) by 4% and HCSC (using 112 sub-classes) by 5% in accuracy.

The result of liver cancer type classification is also shown in Table 1. Our
method achieved about 5% improvement in accuracy against the baseline and
1% to 2% improvement in accuracy against the SOTA methods. Moreover, it
outperformed the SOTA methods with far fewer prototypes and without com-
plicated hierarchical prototype assignments. To further evaluate the effect of
prototypes, we conducted an ablation study for different prototype assignment
strategies as shown in Table 2. Here, global prototypes imply assigning a single
prototype per class while local prototypes imply assigning multiple prototypes
per class (one per sub-class). When both are used together, it implies a hierarchi-
cal prototype assignment where local prototypes interact with the corresponding
global prototype. As shown in this result, the model with local prototypes only
performed about 4% higher than did the model with global prototypes only.
Meanwhile, the combination of both prototypes achieved a similar performance
to that of the model with local prototypes only. Since the hierarchical (global +
local) assignment did not show a significant improvement but instead increased
computation, we used only local sub-class prototypes in our final experiment
setting.

Table 3. Classification performance of geodesic distance and cosine distance.

Method Number of sub-classes Accuracy Precision Recall F1 Score

Cosine distance 2 0.7519 0.7552 0.7519 0.7503
Cosine distance 20 0.7576 0.7589 0.7576 0.7571
Ours 20 0.7703 0.7710 0.7678 0.7668
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Fig. 3. Comparison of geodesic and cosine distance in feature space.(1)-(4) are the
patches from SDT and (5)-(8) are the patches from LDT.

Since one of our contributions is the use of geodesic distance, we assessed the
efficacy of the method by comparing it with the performance using cosine dis-
tance, as shown in Table 3. To measure the performance of the cosine-distance-
based method, we simply replaced our proposed manifold loss with NT-Xent
loss [5], which uses cosine distance in their feature similarity measurement. Two
cosine distance experiments were conducted as follows: (1) use only their ground-
truth class without further dividing the samples into sub-classes (i.e., global pro-
totypes) and (2) divide the samples from each class into 10 sub-classes by using
k-means clustering (i.e., local prototypes). As shown in Table 3, using multi-
ple local prototypes shows slightly better performance compared to using global
prototypes. By switching the NT-Xent loss with our geodesic-based manifold
loss, the overall performance is increased by about 2%. Fig. 3 visually compares
the effect of the geodesic and cosine distance-based losses. Two scatter plots are
t-SNE projections of feature vectors from the encoders trained using geodesic
distance and cosine distance, respectively. Red dots represent SDT samples and
blue dots represent LDT samples from the IHCCs dataset (corresponding histol-
ogy thumbnail images are shown on the right). In this example, all eight cases
are correctly classified by the method using geodesic distance while all cases are
incorrectly classified by the method using cosine distance. It is clearly shown
that geodesic distance can correctly measure the feature distance (similarity) on
the manifold so that SDT and LDT groups are located far away in the t-SNE
plot, whereas cosine distance failed to separate these groups and they are located
nearby in the plot.

3.4 Conclusion and Future Work

In this paper, we proposed a novel geodesic-distance-based contrastive learn-
ing for histopathology image classification. Unlike conventional cosine-distance-
based contrastive learning methods, our method can represent nonlinear feature
manifold better and generate better discriminative features. One limitation of
the proposed method is the extra computation time for graph generation and
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pairwise distance computation using the Dijkstra algorithm. In the future, we
plan to optimize the algorithm and apply our method to other datasets and
tasks, such as multi-class classification problems and natural image datasets.
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