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Abstract. Recently, U-shaped networks have dominated the field of
medical image segmentation due to their simple and easily tuned struc-
ture. However, existing U-shaped segmentation networks: 1) mostly focus
on designing complex self-attention modules to compensate for the lack
of long-term dependence based on convolution operation, which increases
the overall number of parameters and computational complexity of the
network; 2) simply fuse the features of encoder and decoder, ignoring
the connection between their spatial locations. In this paper, we rethink
the above problem and build a lightweight medical image segmentation
network, called SegNetr. Specifically, we introduce a novel SegNetr block
that can perform local-global interactions dynamically at any stage and
with only linear complexity. At the same time, we design a general infor-
mation retention skip connection (IRSC) to preserve the spatial location
information of encoder features and achieve accurate fusion with the
decoder features. We validate the effectiveness of SegNetr on four main-
stream medical image segmentation datasets, with 59% and 76% fewer
parameters and GFLOPs than vanilla U-Net, while achieving segmenta-
tion performance comparable to state-of-the-art methods. Notably, the
components proposed in this paper can be applied to other U-shaped
networks to improve their segmentation performance.

Keywords: Local-global interactions · Information retention skip con-
nection · Medical image segmentation · U-shaped networks.

1 Introduction

Medical image segmentation has been one of the key aspects in developing au-
tomated assisted diagnosis systems, which aims to separate objects or struc-
tures in medical images for independent analysis and processing. Normally, seg-
mentation needs to be performed manually by professional physicians, which
is time-consuming and error-prone. In contrast, developing computer-aided seg-
mentation algorithms can be faster and more accurate for batch processing. The
approach represented by U-Net [1] is a general architecture for medical image
segmentation, which generates a hierarchical feature representation of the image
through a top-down encoder path and uses a bottom-up decoder path to map
the learned feature representation to the original resolution to achieve pixel-by-
pixel classification. After U-Net, U-shaped methods based on Convolutional
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Neural Networks (CNN) have been extended for various medical image seg-
mentation tasks [2,3,4,5,6,7,8,9]. They either enhance the feature representation
capabilities of the encoder-decoder or carefully design the attention module to
focus on specific content in the image. Although these extensions can improve
the benchmark approach, the local nature of the convolution limits them to cap-
turing long-term dependencies, which is critical for medical image segmentation.
Recently, segmentation methods based on U-shaped networks have undergone
significant changes driven by Transformer [10,11]. Chen et al [12] proposed the
first Transformer-based U-shaped segmentation network. Cao et al [13] extended
the Swin Transformer [14] directly to the U-shaped structure. The above meth-
ods suffer from high computational and memory cost explosion when the feature
map size becomes large. In addition, some researchers have tried to build Hy-
brid Networks by combining the advantages of CNN and Transformer, such
as UNeXt [15], TransFuse [16], MedT [17], and FAT-Net [18]. Similar to these
works, we redesign the window-based local-global interaction and insert it into
a pure convolutional framework to compensate for the deficiency of convolution
in capturing global features and to reduce the high computational cost arising
from self-attention operations.

Skip connection is the most basic operation for fusing shallow and deep
features in U-shaped networks. Considering that this simple fusion does not fully
exploit the information, researchers have proposed some novel ways of skip con-
nection [19,20,21,22]. UNet++ [19] design a series of dense skip connections to
reduce the semantic gap between the encoder and decoder sub-network feature
maps. SegNet [20] used the maximum pooling index to determine the location
information to avoid the ambiguity problem during up-sampling using deconvo-
lution. BiO-Net [21] proposed bi-directional skip connections to reuse building
blocks in a cyclic manner. UCTransNet [22] designed a Transformer-based chan-
nel feature fusion method to bridge the semantic gap between shallow and deep
features. Our approach focuses on the connection between the spatial locations of
the encoder and decoder, preserving more of the original features to help recover
the resolution of the feature map in the upsampling phase, and thus obtaining
a more accurate segmentation map.

By reviewing the above multiple successful cases based on U-shaped struc-
ture, we believe that the efficiency and performance of U-shaped networks can
be improved by improving the following two aspects: (i) local-global inter-
actions. Often networks need to deal with objects of different sizes in medi-
cal images, and local-global interactions can help the network understand the
content of the images more accurately. (ii) Spatial connection between
encoder-decoder. Semantically stronger and positionally more accurate fea-
tures can be obtained using the spatial information between encoder-decoders.
Based on the above analysis, this paper rethinks the design of the U-shaped net-
work. Specifically, we construct lightweight SegNetr (Segmentation Network
with Transformer) blocks to dynamically learn local-global information over
non-overlapping windows and maintain linear complexity. We propose informa-
tion retention skip connection (IRSC), which focuses on the connection between
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encoder and decoder spatial locations, retaining more original features to help
recover the resolution of the feature map in the up-sampling phase. In summary,
the contributions of this paper can be summarized as follows: 1) We propose a
lightweight U-shape SegNetr segmentation network with less computational cost
and better segmentation performance. 2) We investigate the potential deficiency
of the traditional U-shaped framework for skip connection and improve a skip
connection with information retention. 3) When we apply the components pro-
posed in this paper to other U-shaped methods, the segmentation performance
obtains a consistent improvement.

Fig. 1. Overview of the SegNetr approach. SegNetr blocks interact through parallel
local and global branches. IRSC preserves the positional information of encoder features
and achieves accurate fusion with decoder features.

2 Method

As shown in Fig. 1, SegNetr is a hierarchical U-shaped network with important
components including SegNetr blocks and IRSC. To make the network more
lightweight, we use MBConv [24] as the base convolutional building block. Seg-
Netr blocks implement dynamic local-global interaction in the encoder and de-
coder stages. Patch merging [14] is used to reduce the resolution by a factor of
two without losing the original image information. IRSC is used to fuse encoder
and decoder features, reducing the detailed information lost by the network as
the depth deepens. Note that by changing the number of channels, we can get
the smaller version of SegNetr-S (C=32) and the standard version of SegNetr
(C=64). Next, we will explain in detail the important components in SegNetr.

2.1 SegNetr Block

The self-attention mechanism with global interactions is one of the keys to Trans-
former’s success, but computing the attention matrix over the entire space re-
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quires a quadratic complexity. Inspired by the window attention method [14,23],
we construct SegNetr blocks that require only linear complexity to implement
local-global interactions. Let the input feature map be X ∈ RH×W×C . We first
extract the feature XMBConv ∈ RH×W×C using MBConv [24], which provides
non-explicit position encoding compared to the usual convolutional layer.

Local interaction can be achieved by calculating the attention matrix of
non-overlapping small patches (P for patch size). First, we divide XMBConv

into a series of patches (H×W
P×P , P, P, C) that are spatially continuous (Fig. 1

shows the patch size for P = 2) using a computationally costless local partition
(LP) operation. Then, we average the information of the channel dimensions
and flatten the spatial dimensions to obtain (H×W

P×P , P × P ), which is fed into
the FFN [11] for linear computation. Since the importance of the channel aspect
is weighed in MBConv [24], we focus on the computation of spatial attention
when performing local interactions. Finally, we use Softamx to obtain the spatial
dimensional probability distribution and weight the input features XMBConv.
This approach is not only beneficial for parallel computation, but also focuses
more purely on the importance of the local space.

Considering that local interactions are not sufficient and may have under-
fitting problems, we also design parallel global interaction branches. First,
we use the global partition (GP) operation to aggregate non-contiguous patches
on the space. GP adds the operation of window displacement to LP with the
aim of changing the overall distribution of features in space (The global branch
in Fig. 1 shows the change in patch space location after displacement). The
displacement rules are one window to the left for odd patches in the horizontal
direction (and vice versa for even patches to the right), and one window up
for odd patches in the vertical direction (and vice versa for even patches down).
Note that the displacement of patches does not have any computational cost and
only memory changes occur. Compared to the sliding window operation of [14],
our approach is more global in nature. Then, we decompose the spatially shifted
feature map into 2P ( H×W

2P×2P , 2P, 2P,C) patches and perform global attention
computation (similar to the local interaction branch). Even though the global
interaction computes the attention matrix over a larger window relative to the
local interaction operation, the amount of computation required is much smaller
than that of the standard self-attention model.

The local and global branches are finally fused by weighted summation, before
which the feature map shape needs to be recovered by LP and GP reversal
operations (i.e., local reverse (LR) and global reverse (GR)). In addition, our
approach also employs efficient designs of Transformer, such as Norm, feed-
forward networks (FFN) and residual connections. Most Transformer models
use fixed-size patches [11,12,13,14,24], but this approach limits them to focus on
a wider range of regions in the early stages. This paper alleviates this problem
by applying dynamically sized patches. In the encoder stage, we compute local
attention using patches of (8, 4, 2, 1) in turn, and the global branch expands
patches to the size of (16, 8, 4, 2). To reduce the hyper-parameter setting, the
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Fig. 2. Comparison of skip connections of U-Net, SegNet and our SegNetr. Our method
does not incorporate redundant computable modules, but the patch reverse (PR) pro-
vides spatial location information.

patches of the decoder stage are of the same size as the encoder patches of the
corresponding stage.

2.2 Information Retention Skip Connection

Fig. 2 shows three different types of skip connections. U-Net splices the channel
dimensions at the corresponding stages of the encoder and decoder, allowing the
decoder to retain more high-resolution detail information when performing up-
sampling. SegNet assists the decoder to recover the feature map resolution by
retaining the position information of the down-sampling process in the encoder.
We design the IRSC to consider both of these features, i.e., to preserve the
location information of encoder features while achieving the fusion of shallow
and deep features. Specifically, the patch merging (PM) operation in the encoder
reduces the resolution of the input feature map Xin ∈ RH×W×C to twice the
original one, while the channel dimension is expanded to four times the original
one to obtain XPM ∈ R

H
2 ×W

2 ×4C . The essence of the PM operation is to convert
the information in the spatial dimension into a channel representation without
any computational cost and retaining all the information of the input features.
The patch reverse (PR) in IRSC is used to recover the spatial resolution of the
encoder, and it is a reciprocal operation with PM. We alternately select half
the number of channels of XPM (i.e., H

2 × W
2 × 2C) as the input of PR, which

can reduce the redundant features in the encoder on the one hand and align
the number of feature channels in the decoder on the other hand. PR reduces
the problem of information loss to a large extent compared to traditional up-
sampling methods, while providing accurate location information. Finally, the
output features XPR ∈ RH×W×C

2 of PR are fused with the up-sampled features
of the decoder for the next stage of learning.

3 Experiments and Discussion

Datasets. To verify the validity of SegNetr, we selected four datasets, ISIC2017 [25],
PH2 [26], TNSCUI [27] and ACDC [28], for benchmarking. ISIC2017 consists of
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2000 training images, 200 validation images, and 600 test images. The PH2 and
ISIC2017 tasks are the same, but this dataset contains only 200 images without
any specific test set, so we use a five-fold cross-validation approach to validate
the different models. The TNSCUI dataset has 3644 ultrasound images of thyroid
nodules, which we randomly divided into a 6:2:2 ratio for training, validation,
and testing. The ACDC contains Cardiac MRI images from 150 patients, and
we obtained a total of 1489 slice images from 150 3D images, of which 951 were
used for training and 538 for testing. Unlike the three datasets mentioned above,
the ACDC dataset contains three categories: left ventricle (LV), right ventricle
(RV), and myocardium (Myo). We use this dataset to explore the performance
of different models for multi-category segmentation.
Implementation details. We implement the SegNetr method based on the
PyTorch framework by training on an NVIDIA 3090 GPU with 24 GB of mem-
ory. Use the Adam optimizer with a fixed learning rate of 1e-4. All networks use
a cross-entropy loss function and an input image resolution of 224 × 224, and
training is stopped when 200 epochs are iteratively optimized. We use the source
code provided by the authors to conduct experiments with the same dataset, and
data enhancement strategy. In addition, we use the IoU and Dice metrics to eval-
uate the segmentation performance, while giving the number of parameters and
GFLOPs for the comparison models.

Table 1. Quantitative results on ISIC2017 and PH2 datasets.

Network ISIC2017 PH2 Params GFLOPsIoU Dice IoU Dice
U-Net [1] 0.736 0.825 0.878±0.025 0.919±0.045 29.59 M 41.83
SegNet [20] 0.696 0.821 0.880±0.020 0.934±0.012 17.94 M 22.35
UNet++ [19] 0.753 0.840 0.883±0.013 0.936±0.008 25.66 M 28.77
FAT-Net [18] 0.765 0.850 0.895±0.019 0.943±0.011 28.23 M 42.83
ResGANet [5] 0.764 0.862 — — 39.21 M 65.10
nnU-Net [29] 0.760 0.843 — — — —
Swin-UNet [13] 0.767 0.850 0.872±0.022 0.927±0.014 25.86 M 5.86
TransUNet [12] 0.775 0.847 0.887±0.020 0.937±0.012 88.87 M 24.63
UNeXt-L [15] 0.754 0.840 0.884±0.021 0.936±0.013 3.80 M 1.08
SegNetr-S 0.752 0.838 0.889±0.018 0.939±0.011 3.60 M 2.71
SegNetr 0.775 0.856 0.905±0.023 0.948±0.014 12.26 M 10.18

3.1 Comparison with State-of-the-arts

ISIC2017 and PH2 Results. As shown in Table. 1, we compared SegNetr with
the baseline U-Net and eight other state-of-the-art methods [5,12,13,15,18,19,20,29].
On the ISIC2017 dataset, SegNetr and TransUNet obtained the highest IoU
(0.775), which is 3.9% higher than the baseline U-Net. Even SegNetr-S with a
smaller number of parameters can obtain a segmentation performance similar to
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that of its UNeXt-L counterpart. By observing the experimental results of PH2,
we found that the Transformer-based method Swin-UNet segmentation has the
worst performance, which is directly related to the data volume of the target
dataset. Our method obtains the best segmentation performance on this dataset
and keeps the overhead low. Although we use an attention method based on win-
dow displacement, the convolutional neural network has a better inductive bias,
so the dependence on the amount of data is smaller compared to Transformer-
based methods such as Swin-UNet or TransUNet.

Table 2. Quantitative results on TNSCUI and ACDC datasets.

Network TNSCUI ACDC / IoU Average
IoU (Dice) Params GFLOPsIoU (Dice) RV Myo LV

U-Net [1] 0.718 (0.806) 0.743 0.717 0.861 0.774 (0.834) 29.59 M 41.83
SegNet [20] 0.726 (0.819) 0.738 0.720 0.864 0.774 (0.836) 17.94 M 22.35
FAT-Net [18] 0.751 (0.842) 0.743 0.702 0.859 0.768 (0.834) 28.23 M 42.83
Swin-UNet [13] 0.744 (0.835) 0.754 0.722 0.865 0.780 (0.843) 25.86 M 5.86
TransUNet [12] 0.746 (0.837) 0.750 0.715 0.866 0.777 (0.838) 88.87 M 24.63
EANet [30] 0.751 (0.839) 0.742 0.732 0.864 0.779 (0.839) 47.07 M 98.63
UNeXt [15] 0.655 (0.749) 0.697 0.646 0.814 0.719 (0.796) 1.40 M 0.44
UNeXt-L [15] 0.693 (0.794) 0.719 0.675 0.840 0.744 (0.815) 3.80 M 1.08
SegNetr-S 0.707 (0.804) 0.723 0.692 0.845 0.753 (0.821) 3.60 M 2.71
SegNetr 0.767 (0.850) 0.761 0.738 0.872 0.791 (0.847) 12.26 M 10.18

TNSCUI and ACDC Results. As shown in Table 2, SegNetr’s IoU and Dice
are 1.6% and 0.8 higher than those of the dual encoder FATNet, respectively,
while the GFLOPs are 32.65 less. In the ACDC dataset, the left ventricle is easier
to segment, with an IoU of 0.861 for U-Net, but 1.1% worse than SegNetr. The
myocardium is in the middle of the left and right ventricles in an annular pattern,
and our method is 0.6% higher IoU than the EANet that focuses on the boundary
segmentation mass. In addition, we observe the segmentation performance of the
four networks UNeXt, UNeXt-L, SegNetr-S and SegNetr to find that the smaller
parameters may limit the learning ability of the network. The proposed method
in this paper shows competitive segmentation performance on all four datasets,
indicating that our method has good generalization performance and robustness.
Additional qualitative results are in the supplementary.

In addition, Fig. 3 provides qualitative examples that demonstrate the effec-
tiveness and robustness of our proposed method. The results show that SegNetr
is capable of accurately describing skin lesions with less data, and achieves multi-
class segmentation with minimized under-segmentation and over-segmentation.

3.2 Ablation Study

Effect of local-global interactions. The role of local-global interactions in
SegNetr can be understood from Table. 3. The overall parameters of the net-
work are less when there is no local or global interaction, but the segmentation
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Fig. 3. Qualitative experimental results of different methods on four datasets.

performance is also greatly affected. With the addition of local or global inter-
actions, the segmentation performance of the network for different categories
is improved. In addition, similar performance can be obtained by running the
local-global interaction modules in series and parallel, but the series connection
leads to lower computational efficiency and affects the running speed.

Table 3. Ablation study of local-global interactions on the ACDC dataset.

Settings ACDC Average
IoU (Dice) Params GFLOPsRV Myo LV

Without 0.750(0.799) 0.720(0.816) 0.861(0.897) 0.777(0.837) 10.93 M 9.75
Only local 0.753(0.800) 0.733(0.825) 0.868(0.904) 0.785(0.843) 12.22 M 10.18
Only global 0.756(0.803) 0.734(0.827) 0.875(0.909) 0.788(0.846) 11.64 M 10.17
Series 0.761(0.809) 0.732(0.824) 0.871(0.907) 0.788(0.846) 12.26 M 10.18
Parallel 0.761(0.807) 0.738(0.828) 0.872(0.907) 0.791(0.847) 12.26 M 10.18

Table 4. Ablation study of patch size (left) and IRSC (right) on TNSCUI and ISIC2017
datasets.

Patch size TNSCUI Params GFLOPs Network
+IRSC

ISIC2017
IoU Dice IoU Dice

(2,2,2,2) 0.751 0.835 54.34 M 10.38 UNeXt-L 0.760(+0.6%) 0.843(+0.3%)
(4,4,4,2) 0.762 0.841 14.32 M 10.22 U-Net 0.744(+0.8%) 0.839(+1.4%)
(8,4,4,2) 0.762 0.843 11.96 M 10.18 UNet++ 0.763(+1.0%) 0.845(+0.5%)
(8,4,2,1) 0.767 0.850 12.26 M 10.18 SegNet 0.712(+1.6%) 0.829(+0.8%)

Effect of patch size. As shown in Table. 4 (left), different patch size signif-
icantly affects the efficiency and parameters of the model. The number of pa-
rameters reaches 54.34 M when patches of size 2 are used in each phase, which
is an increase of 42.08 M compared to using dynamic patches of size (8, 4, 2, 1).
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Based on this ablation study, we recommend the use of [Resolution
14 ] patches size

at different stages.
Effect of IRSC. Table. 4 (right) shows the experimental results of replacing
the skip connections of UNeXt, U-Net, U-Net++, and SegNet with IRSC. These
methods get consistent improvement with the help of IRSC, which clearly shows
that IRSC is useful.

4 Conclusion

In this study, we introduce a novel framework SegNetr for medical image seg-
mentation, which achieves segmentation performance improvement by optimiz-
ing local-global interactions and skip connections. Specifically, the SegNetr block
implements dynamic interactions based on non-overlapping windows using par-
allel local and global branches, and IRSC enables more accurate fusion of shallow
and deep features by providing spacial information. We evaluated the proposed
method using four medical image datasets, and extensive experiments showed
that SegNetr is able to obtain challenging experimental results while maintain-
ing a small number of parameters and GFLOPs. The proposed framework is
general and flexible that we believe it can be easily extended to other U-shaped
networks.
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