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Abstract. Accurate 3D cardiac reconstruction from cine magnetic res-
onance imaging (cMRI) is crucial for improved cardiovascular disease
diagnosis and understanding of the heart’s motion. However, current
cardiac MRI-based reconstruction technology used in clinical settings is
2D with limited through-plane resolution, resulting in low-quality recon-
structed cardiac volumes. To better reconstruct 3D cardiac volumes from
sparse 2D image stacks, we propose a morphology-guided diffusion model
for 3D cardiac volume reconstruction, DMCVR, that synthesizes high-
resolution 2D images and corresponding 3D reconstructed volumes. Our
method outperforms previous approaches by conditioning the cardiac
morphology on the generative model, eliminating the time-consuming
iterative optimization process of the latent code, and improving gener-
ation quality. The learned latent spaces provide global semantics, local
cardiac morphology and details of each 2D cMRI slice with highly inter-
pretable value to reconstruct 3D cardiac shape. Our experiments show
that DMCVR is highly effective in several aspects, such as 2D genera-
tion and 3D reconstruction performance. With DMCVR, we can produce
high-resolution 3D cardiac MRI reconstructions, surpassing current tech-
niques. Our proposed framework has great potential for improving the
accuracy of cardiac disease diagnosis and treatment planning. Code can
be accessed at https://github.com/hexiaoxiao-cs/DMCVR.
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1 Introduction

Medical imaging technology has revolutionized the field of cardiac disease diag-
nosis, enabling the assessment of both cardiac anatomical structures and motion,
including the creation of 3D models of the heart [5]. Cardiac cine magnetic res-
onance imaging (cMRI) [16,20] is widely used in clinical diagnosis [14], allowing
for non-invasive visualization of the heart in motion with detailed information

⋆ Corresponding Author

ar
X

iv
:2

30
8.

09
22

3v
1 

 [
ee

ss
.I

V
] 

 1
8 

A
ug

 2
02

3

https://github.com/hexiaoxiao-cs/DMCVR


2 X. He et al.

⋅⋅⋅

End Diastolic End Systolic 

Captured Image Missing Image

End Diastolic

Global Semantic Encoder

Reverse DDIM Process

Regional Morphology Encoder

Forward DDIM Process

Reconstructed Images Global Semantic Latent Code Regional Morphology Latent Code

Find Latent Variables

Reconstructed Images

Image GenerationLinear Interpolation Spherical Linear Interpolation

Reconstructed Cardiac Model

𝑥!

𝑥!

… 𝑥"#!

𝑥"

…𝑥"#! 𝑥!

ℓ#$%

ℓ%&'

𝑥"

ℓ#$%

ℓ%&'

Short 
Axis 

Image

Long 
Axis 

Image
(2ch)

Long 
Axis 

Image
(2ch)

Segmentation

Original SAX Images

(a) Limitation of cardiac cine MR imaging (b) Architecture of DMCVR

Fig. 1. (a) demonstrates the limitations of cardiac cMRI. The white line in the short
axis (SAX) image is the location of 2 chamber (2ch) long axis (LAX) image slice and
vice versa. The grey images indicate the missing slices which are not captured during
the MRI scan. (b) is an overview of our DMCVR architecture. The SAX images x0 are
first encoded to global semantic ℓsem, regional morphology ℓmor and stochastic latent
codes xT , followed by interpolation in their respective latent space. The reconstructed
images are sampled from a forward denoising diffusion implicit model (DDIM) process
conditioned on the three latent codes. Finally, the 3D cardiac model is reconstructed via
stacking the labels. The red, green, and blue regions represent the left ventricle cavity
(LVC), left ventricle myocardium (LVM), and right ventricle cavity (RVC), respectively.

on cardiac function and anatomy [17]. While cMRI has great potential in helping
doctors understand and analyze cardiac function [9,15], the imaging technique
has certain drawbacks including low through-plane resolution to accommodate
for the limited scanning time, as visualized in Fig. 1. Recently, researchers have
approached the problem of cardiac volume reconstruction with learning-based
generative models [2]. However, most of the methods suffer from low generation
quality, missing key cardiac structures and long generation times. This paper
focuses on improving the cardiac model generation quality, while reducing the
generation time, aiming to better reconstruct the missing structure of the cardiac
model from low through-plane resolution cMRI.

Conventional 3D cardiac modeling [12] consists of 2D cardiac image seg-
mentation followed by 3D cardiac volume reconstruction. Recent advances in
deep learning methods have shown great success in medical image segmentation
[4,6,11,23]. After obtaining 2D labels, the neighboring labels are stacked to re-
construct the 3D model. Nevertheless, due to the low inter-slice spatial cMRI
resolution, a significant amount of structural information is lost in the resulting
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3D volume. Thus, the interpolation between cMRI slices is necessary. Traditional
intensity-based interpolation methods often yield blurring effects and unrealis-
tic results. Conventional deformable model-based method [13] does not need
consistency across images of the corresponding cardiac structures, but requires
image-based structure segmentation which is nontrivial and hinders their ability
to generalize. To overcome these limitations, an end-to-end pipeline based on
generative adversarial networks (GANs), DeepRecon, was recently proposed in
[2] that utilizes the latent space to interpolate the missing information between
adjacent 2D slices. The generative network is first trained and a semantic image
embedding in the W+ space [1] is computed. Evidently, the acquired semantic
latent code is not optimal and needs iterative optimization with segmentation
information for improving image qualities. However, even with the optimization
step, the generated images still miss details in the cardiac region, which indicates
the W+ space DeepRecon found does not represent the heart accurately.

In order to eliminate the step for optimizing the latent code and improve
the image generation quality, we propose a morphology-guided diffusion-based
3D cardiac volume reconstruction method that improves the axial resolution of
2D cMRIs through global semantic and regional morphology latent code inter-
polation as indicated in Fig. 1. Inspired by [19], we utilize the global semantic
latent code to encode the image into a high-level meaningful representation of
the image. To improve the cardiac volume reconstruction, our approach needs
to focus on the cardiac region. Therefore, we introduce the regional morphol-
ogy latent code which represents the shapes and locations of LVC, LVM and
RVC, which will help generating the cardiac region. The method consists of
three parts: an implicit diffusion model, a global semantic encoder and a seg-
mentation network that encodes an image to regional morphology embeddings.
The proposed method does not require iteratively fine-tuning the latent codes.
Our contributions are: 1) the first diffusion-based method for 3D cardiac vol-
ume reconstruction, 2) introducing the local morphology-based latent code for
improved conditioning on the image generation process, 3) 8% improvement of
left ventricle myocardium (LVM) segmentation accuracy and 35% improvement
of structural similarity index compared to previous methods, and 4) improved
efficiency by eliminating the iterative step for optimizing the latent code.

2 Methods

Fig. 2 demonstrates the structure of our DMCVR approach that learns the global
semantic, regional morphology, and stochastic latent spaces from MR images to
yield a broad range of outcomes, including generation of high-quality 2D image
and high-resolution 3D reconstructed volume. In this section, we will first de-
scribe the architecture of our DMCVR method and then elaborate on the latent
space-based 3D volume generation which enables 3D volume reconstruction.
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Fig. 2. On the left side, we demonstrates the network structure of the DMCVR, which
consists of an global semantic encoder, a regional morphology encoder/decoder and a
conditional DDIM. The right side shows the visualization of the stochastic latent space
sampled from a high-dimensional Gaussian distribution N (0, I).

2.1 DMCVR Architecture

Our DMCVR is composed of a global semantic encoder Esem, a regional mo-
prphology network (Emor, Dmor) and a diffusion-based generator G. The gener-
ating process G is defined as follows: given input xT , ℓsem, ℓmor, which are the
stochastic, global semantic and regional morphology latent codes, we want to
reconstruct the image x0 recursively as follows:

xt−1 =
√
αt−1fθ(xt, t, ℓsem, ℓmor) +

√
1− αt−1ϵθ(xt, t, ℓsem, ℓmor), (1)

where ϵθ(xt, t, ℓsem, ℓmor) is the noise prediction network and fθ is defined as
removing the noise from xt or Tweedie’s formula [3]:

fθ(xt, t, ℓsem, ℓmor) =
1

√
αt

(xt −
√
1− αtϵθ(xt, t, ℓsem, ℓmor)) (2)

Here, the term αt is a function of t affecting the sampling quality.
The forward diffusion process takes the noise xT as input and produces x0

the target image. Since the change in xT will affect the details of the output
images, we can treat xT as the stochastic latent code. Therefore, finding the
correct stochastic latent code is crucial for generating image details. Thanks to
DDIM proposed by Song et al. [21], it is possible to get xT in a deterministic
fashion by running the generative process backwards to obtain the stochastic
latent code xT for a given image x0. This process is viewed as a stochastic
encoder xT = Esto(x0, ℓsem, ℓmor), which is conditioned on ℓsem and ℓmor. This
conditioning helps us to remove the iterative optimization step used by previous
method. We formulate the inversion process from x0 to xT as follows:

xt+1 =
√
αt+1fθ(xt, t, ℓsem, ℓmor) +

√
1− αt+1ϵθ(xt, t, ℓsem, ℓmor) (3)



DMCVR: Diffusion Model for 3D Cardiac Volume Reconstruction 5

Although using the stochastic latent variables we are able to reconstruct
the image accurately, the stochastic latent space does not contain interpolatable
high-level semantics. Here we utilize a semantic encoder proposed by Preechakul
et al. [19] to encode the global high-level semantics into a descriptive vector for
conditioning the diffusion process, similar to the style vector in StyleGAN [10].
The global semantic encoder utilizes the first half of the UNet, and is trained
end-to-end with the conditional diffusion model.

One drawback of the global semantic encoder is that it encodes the general
high-level features, but tends to pay little attention to the cardiac region. This
is due to the relatively small area of LVC, LVM and RVC in the cMRI slice.
However, the generation accuracy of the cardiac region is crucial for the cardiac
reconstruction task. For this reason, we introduce the regional morphology en-
coder Emor that embeds the image into the latent space containing necessary
information to produce the segmentation map of the target cardiac tissues. With
this extra morphology information, we are able to guide the generative model to
focus on the boundary of the ventricular cavity and myocardium region, which
will produce increased image accuracy in the cardiac region and the downstream
segmentation task. Here, we do not assume any particular architecture for the
segmentation network. However, in our experiments, we utilize the segmentation
network MedFormer proposed by Gao et al. [4] for its excellent performance.

The training of DMCVR contains the training of the segmentation network
and the training of the generative model. We first train the segmentation model
with summation of focal loss and dice loss [4]. We utilize the simple loss intro-
duced in [7] for training the conditional diffusion implicit model, where

Lgen(x) = Et∼Unif(1,T ),ϵ∼N (0,I)||ϵθ(xt, t, Esem(x0), Emor(x0))− ϵ||22. (4)

2.2 3D volume reconstruction and latent-space-based interpolation

Due to various limitations, the gap between consecutive cardiac slices in cMRI is
large, which results in an under-sampled 3D model. In order to output a smooth
super-resolution cine image volume, we generate the missing slices by using the
interpolated global semantic, regional morphology and stochastic latent codes.
For global semantic and regional morphology latent code ℓ, since it is similar to
the idea of latent code in StyleGAN, we utilize the same interpolation strategies
as in the original paper between adjacent slices. Assume that k < j − i, i < j,

ℓi+k = (1− k

j − i
)ℓi +

k

j − i
ℓj . (5)

For interpolating the stochastic latent variable, it is important to consider
that the distribution of stochastic noise is high-dimensional Gaussian, as shown
in Eq. (4). Thus, our stochastic embedding is positioned on a sphere shown
in Fig. 2. Using linear interpolation on the stochastic noise deviates from the
underlying distribution assumption and causes the diffusion model to generate
unrealistic images. Hence, to preserve the Gaussian property of the stochastic
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Table 1.Quantitative comparison among the segmentation results of the original image
(Original), DeepRecon with 1k optimization steps (DeepRecon1k), Diffusion AutoEn-
coder [19] (DiffAE) and our DMCVR. We use a pretrained segmentation model on
images generated by different methods. All metrics are evaluated against the ground
truth based on 3D SAX images.

Cardiac Region Method DICE ↑ VOE↓ ASD↓ HD↓ ASSD↓

All labels

Original 0.943 10.730 0.229 4.056 0.229
DeepRecon1k 0.914 15.179 0.367 5.879 0.397

DiffAE 0.919 14.913 0.322 4.654 0.326
DMCVR 0.935 12.153 0.261 4.093 0.266

LVC

Original 0.937 11.579 0.221 3.156 0.224
DeepRecon1k 0.928 12.955 0.336 4.299 0.328

DiffAE 0.910 16.049 0.330 3.710 0.320
DMCVR 0.929 12.940 0.250 3.236 0.254

LVM

Original 0.875 22.082 0.226 3.140 0.237
DeepRecon1k 0.796 33.382 0.390 5.730 0.389

DiffAE 0.825 29.333 0.351 4.032 0.338
DMCVR 0.865 23.636 0.282 3.519 0.267

RVC

Original 0.898 18.187 0.273 4.458 0.267
DeepRecon1k 0.858 23.662 0.381 6.304 0.473

DiffAE 0.857 24.518 0.346 5.217 0.382
DMCVR 0.884 20.467 0.273 4.460 0.308

latent space, we interpolate the stochastic latent codes over a unit sphere, which
can be written as follows: Let k < j − i, i < j and xi

T · xj
T = cos θ,

xi+k
T =

sin((1− k
j−i )θ)

sin(θ)
xi
T +

sin( k
j−iθ)

sin(θ)
xj
T . (6)

3 Experiments

3.1 Experimental Settings

In this study we use data from the publicly available UK Biobank cardiac MRI
data [18], which contains SAX and LAX cine CMR images of normal subjects.
LVC, LVM and RVC are manually annotated on SAX images at the end-diastolic
(ED) and end-systolic (ES) cardiac phases. We use 808 cases containing 484,800
2D SAX MR slices for training and 200 cases containing 120,000 2D images for
testing. To evaluate the 3D volume reconstruction performance, we randomly
choose 50 testing 2D LAX cases to evaluate the 3D volume reconstruction task.
All models are implemented on PyTorch 1.13 and trained with 4×RTX8000.

3.2 Evaluation of the 2D slice generation quality

We provide peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [8] to evaluate the similarity between the generated images and
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(a) (c)(b) (d)

(e) (f) (g) (h)

Fig. 3. 2D and 3D visualization results of the generated images and segmentation. (a,e)
original image, (b,f) DeepRecon1k, (c,g) DiffAE [19], (d,h) our proposed DMCVR.

the original images. In addition to image quality assessment, we want to consider
the segmentation performance on the generated images by using a segmentation
network trained on the real training data as the evaluator and segment the
testing images generated by DeepRecon1k, DiffAE which only uses the global
semantic latent code as the condition on the DDIM model, and our DMCVR
methods. The segmentation accuracy of the evaluator on the generated images
can be viewed as a quantitative metric to represent the generation quality of the
generated data compared to the cMRI data. We compare segmentation obtained
based on three methods against ground truth on the SAX images in Tab. 1. The
Dice coefficient (DICE), volumetric overlap error (VOE), average surface dis-
tance (ASD), Hausdorff distance (HD) and average symmetric surface distance
(ASSD) [22] are reported for comparison.

Our method achieves a PSNR score of 30.504 and SSIM score of 0.982,
which is a significant improvement (35% increase in SSIM) compared to Deep-
Recon (PSNR: 27.684, SSIM: 0.724) with 1k optimization steps. This indicates
that our method generates more realistic image compared to DeepRecon. The
segmentation results on the original images in Tab. 1 provide an upper bound for
other results. DMCVR outperforms all other methods in every metric with an
8% increase in LVM segmentation compared to DiffRecon1kMoreover, by com-
paring the DiffAE and DMCVR, the introduction of the regional morphology
latent code drastically improves the generation results due to the extra infor-
mation on the shape of LVC, LVM, and RVC. Fig. 3 demonstrates the original
image and corresponding synthetic images. The white arrow points towards the
presence of cardiac papillary muscles. As indicated in the images, DeepRecon1k
(b) cannot effectively recover the information of the papillary muscles from the
latent space. However, both diffusion-based (c,d) methods accurately synthesize
the information. Our method (d) generates a cleaner image with less artifacts
than (c), especially around the LV and RV regions. By comparing the yellow
circled area, our method produces image closer to the ground truth compared to
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Table 2. Evaluation of 3D volumetric reconstruction from the DICE score of the
intersection on each LAX plane against ground truth based on 2D LAX sampled im-
ages: mean (standard deviation). Nearest Neighbor, Image-based Linear Interpolation,
DeepRecon1k and our DMCVR method are compared.

Method Average DICE 2ch DICE 3ch DICE 4ch DICE

Nearest Neighbor 0.780 (0.111) 0.787 (0.091) 0.793 (0.105) 0.766 (0.128)

Linear Interpolation 0.781 (0.080) 0.797 (0.051) 0.773 (0.070) 0.768 (0.102)

DeepRecon1k 0.817 (0.097) 0.848 (0.056) 0.802 (0.141) 0.797 (0.091)

DMCVR 0.836 (0.052) 0.841 (0.042) 0.809 (0.069) 0.854 (0.043)

2ch
View

3ch
View

4ch
View

SAX NN SAX NN Label SAX DMCVR SAX DMCVR Label LAX Original

Fig. 4. Visual comparison of 3D volumetric reconstruction from SAX images to LAX.
Each row from top to bottom are 2ch, 3ch and 4ch images. The column from left to
right represents: resampled original images using nearest neighbour (NN), resampled
original labels using NN, resampled DMCVR images, resampled DMCVR labels and
the corresponding LAX images.

DeepRecon1k. Also, the white circle in Fig. 3 demonstrates the benefits of incor-
porating regional morphology information. Besides, the generative model used in
DeepRecon1k needs to be trained for 14 days with additional time to iteratively
optimize the latent code for each slice. Our method uses 4.8 days for training.
Since DDIM inversion does not have test-time optimization as DeepRecon does,
DMCVR generates images faster than DeepRecon.

3.3 Evaluation of the 3D volume reconstruction quality through
latent space interpolation

In this section, we exploit the relationship between SAX and LAX images and
leverage the LAX label to evaluate the volume reconstruction quality. In car-
diac MRI, long axis (LAX) slices typically comprise 2-chamber (2ch), 3-chamber
(3ch), and 4-chamber (4ch) views. To evaluate the performance of different in-
terpolation methods on LAX slices, we conducted the following experiments: 1)
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Nearest Neighbor resampling of short-axis (SAX) volume to each LAX view, 2)
Image-based Linear Interpolation, 3) DeepRecon1k, and 4) our DMCVR. Tab. 2
shows the computed 2D DICE score between the annotation of different LAX
views and the intersection between the corresponding LAX plane and 3D re-
constructed volume. Our method outperforms other methods in three categories
and has only less than 1% performance degradation compared to DeepRecon1k
but with more stable performance. Fig. 4 presents three examples for each LAX
view, showing better reconstructed LAX results compared to the original images.

4 Conclusion

Integrating analysis of cMRI holds significant clinical importance in understand-
ing and evaluating cardiac function. We propose a diffusion-model-based volume
reconstruction method. Our finding shows that through an interpolatable latent
space, we are able to improve the spatial resolution and produce meaningful MR
images. In the future, we will consider incorporating LAX slices as part of the
generation process to help refine the latent space.
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