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Abstract. Heart failure is a severe and life-threatening condition that
can lead to elevated pressure in the left ventricle. Pulmonary Arte-
rial Wedge Pressure (PAWP) is an important surrogate marker indi-
cating high pressure in the left ventricle. PAWP is determined by Right
Heart Catheterization (RHC) but it is an invasive procedure. A non-
invasive method is useful in quickly identifying high-risk patients from
a large population. In this work, we develop a tensor learning-based
pipeline for identifying PAWP from multimodal cardiac Magnetic Reso-
nance Imaging (MRI). This pipeline extracts spatial and temporal fea-
tures from high-dimensional scans. For quality control, we incorporate
an uncertainty-based binning strategy to identify poor-quality training
samples. We leverage complementary information by integrating features
from multimodal data: cardiac MRI with short-axis and four-chamber
views, and cardiac measurements. The experimental analysis on a large
cohort of 1346 subjects who underwent the RHC procedure for PAWP
estimation indicates that the proposed pipeline has a diagnostic value
and can produce promising performance with significant improvement
over the baseline in clinical practice (i.e., ∆AUC = 0.10, ∆Accuracy
= 0.06, and ∆MCC = 0.39). The decision curve analysis further con-
firms the clinical utility of our method. The source code can be found
at: https://github.com/prasunc/PAWP.

Keywords: Cardiac MRI · Multimodal Learning · Pulmonary Arterial
Wedge Pressure.

1 Introduction

Heart failure is usually characterized by the inability of the heart to supply
enough oxygen and blood to other organs of the body [4]. It is a major cause of
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mortality and hospitalization [14]. Elevated Pulmonary Arterial Wedge Pressure
(PAWP) is indicative of raised left ventricular filling pressure and reduced con-
tractility of the heart. In the absence of mitral valve or pulmonary vasculature
disease, PAWP correlates with the severity of heart failure and risk of hospital-
ization [1]. While PAWP can be measured by invasive and expensive Right Heart
Catheterization (RHC), simpler and non-invasive techniques could aid in bet-
ter monitoring of heart failure patients. Cardiac Magnetic Resonance Imaging
(MRI) is an effective tool for identifying various heart conditions and its ability
to detect disease and predict outcome has been further improved by machine
learning techniques [3]. For instance, Swift et al. [17] introduced a machine-
learning pipeline for identifying Pulmonary Arterial Hypertension (PAH). Re-
cently, Uthoff et al. [18] developed geodesically smoothed tensor features for
predicting mortality in PAH.

Cardiac MRI scans contain high-dimensional spatial and temporal features
generated throughout the cardiac cycle. The small number of samples com-
pared to the high-dimensional features poses a challenge for machine learn-
ing classifiers. To address this issue, Multilinear Principal Component Analy-
sis (MPCA) [11] utilizes a tensor-based approach to reduce feature dimensions
while preserving the information for each mode, i.e. spatial and temporal infor-
mation in cardiac MRI. Hence, the MPCA method is well-suited for analyzing
cardiac MRI scans. The application of the MPCA method to predict PAWP
might further increase the diagnostic yield of cardiac MRI in heart failure pa-
tients and help to establish cardiac MRI as a non-invasive alternative to RHC.
Existing MPCA-based pipelines for cardiac MRI [17,18,2] rely on manually la-
beled landmarks that are used for aligning heart regions in cardiac MRI. The
manual labeling of landmarks is a cumbersome task for physicians and impracti-
cal for analyzing large cohorts. Moreover, even small deviations in the landmark
placement may significantly impact the classification performance of automatic
pipelines [16]. To tackle this challenge, we leverage automated landmarks with
uncertainty quantification [15] in our pipeline. We also extract complementary
information from multimodal data from short-axis, four-chamber, and Cardiac
Measurements (CM). We use CM features (i.e., left atrial volume and left ventric-
ular mass) identified in the baseline work by Garg et al. [5] for PAWP prediction.

Our main contributions are summarized as follows: 1) Methodology:
We developed a fully automatic pipeline for PAWP prediction using cardiac
MRI data, which includes automatic landmark detection with uncertainty quan-
tification, an uncertainty-based binning strategy for training sample selection,
tensor feature learning, and multimodal feature integration. 2) Effectiveness:
Extensive experiments on the cardiac MRI scans of 1346 patients with various
heart diseases validated our pipeline with a significant improvement (∆AUC
= 0.1027, ∆Accuracy = 0.0628, and ∆MCC = 0.3917) over the current clinical
baseline. 3) Clinical utility: Decision curve analysis indicates the diagnostic
value of our pipeline, which can be used in screening high-risk patients from a
large population.
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Fig. 1: The schematic overview of the PAWP prediction pipeline including pre-
processing, tensor feature learning, and performance analysis. The blocks in gray
color are explained in more detail in Section 2.

2 Methods

As shown in Fig. 1, the proposed pipeline for PAWP prediction comprises three
components: preprocessing, tensor feature learning, and performance analysis.

Cardiac MRI Preprocessing: The preprocessing of cardiac MRI contains
(1) normalization of scans, (2) automatic landmark detection, (3) inter-subject
registration, and (4) in-plane downsampling. We standardize cardiac MRI inten-
sity levels using Z-score normalization [7] to eliminate inter-subject variations.
Furthermore, we detect automatic landmarks which is explained in the next
paragraph. We perform affine registration to align the heart regions of different
subjects to a target image space. We then carry out in-plane scaling of scans
by max-pooling at 2, 4, 8, and 16 times and obtain down-sampled resolutions of
128× 128, 64× 64, 32× 32, and 16× 16, respectively.

Landmark Detection and Uncertainty-based Sample Binning: We uti-
lize supervised learning to automate landmark detection using an ensemble of
Convolutional Neural Networks (CNNs) for each modality (short-axis and four-
chamber). We use the U-Net-like architecture and utilize the same training
regime implemented in [15]. We employ Ensemble Maximum Heatmap Activa-
tion (E-MHA) strategy [15] which incorporates an ensemble of five models for
each modality. We utilize three landmarks for each modality, with the short-axis
modality using the inferior hinge point, superior hinge point, and inferolateral
inflection point of the right ventricular apex, and the four-chamber modality us-
ing the left ventricular apex and mitral and tricuspid annulus. E-MHA produces
an associated uncertainty estimate for each landmark prediction, representing
the model’s epistemic uncertainty as a continuous scalar value.

A minor error in landmark prediction can result in incorrect image regis-
tration [16]. To address this issue, we hypothesize that incorrectly preprocessed
samples resulting from inaccurate landmarks can introduce ambiguity during
model training. For quality control, it is crucial to identify and effectively han-
dle such samples. In this study, we leverage predicted landmarks and epistemic
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uncertainties to tackle this problem using uncertainty-based binning. To this end,
we partition the training scans based on the uncertainty values of the landmarks.
The predicted landmarks are divided into K quantiles, i.e., Q = {q1, q2, ..., qK},
based on the epistemic uncertainty values. We then iteratively filter out training
samples starting from the highest uncertain quantile. A sample is discarded if
the uncertainty of any of its landmarks lies in quantile qk where k = {1, 2, ...,K}.
The samples are discarded iteratively until there is no improvement in the val-
idation performance, as measured by the area under the curve (AUC), for two
subsequent iterations.

Tensor Feature Learning: To extract features from processed cardiac scans,
we employ tensor feature learning, i.e. Multilinear Principal Component Analysis
(MPCA) [11], which learns multilinear bases from cardiac MRI stacks to obtain
low-dimensional features for prediction. Suppose we haveM scans as third-order
tensors in the form of {X1,X2, ..,XM ∈ RI1×I2×I3}. The low-dimensional tensor
features {Y1,Y2, ..,YM ∈ RP1×P2×P3} are extracted by learning three (N = 3)
projection matrices {U (n) ∈ RIn×Pn , n = 1, 2, 3} as follows:

Ym = Xm ×1 U
(1)T ×2 U

(2)T ×3 U
(3)T ,m = 1, 2, ...,M, (1)

where Pn < In, and ×n denotes a mode-wise product. Therefore, the feature
dimensions are reduced from I1 × I2 × I3 to P1 ×P2 ×P3. We optimize the pro-
jection matrices {U (n)} by maximizing total scatter ψY =

∑M
m=1 ||Ym − Ȳ||2F ,

where Ȳ = 1
M

∑M
m=1 Ym is the mean tensor feature and ||.||F is the Frobe-

nius norm [10]. We solve this problem using an iterative projection method. In
MPCA, {P1, P2, P3} can be determined by the explained variance ratio, which is
a hyperparameter. Furthermore, we apply Fisher discriminant analysis to select
the most significant features based on their Fisher score [8]. We select the top
k-ranked features and employ Support Vector Machine (SVM) for classification.

Multimodal Feature Integration: To enhance performance, we perform mul-
timodal feature integration using features extracted from the short-axis, four-
chamber, and Cardiac Measurements (CM). We adopt two strategies for feature
integration, namely the early and late fusion of features [6]. In early fusion, the
features are fused at the input level without doing any transformation. We con-
catenate features from the short-axis and four-chamber to perform this fusion.
We then apply MPCA [11] on the concatenated tensor, enabling the selection of
multimodal features. In late fusion, the integration of features is performed at
the common latent space that allows the fusion of features that have different
dimensionalities. In this way, we can perform a late fusion of CM features with
short-axis and four-chamber features. However, we can not perform an early
fusion of CM features with short-axis and four-chamber features.

Performance Evaluation: In this paper, we use three primary metrics: Area
Under Curve (AUC), accuracy, and Matthew’s Correlation Coefficient (MCC),
to evaluate the performance of the proposed pipeline. Decision Curve Analysis
(DCA) is also conducted to demonstrate the clinical utility of our methodology.
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Table 1: Baseline characteristics of included patients. p values were obtained
using t-test [20].

Low PAWP(≤ 15) High PAWP(> 15) p-value

Number of patients 940 406 -

Age (in years) 64.8± 14.2 70.5± 10.6 < 0.01

Body Surface Area (BSA) 1.88± 0.28 1.93± 0.24 < 0.01

Heart Rate (bpm) 73.9± 15.5 67.6± 15.9 < 0.01

Left Ventricle Mass (LVM) 92.3± 25 106± 33.1 < 0.01

Left Atrial Volume (ml2) 72.2± 33.7 132.2± 56.7 < 0.01

PAWP (mmHg) 10.3± 3.1 21.7± 4.96 < 0.01

3 Experimental Results and Analysis

Study Population: Patients with suspected pulmonary hypertension were iden-
tified after institutional review board approval and ethics committee review. A
total of 1346 patients who underwent Right Heart Catheterization (RHC) and
cardiac MRI scans within 24 hours were included. Of these patients, 940 had
normal PAWP (≤ 15 mmHg), while 406 had elevated PAWP (> 15 mmHg).
Table 1 summarizes baseline patient characteristics. RHC was performed using
a balloon-tipped 7.5 French thermodilution catheter.

Cardiac MRI and measurement: MRI scans were obtained using a 1.5 Tesla
whole-body GE HDx MRI scanner (GE Healthcare, Milwaukee, USA) equipped
with 8-channel cardiac coils and retrospective electrocardiogram gating. Two
cardiac MRI protocols, short-axis and four-chamber, were employed, following
standard clinical protocols to acquire cardiac-gated multi-slice steady-state se-
quences with a slice thickness of 8 mm, a field of view of 48× 43.2, a matrix size
of 512× 512, a bandwidth of 125 kHz, and TR/TE of 3.7/1.6 ms. Following [5],
left ventricle mass and left atrial volume were selected as cardiac measurements.

Experimental Design: We conducted experiments on short-axis and four-
chamber scans across four scales. To determine the optimal parameters, we per-
formed 10-fold cross-validation on the training set. From MPCA, we selected
the top 210 features. We employed early and late fusion on short-axis and four-
chamber scans, respectively, while CM features were only fused using the late
fusion strategy. We divided the data into a training set of 1081 cases and a
testing set of 265 cases. To simulate a real testing scenario, we designed the
experiments such that patients diagnosed in the early years were part of the
training set, while patients diagnosed in recent years were part of the testing
set. We also partitioned the test into 5 parts based on the diagnosis time to
perform different runs of methods and report standard deviations of methods in
comparison results. For SVM, we selected the optimal hyper-parameters from
{0.001, 0.01, 0.1, 1} using the grid search technique. The code for the experiments
has been implemented in Python (version 3.9). We leveraged the cardiac MRI
preprocessing pipeline and MPCA from the Python library PyKale [9] and SVM
implementation is taken from scikit-learn [12].
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Fig. 2: Performance comparison of removing a different number of bins of training
data on 10-fold cross-validation.
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Fig. 3: The effect of combining CM features on short-axis and four-chamber. SA:
Short-axis; FC: Four-chamber.

Uncertainty-Based Sample Binning: To improve the quality of training
data, we used quantile binning to remove training samples with uncertain land-
marks. The landmarks were divided into 50 bins, and then removed one bin at a
time in the descending order of their uncertainties. Figure 2 depicts the results of
binning using 10-fold cross-validation on the training set, where the performance
improves consistently over the four scales when removed bins ≤ 5. Based on the
results, we removed 5 bins (129 out of 1081 samples) from the training set, and
used the remaining 952 training samples for the following experiments.

Unimodal Study: The performance of three models on single-modality is re-
ported in Table 2, including short-axis (SA), four-chamber (FC), and cardiac
measurements (CM), where the CM based unimodal is considered as the base-
line. The results demonstrate an improvement of ∆AUC = 0.0800 ∆Accuracy
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Table 2: Performance comparison using three metrics (with best in bold and
second best underlined). FC: Four-Chamber features; SA: Short-Axis features;
CM: Cardiac Measurement features. The standard deviations of methods were
obtained by dividing the test set into 5 parts based on the diagnosis time.

Modality Resolution AUC Accuracy MCC

Unimodal (CM) [5] - 0.7300± 0.04 0.7400± 0.03 0.1182± 0.03

Unimodal (SA) [17] 64× 64 0.7391± 0.05 0.7312± 0.07 0.3604± 0.02
128× 128 0.7495± 0.05 0.7321± 0.04 0.3277± 0.01

Unimodal (FC) [17] 64× 64 0.8034± 0.02 0.7509± 0.04 0.4240± 0.02
128× 128 0.8100± 0.04 0.7925± 0.05 0.4666± 0.02

Bi-modal (SA and FC): 64× 64 0.7998± 0.01 0.7698± 0.03 0.4185± 0.03
Early fusion 128× 128 0.7470± 0.02 0.7283± 0.02 0.3512± 0.02

Bi-modal (SA and FC): 64× 64 0.8028± 0.04 0.7509± 0.03 0.3644± 0.01
Late fusion 128× 128 0.8122± 0.03 0.7547± 0.03 0.3594± 0.02

Bi-modal (SA and CM): 64× 64 0.7564± 0.04 0.7585± 0.02 0.3825± 0.02
Late fusion 128× 128 0.7629± 0.03 0.7434± 0.03 0.3666± 0.03

Bi-modal (FC and CM): 64× 64 0.8061± 0.03 0.7709± 0.02 0.4435± 0.02
Late fusion 128× 128 0.8135± 0.02 0.7925± 0.02 0.4999± 0.03

Tri-modal (FC, SA, and CM) 64× 64 0.8146± 0.04 0.7774± 0.03 0.4460± 0.02
Hybrid fusion 128× 128 0.8327± 0.06 0.8038± 0.05 0.5099± 0.04

Tri-modal Hybrid fusion 64× 64 0.7892± 0.04 0.7513± 0.05 0.4278± 0.02
without uncertainty binning 128× 128 0.8036± 0.03 0.7820± 0.04 0.4779± 0.01

= 0.0527, and ∆MCC = 0.3484 over the baseline obtained by FC based uni-
modal, which indicates that tensor-based features have a diagnostic value.

Bi-modal Study: In this experiment, we compared the performance of bi-modal
models. As shown in Table 2, bimodal (four-chamber and CM) produces superior
performance (i.e., AUC = 0.8135, Accuracy=0.7925 and MCC = 0.4999) among
bi-modal models. Next, we investigated the effect of fusing CM features with
short-axis and four-chamber modalities in Fig. 3. It can be observed from these
figures that the fusion of CM features enhances the diagnostic power of car-
diac MRI modalities at all scales. The bi-modal (four-chamber and CM) model
achieved the improvement in the performance (∆AUC = 0.0035 and ∆MCC
= 0.0333) over the unimodal (four-chamber) model.

Effectiveness of Tri-modal: In this experiment, we performed a fusion of CM
features with the bi-modal models to create two tri-modal models. The first tri-
modal is tri-modal late (CM with a late fusion of short-axis and four-chamber)
and the second tri-modal is a tri-modal hybrid (CM with an early fusion of
short-axis and four-chamber). As shown in Fig. 4, CM features enhance the
performance of bi-modal models and tri-modal hybrid outperforms all. The tri-
modal hybrid obtained the best performance (Table 2, where AUC = 0.8327,
Accuracy = 0.8038, and MCC = 0.5099) and a significant improvement of∆AUC
= 0.1027, ∆Accuracy = 0.0628, and ∆MCC = 0.3917 over the baseline method.

Decision Curve Analysis (DCA) [19,13] on the performance suggests the
potential clinical utility of the proposed method. As shown in Fig. 5, the Tri-
modal model outperformed the baseline method for most possible benefit/harm
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disease status, while “Treat None” means treating no patients at all. Our pre-
dictive model’s net benefit is compared with the net benefit of treating everyone
or no one to determine its overall utility.

preferences, where benefit indicates a positive net benefit (i.e. correct diagnosis)
and harm indicates a negative net benefit (i.e. incorrect diagnosis). The tri-modal
model (the best model) obtained a higher net benefit between decision threshold
probabilities of 0.30 and 0.70 which implies that our method has a diagnostic
value and can be used in screening high-risk patients from a large population.

Feature contributions: Our model is interpretable. The highly-weighted fea-
tures were detected in the left ventricle and interventricular septum in cardiac
MRI. For cardiac measurements, left atrial volume (0.778/1) contributed more
than left ventricular mass (0.222/1) to the prediction.

4 Conclusions

This paper proposed a tensor learning-based pipeline for PAWP classification.
We demonstrated that: 1) tensor-based features have a diagnostic value for
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PAWP, 2) the integration of CM features improved the performance of unimodal
and bi-modal methods, 3) the pipeline can be used to screen a large population,
as shown using decision curve analysis. However, the current study is limited to
single institutional data. In the future, we would like to explore the applicability
of the method for multi-institutional data using domain adaptation techniques.
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