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Abstract. Lung nodule malignancy prediction has been enhanced by ad-
vanced deep-learning techniques and effective tricks. Nevertheless, current
methods are mainly trained with cross-entropy loss using one-hot cate-
gorical labels, which results in difficulty in distinguishing those nodules
with closer progression labels. Interestingly, we observe that clinical text
information annotated by radiologists provides us with discriminative
knowledge to identify challenging samples. Drawing on the capability
of the contrastive language-image pre-training (CLIP) model to learn
generalized visual representations from text annotations, in this paper,
we propose CLIP-Lung, a textual knowledge-guided framework for lung
nodule malignancy prediction. First, CLIP-Lung introduces both class
and attribute annotations into the training of the lung nodule classifier
without any additional overheads in inference. Second, we designed a
channel-wise conditional prompt (CCP) module to establish consistent
relationships between learnable context prompts and specific feature maps.
Third, we align image features with both class and attribute features via
contrastive learning, rectifying false positives and false negatives in latent
space. The experimental results on the benchmark LIDC-IDRI dataset
have demonstrated the superiority of CLIP-Lung, both in classification
performance and interpretability of attention maps.

Keywords: Lung nodule classification · vision-language model · prompt
learning.

1 Introduction

Lung cancer is one of the most fatal diseases worldwide, and early diagnosis of
the pulmonary nodule has been identified as an effective measure to prevent lung
cancer. Deep learning-based methods for lung nodule classification have been
widely studied in recent years [9, 10, 12]. Usually, the malignancy prediction is
often formulated as benign-malignant binary classification [9, 19], and the higher
classification performance and explainable attention maps are impressive. Most
previous works employ a learning paradigm that utilizes cross-entropy loss between
predicted probability distributions and ground-truth one-hot labels. Furthermore,
inspired by ordered labels of nodule progression, researchers have turned their
attention to ordinal regression methods to evaluate the benign-unsure-malignant
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(a) Unimodal Contrastive Learning (b) Textual Knowledge-Guided Contrastive Learning
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Fig. 1. Motivation of CLIP-Lung. (a) Unimodal contrastive learning. (b) Proposed
textual knowledge-guided contrastive learning. Yellow values are annotated malignancy
scores. Dashed boxes contain pairs of textual attributes and annotated values.

classification task [2, 11,13,18,21], where the training set additionally includes
nodules with uncertain labels. Indeed, the ordinal regression-based methods are
able to learn ordered manifolds and to further enhance the prediction accuracy.

However, the aforementioned methods still face challenges in distinguishing
visually similar samples with adjacent rank labels. For example in Fig. 1 (a), since
we conduct unimodal contrastive learning and map the samples onto a spherical
space, the false positive nodule with a malignancy score of 2.75 has a closer
distance to that with a score of 4.75, and the false negative one should not be closer
to that of score 2.5. To address this issue, we found that the text attributes, such
as “subtlety”, “sphericity”, “margin”, and “lobulation”, annotated by radiologists
can exhibit the differences between these hard samples. Therefore, we propose
leveraging the text annotations to guide the learning of visual features. In reality,
this also aligns with the fact that the annotated text information represents the
direct justification for identifying lesion regions in the clinic.

To integrate text annotations into the image-domain learning process, an
effective text encoder providing precise text features is required. Fortunately,
recent advancements in vision-language models, such as contrastive language-
image pre-training (CLIP) [16], provide us with a powerful pre-trained text
encoder learned from text-based supervisions and have shown impressive results
in downstream vision tasks. Nevertheless, it is ineffective to directly transfer
CLIP to medical tasks due to the data covariate shift. Therefore, in this paper, we
propose CLIP-Lung, a framework to classify lung nodules using image-text pairs.
Specifically, CLIP-Lung constructs learnable text descriptions for each nodule,
including class- and attribute-level. Inspired by CoCoOp [20], we proposed a
channel-wise conditional prompt (CCP) module to allow nodule descriptions to
guide the generation of informative feature maps. Different from CoCoOp, CCP
constructs specific learnable context prompts conditioned on grouped feature maps
and triggers more explainable attention maps such as Grad-CAM [17], whereas
CoCoOp provides only the common condition for all the prompt tokens. Then,
we design a textual knowledge-guided contrastive learning based on obtained
image features and textual features involving classes and attributes. Experimental
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Fig. 2. Illustration of the proposed CLIP-Lung.

results on LIDC-IDRI [1] dataset demonstrate the effectiveness of learning with
textual knowledge for improving lung nodule malignancy prediction.

The contributions of this paper are summarized as follows.

1) We proposed CLIP-Lung for lung nodule malignancy prediction which lever-
ages clinical textual knowledge to enhance the image encoder and classifier.

2) We designed a channel-wise conditional prompt module to establish consistent
relationships among the correlated text tokens and feature maps.

3) We align the image features with class and attribute features through con-
trastive learning while generating more explainable attention maps simulta-
neously.

2 Methodology

2.1 Overview

Problem formulation In this paper, we arrange the lung nodule classification
dataset as {I,Y, C,A}, where I = {Ii}Ni=1 is an image set contained N lung nod-
ule images. Y = {yi}Ni=1 is the corresponding class label set and yi ∈ {1, 2, . . . ,K},
and K is the number of classes. C = {ck}Kk=1 is a set of text embeddings of classes.
Finally, A = {am}Mm=1 is the set of attribute embeddings, where each element
am ∈ Rd×1 is a vector representing the embedding of an attribute word such as
“spiculation”. Then, for a given sample {Ii, yi}, our aim is to learn a mapping
fθ : Ii 7→ yi, where f is a deep neural network parameterized by θ.
CLIP-Lung In Fig. 2 (a), the training framework contains an image encoder fθ
and a text encoder gφ. First, the input image Ii is fed into fθ and then generates
the feature maps. Then according to Fig. 2 (b), the feature maps are converted to
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channel-wise feature vectors fθ(Ii) = Ft,: and then to learnable tokens l′t. Second,
we initialize the context tokens lt and add them with l′t to construct the learnable
prompts, where T is the number of context words. Next, the concatenation of the
class token and lt + l′t is used as input of text encoder yielding the class features
gφ(ck) = Ck,:, note that Ck,: is conditioned on channel-wise feature vectors
Ft,:. Finally, the attribute tokens am are also fed into the text encoder to yield
corresponding attribute features gφ(am) = Am,:. Note that the vectors Ft,:, lt,:,
l′t,:, and Ck,: are with the same dimension d = 512 in this paper. Consequently,
we have image feature F ∈ RT×d, class feature C ∈ RK×d, and attribute feature
A ∈ RM×d to conduct the textual knowledge-guided contrastive learning.

2.2 Instance-Specific Attribute Weighting

For the attribute annotations, all the lung nodules in the LIDC-IDRI dataset
are annotated with the same eight attributes: “subtlety”, “internal structure”,
“calcification”, “sphericity”, “margin”, “lobulation”, “spiculation”, and “texture” [4,8],
and the annotated value for each attribute is ranged from 1 to 5 except for
“calcification” that is ranged from 1 to 6. In this paper, we fix the parameters of
a pre-trained text encoder so that the generated eight text feature vectors are
the same for all the nodules. Therefore, we propose an instance-specific attribute
weighting scheme to distinguish different nodules. For the i-th sample, the weight
for each am is calculated through normalizing the annotated values:

wm =
exp(vm)∑M

m=1 exp(vm)
, (1)

where vm denotes the annotated value of am. Then the weight vector of the
i-th sample is represented as wi = (w1, w2, . . . , wM )> ∈ RM×1. Hence, the
element-wise multiplication wi ·Ai is unique to Ii.

2.3 Channel-wise Conditional Prompt

CoCoOp [20] firstly proposed to learn context prompts for vision-language models
conditioned on visual features. However, it is inferior to align context words with
partial regions of the lesion. Therefore, we propose a channel-wise conditional
prompt (CCP) module, in Fig. 2 (b), to split latent feature maps into T groups
and then flatten them into vectors Ft,:. Next, we denote h(·) as a context net that
is composed of a multi-layer perceptron (MLP) with one hidden layer, and each
learnable context token is now obtained by l′t = h(Ft,:). Hence, the conditional
prompt for the t-th token is lt + l′t. In addition, CCP also outputs the Ft,: for
image-class and image-attribute contrastive learning.

2.4 Textual Knowledge-Guided Contrastive Learning

Contrastive learning can effectively shorten the distances between positive pairs
and increase the distances between negative ones [3, 5, 7], and vision-language
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models also applied contrastive learning using cross-modal image-text pairs and
achieved generalized image and text encoders [16]. In CLIP-Lung, our aim is
to align F ∈ RT×d with C ∈ RK×d and A ∈ RM×d as illustrated in Fig. 2, i.e.,
using class and attribute knowledge to regularize the feature maps.
Image-class alignment First, the same to CLIP, we align the image and class
information by minimizing the cross-entropy (CE) loss based on the prediction
probability pi:

LIC = −
T∑

t=1

K∑
k=1

yilog(pi), pi =
exp(σ(Ft,:,Ck,:)/τ)∑K

k′=1 exp(σ(Ft,:,Ck′,:)/τ)
, (2)

where Ck,: = gφ(ck
⊕

(l1 + l
′
1, l2 + l

′
2, . . . , lT + l′T )) ∈ Rd×1 and “

⊕
” denotes

concatenation, i.e., Ck,: is conditioned on learnable prompts lt + l′t. σ(·, ·) cal-
culates cosine similarity and τ is temperature term. Therefore, LIC implements
the contrastive learning between channel-wise features and corresponding class
features, i.e., the ensemble of grouped image-class alignment results.
Image-attribute alignment In addition to image-class alignment, we further
expect the image features to be correlated with specific attributes. So we conduct
image-attribute alignment by minimizing the InfoNCE loss [5, 16]:

LIA = −
T∑

t=1

M∑
m=1

log
exp(σ(Ft,:,wm,: ·Am,:)/τ)∑M

m′=1 exp(σ(Ft,:,wm′,: ·Am′,:)/τ)
. (3)

Due to each vector Ft,: is mapped from the t-th group of feature maps through
context net h(·), then LIA indicates which attribute the Ft,: is closest to. Therefore,
certain feature maps can be guided by specific annotated attributes.
Class-attribute alignment Although the image features have been aligned
with classes and attributes, the class embeddings obtained by the pre-trained
CLIP encoder may shift in latent space. This will result in inconsistent class space
and attribute space, i.e., annotated attributes do not match the corresponding
classes, which is contradictory to the actual clinical diagnosis. To avoid this
weakness, we further align the class and attribute features:

LCA = −
K∑

k=1

M∑
m=1

log
exp(σ(Ck,:,wm,: ·Am,:)/τ)∑M

m′=1 exp(σ(Ck,:,wm′,: ·Am′,:)/τ)
, (4)

and this loss implies semantic consistency between classes and attributes.
Finally, the total loss function is defined as follows:

L = EIi∈I
[
LCE + LIC + α · LIA + β · LCA

]
, (5)

where α and β are hyperparameters for adjusting the losses and are set as
1 and 0.5, respectively. LCE denotes the cross-entropy loss between predicted
probabilities obtained by the classifier and the ground-truth labels. Note that
during the inference phase, test images are only fed into the trained image
encoder and classifier, therefore, CLIP-Lung does not introduce any additional
computational overhead in inference.
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3 Experiments

3.1 Dataset and Implementation Details

Dataset LIDC-IDRI 3 is a dataset for pulmonary nodule classification or
detection based on low-dose CT, which involves 1,010 patients. All the nodules
were labeled with scores from 1 to 5, indicating the malignancy progression. We
cropped all the nodules with a square shape of a doubled equivalent diameter
at the annotated center, then resized samples to the volume of 32 × 32 × 32.
Following [9,11], we modified the first layer of the image encoder to be with 32
channels. According to existing works [11,18], we regard a nodule with an average
score between 2.5 and 3.5 as unsure nodules, benign and malignant categories
are those with scores lower than 2.5 and larger than 3.5, respectively. In this
paper, we construct three sub-datasets: LIDC-A contains three classes of nodules
both in training and test sets; according to [11], we construct the LIDC-B, which
contains three classes of nodules only in the training set, and the test set contains
benign and malignant nodules; LIDC-C includes benign and malignant nodules
both in training and test sets.
Experimental settings In this paper, we apply the CLIP pre-trained text
encoder ViT-B/16 as the text encoder for CLIP-Lung, and the image encoder
we used is ResNet-18 [6] due to the relatively smaller scale of training data. The
image encoder is initialized randomly. Note that for the text branch, we froze the
parameters of the text encoder, and update the learnable tokens l and l′ during
training. The learning rate is 0.001 following the cosine decay, the optimizer
is stochastic gradient descent with momentum 0.9 and weight decay 0.00005.
The temperature τ is initialized as 0.07 and updated during training. All of our
experiments are implemented with PyTorch [15] and trained with NVIDIA A100
GPUs. The experimental results are reported with average values through five
randomly independent split folds. For different classes, we report the recall and
F1-score values, and “±” indicates standard deviation.

3.2 Experimental Results and Analysis

Performance comparisons In Table 1, we compare the classification perfor-
mances on the LIDC-A dataset, where we regard the benign-unsure-malignant
as an ordinal relationship. Compared with ordinal classification methods such as
Poisson, NSB, UDM, and CORF, CLIP-Lung achieves the highest accuracy and
F1-scores for the three classes, which demonstrates the effectiveness of textual
knowledge-guided learning. CLIP and CoCoOp also outperform ordinal classifica-
tion methods and show the superiority of large-scale pre-trained text encoders.
Furthermore, CLIP-Lung obtained higher recalls than CLIP and CoCoOp w.r.t.
benign and malignant classes, however, the recall of unsure is lower than theirs,
we argue that this is due to the indistinguishable textual annotations such as
similar attributes of different nodules.
3 https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=
1966254

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
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Table 1. Classification results on the test set of LIDC-A.

Method Accuracy Benign Malignant Unsure
Recall F1 Recall F1 Recall F1

CE Loss 54.2±0.6 72.2 62.0 64.4 61.3 29.0 36.6
Poisson [2] 52.7±0.7 60.5 56.8 58.4 58.7 41.0 44.1
NSB [13] 53.4±0.7 80.7 63.0 67.3 63.8 16.0 24.2
UDM [18] 54.6±0.4 76.7 64.3 49.5 53.5 32.5 39.5
CORF [21] 56.8±0.4 71.3 63.3 61.3 62.3 38.5 44.3
CLIP [16] 56.6±0.3 59.5 59.2 55.2 60.0 53.9 52.2
CoCoOp [20] 56.8±0.6 59.0 59.2 55.2 60.0 55.1 52.8
CLIP-Lung 60.9±0.4 67.5 64.4 60.9 66.3 53.4 54.1

Table 2. Classification results on test sets of LIDC-B and LIDC-C.

LIDC-B LIDC-C

Method Accuracy Benign Malignant Accuracy Benign Malignant
Recall F1 Recall F1 Recall F1 Recall F1

CE Loss 83.3±0.6 92.4 88.4 63.4 70.3 85.5±0.5 91.5 89.7 72.3 75.6
Poisson [2] 81.8±0.4 94.2 87.7 54.5 65.1 84.0±0.3 87.9 88.3 75.2 74.5
NSB [13] 78.1±0.5 90.6 85.8 50.5 60.7 84.9±0.7 91.0 89.2 71.3 74.6
UDM [18] 79.3±0.4 87.0 86.2 62.4 67.7 84.6±0.5 88.8 88.8 75.2 75.2
CORF [21] 81.5±0.3 95.9 87.8 49.5 62.8 83.0±0.2 87.9 87.7 72.3 72.6
CLIP [16] 83.6±0.6 92.0 88.7 64.4 70.4 87.5±0.3 92.0 91.0 77.0 78.8
CoCoOp [20] 86.8±0.7 94.5 90.9 69.0 75.9 88.2±0.6 95.0 91.8 72.4 78.8
CLIP-Lung 87.5±0.3 94.5 91.7 72.3 79.0 89.5±0.4 94.0 92.8 80.5 82.8

In Table 2, we compare the performances on LIDC-B and LIDC-C datasets.
CLIP-Lung obtains higher evaluation values other than recalls of benign class.
We conjecture the reason is that most of the benign nodules are with similar
appearances and subtle differences in text attributes, therefore, aligning these
two types of features is difficult and the text features will be biased to those of
malignant nodules.
Visual features and attention maps To illustrate the influence of incorpo-
rating class and attribute knowledge, we provide the t-SNE [14] Grad-CAM [17]
results obtained by CLIP, CoCoOp, and CLIP-Lung. In Fig. 3, we can see that
CLIP yields a non-compact latent space for two kinds of nodules. CoCoOp and
CLIP-Lung alleviate this phenomenon, which demonstrates that the learnable
prompts guided by nodule classes are more effective than fixed prompt engineering.
Further, compared with CLIP-Lung, CoCoOp could not consider the attribute
information to learn the prompts, therefore, it results in more false negatives
in latent space. From the attention maps we can observe that CLIP cannot
precisely capture spiculation and lobulation regions that are highly correlated
with malignancy. Simultaneously, CLIP-Lung performs better than CoCoOp,
which demonstrates the guidance from textual descriptions such as “spiculation”.
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Fig. 3. The t-SNE (Left) and Grad-CAM (Right) results.

Table 3. Ablation study on different losses. We report classification accuracies.

LIC LIA LCA LIDC-A LIDC-B LIDC-C

X 56.8±0.6 86.8±0.7 88.2±0.6
X X 59.4±0.4 86.8±0.6 86.7±0.4

X X 58.1±0.2 85.7±0.6 87.5±0.5
X X 56.9±0.3 84.7±0.4 84.0±0.7
X X X 60.9±0.4 87.5±0.5 89.5±0.4

Ablation studies In Fig. 3, we verify the effectiveness of different loss compo-
nents on the three constructed datasets. Based on LIC, LIA and LCA improve the
performances on LIDC-A, indicating the effectiveness of capturing fine-grained
features of ordinal ranks using class and attribute texts. However, they perform
relatively worse on LIDC-B and LIDC-C, especially the LIC + LCA. That is to
say, LIA is more important in latent space rectification, i.e., image-attribute con-
sistency. In addition, we observe that LIC +LIA performs better than LIA +LCA,
which is attributed to that LCA regularizes the image features indirectly.

4 Conclusion

In this paper, we proposed a textual knowledge-guided framework for pulmonary
classification, named CLIP-Lung. We explored the utilization of clinical textual
annotations based on large-scale pre-trained text encoders. CLIP-Lung aligned
the different modalities of features generated from nodule classes, attributes, and
images through contrastive learning. Most importantly, CLIP-Lung establishes
correlations between learnable prompt tokens and feature maps using the proposed
CCP module, and this guarantees explainable attention maps localizing fine-
grained clinical features. Finally, CLIP-Lung outperforms compared methods,
including CLIP on LIDC-IDRI benchmark. Future work can concentrate on
extending CLIP-Lung with more diverse textual knowledge.
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