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Abstract. Despite recent developments in CT planning that enabled
automation in patient positioning, time-consuming scout scans are still
needed to compute dose profile and ensure the patient is properly posi-
tioned. In this paper, we present a novel method which eliminates the
need for scout scans in CT lung cancer screening by estimating patient
scan range, isocenter, and Water Equivalent Diameter (WED) from 3D
camera images. We achieve this task by training an implicit generative
model on over 60,000 CT scans and introduce a novel approach for up-
dating the prediction using real-time scan data. We demonstrate the
effectiveness of our method on a testing set of 110 pairs of depth data
and CT scan, resulting in an average error of 5mm in estimating the
isocenter, 13mm in determining the scan range, 10mm and 16mm in es-
timating the AP and lateral WED respectively. The relative WED error
of our method is 4%, which is well within the International Electrotech-
nical Commission (IEC) acceptance criteria of 10%.
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1 Introduction

Lung cancer is the leading cause of cancer death in the United States, and early
detection is key to improving survival rates. CT lung cancer screening is a low-
dose CT (LDCT) scan of the chest that can detect lung cancer at an early stage,
when it is most treatable. However, the current workflow for performing CT lung
scans still requires an experienced technician to manually perform pre-scanning
steps, which greatly decreases the throughput of this high volume procedure.
While recent advances in human body modeling [12,4,13,5,15] have allowed for
automation of patient positioning, scout scans are still required as they are used
by automatic exposure control system in the CT scanners to compute the dose
to be delivered in order to maintain constant image quality [3].

Since LDCT scans are obtained in a single breath-hold and do not require
any contrast medium to be injected, the scout scan consumes a significant por-
tion of the scanning workflow time. It is further increased by the fact that tube
rotation has to be adjusted between the scout and actual CT scan. Furthermore,
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any patient movement during the time between the two scans may cause mis-
alignment and incorrect dose profile, which could ultimately result in a repeat
of the entire process. Finally, while minimal, the radiation dose administered to
the patient is further increased by a scout scan.

We introduce a novel method for estimating patient scanning parameters
from non-ionizing 3D camera images to eliminate the need for scout scans dur-
ing pre-scanning. For LDCT lung cancer screening, our framework automatically
estimates the patient’s lung position (which serves as a reference point to start
the scan), the patient’s isocenter (which is used to determine the table height
for scanning), and an estimate of patient’s Water Equivalent Diameter (WED)
profiles along the craniocaudal direction which is a well established method for
defining Size Specific Dose Estimate (SSDE) in CT imaging [8,9,18,11]. Addi-
tionally, we introduce a novel approach for updating the estimated WED in
real-time, which allows for refinement of the scan parameters during acquisition,
thus increasing accuracy. We present a method for automatically aborting the
scan if the predicted WED deviates from real-time acquired data beyond the
clinical limit. We trained our models on a large collection of CT scans acquired
from over 60, 000 patients from over 15 sites across North America, Europe and
Asia. The contributions of this work can be summarized as follows:

– A novel workflow for automated CT Lung Cancer Screening without the
need for scout scan

– A clinically relevant method meeting IEC 62985:2019 requirements on WED
estimation.

– A generative model of patient WED trained on over 60, 000 patients.
– A novel method for real-time refinement of WED, which can be used for

dose modulation

2 Method

Water Equivalent Diameter (WED) is a robust patient-size descriptor [17] used
for CT dose planning. It represents the diameter of a cylinder of water having
the same averaged absorbed dose as the material contained in an axial plane at a
given craniocaudal position z [2]. The WED of a patient is thus a function taking
as input a craniocaudal coordinate and outputting the WED of the patient at
that given position. As WED is defined in an axial plane, the diameter needs to be
known on both the Anterior-Posterior (AP) and lateral (Left- Right) axes noted
respectively WEDAP (z) and WEDL(z). As our focus here is on lung cancer
screening, we define ‘WED profile’ to be the 1D curve obtained by uniformly
sampling the WED function along the craniocaudal axis within the lung region.
Our method jointly predicts the AP and lateral WED profiles.

While WED can be derived from CT images, paired CT scans and camera
images are rarely available, making direct regression through supervised learning
challenging. We propose a semi-supervised approach to estimate WED from
depth images. First, we train a WED generative model on a large collection of
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Fig. 1. Overview of the proposed workflow.

CT scans. We then train an encoder network to map the patient depth image to
the WED manifold. Finally, we propose a novel method to refine the prediction
using real-time scan data.

2.1 WED Latent Space Training

We use an AutoDecoder [10] to learn the WED latent space. Our model is
a fully connected network with 8 layers of 128 neurons each. We used layer
normalization and ReLU activation after each layer except the last one. Our
network takes as input a latent vector together with a craniocaudal coordinate
z and outputs WEDAP (z) and WEDL(z), the values of the AP and lateral
WED at the given coordinate. In this approach, our latent vector represents the
encoding of a patient in the latent space. This way, a single AutoDecoder can
learn patient-specific continuous WED functions. Since our network only takes
the craniocaudal coordinate and the latent vector as input, it can be be trained
on partial scans of different sizes. The training consists of a joint optimization of
the AutoDecoder and the latent vector: the AutoDecoder is learning a realistic
representation of the WED function while the latent vector is updated to fit the
data.

During training, we initialize our latent space to a unit Gaussian distribution
as we want it to be compact and continuous. We then randomly sample points
along the craniocaudal axis and minimize the L1 loss between the prediction and
the ground truth WED. We also apply L2-regularization on the latent vector as
part of the optimization process.
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2.2 Depth Encoder Training

After training our generative model on a large collection of unpaired CT scans,
we train our encoder network on a smaller collection of paired depth images
and CT scans. We represent our encoder as a DenseNet [1] taking as input
the depth image and outputting a latent vector in the previously learned latent
space. Our model has 3 dense blocks of 3 convolutional layers. Each convolutional
layer (except the last one) is followed by a spectral normalization layer and a
ReLU activation. The predicted latent vector is then used as input to the frozen
AutoDecoder to generate the predicted WED profiles. We here again apply L2-
regularization on the latent vector during training.

2.3 Real-time WED Refinement

While the depth image provides critical information on the patient anatomy,
it may not always be sufficient to accurately predict the WED profiles. For
example, some patients may have implants or other medical devices that cannot
be guessed solely from the depth image. Additionally, since the encoder is trained
on a smaller data collection, it may not be able to perfectly project the depth
image to the WED manifold. To meet the strict safety criteria defined by the
IEC, we propose to dynamically update the predicted WED profiles at inference
time using real-time scan data. First, we use our encoder network to initialize
the latent vector to a point in the manifold that is close to the current patient.
Then, we use our AutoDecoder to generate initial WED profiles. As the table
moves and the patient gets scanned, CT data is being acquired and ground truth
WED can be computed for portion of the body that has been scanned, along
with the corresponding craniocaudal coordinate. We can then use this data to
optimize the latent vector by freezing the AutoDecoder and minimizing the L1
loss between the predicted and ground truth WED profiles through gradient
descent. We can then feed the updated latent vector to our AutoDecoder to
estimate the WED for the remaining portions of the body that have not yet
been scanned and repeat the process.

In addition to improving the accuracy of the WED profiles prediction, this
approach can also help detect deviation from real data. After the latent vector
has been optimized to fit the previously scanned data, a large deviation between
the optimized prediction and the ground truth profiles may indicate that our
approach is not able to find a point in the manifold that is close to the data.
In this case, we may abort the scan, which further reduces safety risks. Overall
flowchart of the proposed approach is shown in Figure 1.

3 Results

3.1 Data

Our CT scan dataset consists of 62, 420 patients from 16 different sites across
North America, Asia and Europe. Our 3D Camera dataset consists of 2, 742 pairs
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Fig. 2. Isocenter results on our evaluation set. Left column presents a qualitative result
from our evaluation set. The red line corresponds to our model prediction and the green
line is the ground truth computed from the CT. The right column presents a histogram
of the errors in mm.

of depth image and CT scan from 2, 742 patients from 6 different sites across
North America and Europe acquired using a ceiling-mounted Kinect 2 camera.
Our evaluation set consists of 110 pairs of depth image and CT scan from 110
patients from a separate site in Europe.

3.2 Patient preparation

Patient positioning is the first step in lung cancer screening workflow. We first
need to estimate the table position and the starting point of the scan. We propose
to estimate the table position by regressing the patient isocenter and the starting
point of the scan by estimating the location of the patient’s lung top.

Starting position We define the starting position of the scan as the location
of the patient’s lung top. We trained a DenseUNet [7] taking the camera depth
image as input and outputting a Gaussian heatmap centered at the patient’s lung
top location. We used 4 dense blocks of 4 convolutional layers for the encoder
and 4 dense blocks of 4 convolutional layers for the decoder. Each convolutional
layer (except the last one) is followed by a batch normalization layer and a ReLU
activation. We trained our model on 2, 742 patients using Adaloss [14] and the
Adam [6] optimizer with a learning rate of 0.001 and a batch size of 32 for
400 epochs. Our model achieves a mean error of 12.74mm and a 95th percentile
error of 28.32mm. To ensure the lung is fully visible in the CT image, we added
a 2cm offset on our prediction towards the outside of the lung. We then defined
the accuracy as whether the lung is fully visible in the CT image when using the
offset prediction. We report an accuracy of 100% on our evaluation set of 110
patients.
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CT AP projection Initial WED
Mean error: 17mm

90th percentile:  37mm
Max error: 54mm

Refined WED, w=5cm
Mean error: 13mm

90th percentile:  33mm
Max error: 41mm

Refined WED, w=2cm
Mean error: 11mm

90th percentile:  30mm
Max error: 45mm

CT lateral projection Initial WED
Mean error: 29mm

90th percentile:  62mm
Max error: 114mm

Refined WED, w=5cm
Mean error: 12mm

90th percentile:  23mm
Max error: 41mm

Refined WED, w=2cm
Mean error: 10mm

90th percentile:  19mm
Max error: 39mm

Fig. 3. AP (top) and lateral (bottom) WED profile regression with and without real-
time refinement. w corresponds to the portion size of the body that gets scanned before
updating the prediction (in cm). First column shows a lateral projection view of the
CT. Second column shows the performance of our model without real-time refinement.
Third and fourth columns show the performance of our model with real-time refinement
every 5cm and 2 cm respectively. Ground truth is depicted in green and our prediction
is depicted in red. While the original prediction was off towards the center of the lung,
the real-time refinement was able to correct the error.

Isocenter The patient isocenter is defined as the centerline of the patient’s
body. We trained a DenseNet [1] taking the camera depth image as input and
outputting the patient isocenter. Our model is made of 4 dense blocks of 3
convolutional layers. Each convolutional layer (except the last one) is followed
by a batch normalization layer and a ReLU activation. We trained our model
on 2, 742 patients using Adadelta [16] with a batch size of 64 for 300 epochs.
On our evaluation set, our model outperforms the technician’s estimates with
a mean error of 5.42mm and a 95th percentile error of 8.56mm compared to
6.75mm and 27.17mm respectively. Results can be seen in Figure 2.

3.3 Water Equivalent Diameter

We trained our AutoDecoder model on our unpaired CT scan dataset of 62, 420
patients with a latent vector of size 32. The encoder was trained on our paired
CT scan and depth image dataset of 2, 742 patients. We first compared our
method against a simple direct regression model. We trained a DenseUNet [7]
taking the camera depth image as input and outputting the Water Equivalent
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Table 1. WED profile errors on our testing set (in mm). ‘w’ corresponds to the portion
size of the body that gets scanned before updating the prediction (in cm). Top of the
table corresponds to lateral WED profile, bottom corresponds to AP WED profile.
Updating the prediction every 20mm produces the best results.

Method (lateral) Mean error 90th perc error Max error
Direct Regression 45.07 76.70 101.50

Proposed (initial) 27.06 52.88 79.27

Proposed (refined, w = 5) 19.18 42.44 73.69

Proposed (refined, w = 2) 15.93 35.93 61.68
Method (AP)
Direct Regression 45.71 71.85 82.84

Proposed (initial) 16.52 31.00 40.89

Proposed (refined, w = 5) 12.19 25.73 37.36

Proposed (refined, w = 2) 10.40 22.44 33.85

Diameter profile. We trained this baseline model on 2, 742 patients using the
Adadelta [6] optimizer with a learning rate of 0.001 and a batch size of 32. We
then measured the performance of our model before and after different degrees
of real-time refinement, using the same optimizer and learning rate. We report
the comparative results in Table 1.

We observed that our method largely outperforms the direct regression base-
line with a mean lateral error 40% lower and a 90th percentile lateral error over
30% lower. Bringing in real-time refinement greatly improves the results with a
mean lateral error over 40% and a 90th percentile lateral error over 20% lower
than before refinement. AP profiles show similar results with a mean AP error
improvement of nearly 40% and a 90th percentile AP error improvement close
to 30%. When using our proposed method with a 20mm window refinement,
our proposed approach outperforms the direct regression baseline by over 60%
for lateral profile and nearly 80% for AP.

Figures 3 highlights the benefits of using real-time refinement. Overall, our
approach shows best results with an update frequency of 20mm, with a mean
lateral error of 15.93mm and a mean AP error of 10.40mm. Figure 4 presents
a qualitative evaluation on patients with different body morphology.

Finally, we evaluated the clinical relevancy of our approach by computing
the relative error as described in the International Electrotechnical Commission
(IEC) standard IEC 62985:2019 on Methods for calculating size specific dose
estimates (SSDE) for computed tomography [2]. The ∆REL metric is defined as:

∆REL(z) =

∣∣∣∣∣ ˆWED(z)−WED(z)

WED(z)

∣∣∣∣∣ (1)

Where:

– ˆWED(z) is the predicted water equivalent diameter
– WED(z) is the ground truth water equivalent diameter
– z is the position along the craniocaudal axis of the patient.
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Fig. 4. Qualitative analysis of the proposed method with 2cm refinement on patient
with different morphology. From left to right: Lateral CT projection, Lateral WED
profile, AP WED profile, AP CT projection.

IEC standard states the median value of the set of ∆REL(z) along the cran-
iocaudal axis (noted ∆REL) should be below 0.1. Our method achieved a mean
lateral ∆REL error of 0.0426 and a mean AP ∆REL error of 0.0428, falling well
within the acceptance criteria.

4 Conclusion

We presented a novel 3D camera based approach for automating CT lung cancer
screening workflow without the need for a scout scan. Our approach effectively
estimates start of scan, isocenter and Water Equivalent Diameter from depth
images and meets the IEC acceptance criteria of relative WED error. While this
approach can be used for other thorax scan protocols, it may not be applicable to
trauma (e.g. with large lung resections) and inpatient settings, as the deviation
in predicted and actual WED would likely be much higher. In future, we plan
to establish the feasibility as well as the utility of this approach for other scan
protocols and body regions. 4

4 Disclaimer: The concepts and information presented in this paper are based on re-
search results that are not commercially available. Future commercial availability
cannot be guaranteed.
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