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Abstract. Optical Coherence Tomography Angiography (OCTA) is a
promising tool for detecting Alzheimer’s disease (AD) by imaging the
retinal microvasculature. Ophthalmologists commonly use region-based
analysis, such as the ETDRS grid, to study OCTA image biomarkers
and understand the correlation with AD. In this work, we propose a
novel deep-learning framework called Polar-Net. Our approach involves
mapping OCTA images from Cartesian coordinates to polar coordinates,
which allows for the use of approximate sector convolution and enables
the implementation of the ETDRS grid-based regional analysis method
commonly used in clinical practice. Furthermore, Polar-Net incorporates
clinical prior information of each sector region into the training process,
which further enhances its performance. Additionally, our framework
adapts to acquire the importance of the corresponding retinal region,
which helps researchers and clinicians understand the model’s decision-
making process in detecting AD and assess its conformity to clinical
observations. Through evaluations on private and public datasets, we
have demonstrated that Polar-Net outperforms existing state-of-the-art
methods and provides more valuable pathological evidence for the asso-
ciation between retinal vascular changes and AD. In addition, we also
show that the two innovative modules introduced in our framework have
a significant impact on improving overall performance.

Keywords: OCTA · Alzheimer’s Disease · Polar Transformation.

1 Introduction

Alzheimer’s disease (AD) is a progressive and debilitating neurological disorder
that affects millions of people worldwide. Although primary detection of AD can
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Fig. 1. The proposed AD detection model utilizes the polar transformation (left two)
inspired by ETDRS grids commonly used in ophthalmic analysis. This model allows
for easy understanding by ophthalmologists, as the output of the Polar-Net can be
interpreted through an intuitive color map illustration (right) that indicates different
levels of significance.

be achieved through a combination of cognitive function tests and neuroimaging
techniques, such as magnetic resonance imaging (MRI) and cerebrospinal fluid
(CSF) analysis [14]. However, these approaches suffer from being invasive, time-
consuming, or expensive, hindering their use in routine clinical practice. The con-
vergence of tissue origin, structural characteristics, and functional mechanisms
between the eyes and the brain has been previously reported [18]. For example,
patients with AD have significantly decreased blood vessel density in superficial
parafoveal and choriocapillaris (CC) [25]. To this end, the automated AD de-
tection using fundus image has emerged as an active research field in the last
two years[13,20,1]. Color fundus photography (CFP) has commonly used for AD
studies, but the CFP has limitations in capturing the information of deep layer
vessels. Optical coherence tomography angiography (OCTA) is an innovative
non-invasive technology that generates high-resolution images of depth-resolved
retinal microvasculature projections [8], including SVC, DVC, and CC.

Studies on clinical biomarkers of OCTA images are mainly based on regional
analysis, e.g., the early treatment of diabetic retinopathy study (ETDRS) grid,
which divides a target area into 9 regions with three concentric circles and two
orthogonal lines, as shown in the right three sub-figures in Fig. 1. The region-
based analysis allows a more specific evaluation of retinal changes and their
correlation with AD, which can provide a more nuanced understanding of the
disease. Research following ETDRS and IE grid demonstrated the significance
of many regions, e.g., in the three sub-regions of nasal-outer, superior-inner, and
inferior-inner in inner vascular complexes, which present a substantial decrease
in vascular area density and vascular length density for the AD participants [23].

Over the past few years, deep-learning-based algorithms have achieved re-
markable success in the analysis of medical images. As for AD detection, several
methods use an integration of multiple modalities[21,20]. However, these meth-
ods rarely follow the clinical region-based analysis routine, which limits their
ability to incorporate valuable clinical statistical findings and generate easily
interpretable results. To address the above issues, we proposed a novel deep-
learning framework to take full advantage of clinical region-based analysis, for
AD detection in OCTA images. To obtain a more accurate and interpretable
result, we specifically designed an approximate sector convolution, based on the
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Fig. 2. Illustrations of the Cartesian coordinate system (a), an ETDRS grid on an
OCTA projection (b), the polar coordinate system (c), and the mapping relationship
after the transformation (d). Definition: temporal-inner (TI), temporal-external (TE),
superior-inner (SI), superior-external (SE), nasal-inner (NI), nasal-external (NE),
inferior-inner (II), and inferior-external (IE).

polar transformation and a multi-kernel feature extraction module. The main
contributions of the paper can be summarised as follows: (1) Based on the well-
known clinically used ETDRS grids for retinal image analysis, we incorporate
the regional importance prior in the training process through a weight matrix,
so as to better understand the correlations between retinal structure alterna-
tions and AD. (2) We introduce an approximate sector convolution through
polar transformation, to mimic the clinical region-based analysis, by mapping
the OCTA image from the Cartesian system to the polar system, as shown in
the left two sub-figures in Fig. 1. (3) We further performed the explainability
analysis on the well-trained model. The interpretable results showed consistency
with the conclusions of the previous clinical studies, indicating that the proposed
method can be a potential tool, to investigate the pathological evidence of the
relationship between the fundus and AD.

2 Methodology

Fig. 1 shows the flowchart of our AD detection method using SVC, DVC, and
CC projections of OCTA as input. First, we utilize VAFF-Net [6] to locate the
center of the FAZ on SVC. We then transform the original images into the
polar coordinates with the FAZ center as the origin. The transformed images
are then fed into our Polar-Net, which produces the final detection result and
the corresponding region importance matrix.

2.1 Polar coordinate transformation for OCTA image

We introduce a method called polar transformation, to realize region-based anal-
ysis. As shown in Fig. 2, the polar transformation converts the region of interest
(blue circle) into a polar coordinate system Fig. 2(c), with the center of the FAZ
(according to the definition[4] of ETDRS), Oc(uo, vo) as the origin. The original
image is represented as points in the Cartesian system p(u, v), and the corre-
sponding points in the polar system are represented by p′(θ, r). The relationship
between these two coordinate systems is given by the following equations:{

u = r cos θ
v = r sin θ

⇔
{
r =

√
u2 + v2

θ = tan−1 v/u
. (1)
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Fig. 3. The details of Polar-Net. It contains multiple input branches, and each branch
starts with a polar feature extractor module (PFEM) and ends with a residual network.
PFEM consists of a multi-kernel atrous convolution module (MKAC), a multi-kernel
pooling module (MKPM), and a convolutional block attention module (CBAM). Pa-
rameters K and D denote the kernel size and dilation respectively.

The width of the transformed image is equal to the distance R, the minimal
length from the center Oc(uo, vo) to the edge in the original image, and the
height is 2πR. Since the corners are cropped, the outermost pixels of the region
of interest are kept in order to preserve the original information as much as
possible, and the part near Oc is filled by nearest neighbor interpolation. The
polar transformation represents the original image in the polar coordinate system
by pixel-wise mapping[3], and has the following properties:

1) Approximate sector-shaped convolution. Convolution is widely used
in convolutional neural networks (CNNs), where the shape of the convolution
kernel is always rectangular. However, in the real world, many semantics are
non-rectangular, such as circle and sector, which makes the adaptability of the
receptive field in CNNs suboptimal. For the polar transformation, the mapping
relationship is fixed, enabling us to approximate the sector convolution with
a rectangular convolution kernel at a lower computational cost. The mapping
relationship shown in Fig. 2(b)(d) explains this, and for the sake of simplicity
and clarity, we use ETDRS girds as an example. When we perform convolu-
tion with a rectangular kernel along the TI → SI direction on the transformed
image, it is equivalent to performing convolution with a sector-shaped kernel
counterclockwise around the FAZ center in the original image.

2) Equivalent augmentation. Applying data augmentation to the original
image is the same as applying data augmentation in the polar system since the
transformation is a pixel-wise mapping [3]. For instance, by changing the start
angle and the transformation center Oc(uo, vo), we can realize the drift cropping
operation in the polar system. It is analogous to applying various cropping factors
for data augmentation by changing the transformation radius R.
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2.2 Network architecture

In the transformed image, we can extract features around the FAZ. Rectangular
features at different scales correspond to different sectoral features in the retina.
Therefore, it is critical to extract information across different sizes of the visual
field. To this end, we design the Polar-Net. As shown in Fig 3, it contains several
branches, the number of which varies according to the number of projections.
Each branch starts with a polar feature extractor module (PFEM) and ends
with a residual network. To take full advantage of all the branches, middle fusion
is used. To generate the region importance matrix, a polar region importance
module (PRIM) is proposed, which follows the residual network. Furthermore,
Polar-Net can receive a prior knowledge matrix to utilize clinical knowledge.

Polar feature extractor module (PFEM): To extract shallow features in
different views, we propose PFEM, which consists of a multi-kernel atrous convo-
lution module (MKAC), a multi-kernel pooling module (MKPM), and a convolu-
tional block attention module (CBAM) [22]. For each projection xi, MKAC H (·)
applies multiple scale atrous convolutions to enlarge the field of view[24], and
MKPM G (·) applies a series of max-pooling operations with different pooling
kernels to discover microscopic changes, by extracting the most salient feature[9].
Finally, CBAM T (·) is applied to exploit the inter-channel hidden information of
features. During feature extraction, Wn is used to adaptively adjust the weights
of the above processes. The mathematical notation of the above is:

FMKAC = LeakyReLU
[∑

n H (xi)Wn

]
,

FMKPM = LeakyReLU
[
xi +

∑
n G (xi)Wn

]
,

FPFEM = T (Concat (FMKAC, FMKPM)) .
(2)

Polar region importance module (PRIM): To calculate the region impor-
tance, we implement PRIM by applying an average pooling after a Grad-CAM
[16]. In order to capture the importance of feature map k for class c, we denote
ack as the gradient of the score for class c, with respect to feature map activations
Ak of the last residual layer. The region importance matrix Lc

RI is given by:

Lc
RI = AvgPool[ReLU(

∑
k

αc
kA

k)]. (3)

3 Experiments and Results

Data description: An in-house dataset was conducted for this study. It includes
199 images from 114 AD patients and 566 images from 291 healthy subjects. All
data were collected with the approval of the relevant authorities and the consent
of the patients, following the Declaration of Helsinki. All the patients conform
to the standards of the National Institute on Aging and Alzheimer’s Association
(NIA-AA). The images were captured with a swept-source OCTA (VG200S,
SVision Imaging). The images were captured in a 3×3 mm2 area centered on
the fovea. We make sure that the images from a single patient will only be used
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Table 1. The detection results (mean±std) over the in-house dataset.

Model ACC AUROC Kappa

ResNet-34[7] 0.8125±0.0267 0.7960±0.0479 0.4909±0.0717
EfficientNet-B3[17] 0.7942±0.0104 0.7908±0.0157 0.4177±0.0267
ConvNeXt-S[12] 0.7562±0.0138 0.5903±0.0313 0.1660±0.0437
HorNet-SGF[15] 0.7602±0.0113 0.5921±0.0286 0.1738±0.0458
VAN-B6[5] 0.7707±0.0124 0.6911±0.0298 0.2939±0.0485
ViT-Base[2] 0.7904±0.0183 0.7726±0.0286 0.3641±0.0715
SwinV2-T[11] 0.7601±0.0117 0.7528±0.0343 0.3242±0.0448
MUCO-Net[20] 0.7968±0.0369 0.7773±0.0414 0.3985±0.0789
Polar-Net w/o PFEM 0.8191±0.0140 0.8315±0.0245 0.5279±0.0224
Polar-Net w/o trans 0.8388±0.0142 0.8401±0.0168 0.5279±0.0264
Polar-Net 0.8518±0.0169 0.8484±0.0295 0.5766±0.0685
Polar-Net w prior 0.8532±0.0174 0.8523±0.0320 0.5817±0.0600

as training or testing sets once. In the cross-validation experiment subset, we
sample the categories from each dataset at the same ratio.

Implementation details:We implemented our proposed method with Pytorch.
The model was trained on an Ubuntu 20.04 server equipped with two Nvidia RTX
3090 GPUs. We employed Adam as the optimizer with an initial learning rate
of 2e-5 and a batch size of 28. We also applied data augmentation by randomly
rotating the images by ±20 degrees around their centers. The model was trained
for 200 epochs. During the transformation, we considered the difference between
the left and right eyes and used nearest-neighbor interpolation. The width of
the transformed images was resized to 224 pixels. Five-fold cross-validation was
employed to fully utilize the data and make the results more reliable. Since there
is no standard way to convert existing prior knowledge into matrices, for prior
knowledge, we manually generated a 4×2 weight matrix according to the study
[23]. The weights were 1 by default. The regions with p-values less than 0.05 had
a weight of 1.5, and regions with p-values less than 0.01 had a weight of 2. For
the entire DVC, the weight was set to 2.

Evaluation and interpretability assessment: We evaluate the performance
of the model on the test set using the accuracy score (ACC), area under the
receiver operating characteristic (AUROC), and kappa. To evaluate the perfor-
mance, we compared our method with several state-of-the-art methods in the
computer vision field and one in the AD detection field. Table 1 shows that our
method outperforms the others in ACC, AUROC, and Kappa, with an improve-
ment of up to 4.07%, 5.63%, and 9.08%, respectively. Prior knowledge did not
bring much performance improvement, partly due to the crude method of gener-
ating the prior matrices, and partly probably due to the fact that the network’s
adaptive algorithm may have already learned similar prior knowledge. During
the testing phase, we activated PRIM and generated a 4×2 importance matrix
for the entire testing set. An inverse operation of the polar transformation was
applied to generate the importance map.

For the sake of simplicity, here we take the EDTRS grid for analysis. As
shown in Fig. 4 (a), it can be seen that globally, the importance of CC is highest
and DVC is the second. This matches the findings that AD patients have a con-
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Fig. 4. Importance maps according to ETDRS, IE, and hemispheric grids. Group (a)
takes into account the differences in importance between the projections, while (b)
reflects the relative importance of regions within a single projection. The redder the
color, the greater the importance. (c) shows a set of examples using the Grad-CAM
visualization method, based on ResNet-34 in AD detection.

Table 2. The ablation results (mean±std) of the polar transformation over the in-
house dataset.

Model Input ACC AUROC Kappa

ResNet-34[7]
w/o trans 0.8125±0.0267 0.7960±0.0479 0.4909±0.0717
w trans 0.8244±0.0226 0.8471±0.0279 0.5137±0.0417

EfficientNet-B3[17]
w/o trans 0.7942±0.0104 0.7908±0.0157 0.4177±0.0267
w trans 0.8335±0.0157 0.8295±0.0279 0.5287±0.0600

ViT-Base[2]
w/o trans 0.7904±0.0183 0.7726±0.0286 0.3641±0.0715
w trans 0.7982±0.0177 0.8025±0.0509 0.4235±0.0748

MUCO-Net[20]
w/o trans 0.7968±0.0369 0.7773±0.0414 0.3985±0.0789
w trans 0.7916±0.0255 0.7956±0.0500 0.4271±0.0659

siderably lower density in choriocapillaris flow [25]. Meanwhile, the significance
of DVC coincides with research findings that there is a considerable reduction
in vascular area density and other factors in DVC [23]. In the DVC and CC,
the parafovea is more important. This may relate to the loss of ganglion cells
in the parafoveal retina [19]. For single projection (Fig. 4 (b)), different regions
have different importance and the contributions of NI, SI and II (illustrated
in Fig.2) are higher. In summary, we found a pattern that high importance al-
ways occurs where there are more micro-vessels, such as the CC, DVC, and the
parafovea. This finding coincides with the conclusion that the microvasculature
of the brain and retina is significantly decreased in AD patients [25]. Our inter-
pretable results roughly match the clinical study results, because we have made
the network follow the clinical analysis method. This also proves the clinical rel-
evance of ours. The minor difference is perhaps because the network unearthed
the high-dimensional features that have not yet been discovered clinically.
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Table 3. The classification results (mean±std) of different methods over the OCTA-
500 dataset.

Model ACC AUROC Kappa

ResNet-34[7] 0.9641±0.0389 0.9818±0.0306 0.8412±0.1757
EfficientNet-B3[17] 0.9632±0.0225 0.9741±0.0245 0.8375±0.1006
VAN-B6[5] 0.9478±0.0245 0.9517±0.0300 0.7691±0.1334
ViT-Base[2] 0.9692±0.0281 0.9768±0.0247 0.8694±0.1199
MUCO-Net[20] 0.9529±0.0204 0.9717±0.0222 0.8086±0.0885
Polar-Net 0.9898±0.0140 0.9949±0.0072 0.9604±0.0544

Ablation study: To evaluate the effectiveness of the polar transformation and
Polar-Net, we performed an ablation study. To validate the proposed Polar-Net,
we removed the PFEM. The results are shown at the bottom of Table 1. To
validate the transformation, we used the transformed images and the original
images respectively. The results are shown in Table 2. All the results showed the
effectiveness of the proposed components and modules.

Extended experiment: To further verify our detection method’s stability and
generalisability, we conducted an additional experiment on a public dataset
OCTA-500 [10]. It contains 189 images from 29 subjects with diabetic retinopa-
thy and 160 healthy control. The details of the implementation are the same
as the experiments on the in-house dataset. As shown in Table 3, our method
achieved the best performances compared to the competitors.

4 Conclusion

In this paper, we propose a novel framework for AD detection using retinal
OCTA images, leveraging clinical prior knowledge and providing interpretable
results. Our approach involves polar transformation, allowing for the use of ap-
proximate sector convolution and enabling the implementation of the region-
based analysis. Additionally, our framework, called Polar-Net, is designed to
acquire the importance of the corresponding retinal region, facilitating the un-
derstanding of the model’s decision-making process in detecting AD and as-
sessing its conformity to clinical observations. We evaluate the performance of
our method on both private and public datasets, and the results demonstrate
that Polar-Net outperforms state-of-the-art methods. Importantly, our approach
produces clinically interpretable results, providing a potential tool for disease re-
search to investigate the underlying pathological mechanisms. Our work presents
a promising approach to using OCTA imaging for AD detection. Furthermore,
we highlight the importance of incorporating clinical knowledge into AI models
to improve interpretability and clinical applicability.
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