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Abstract. In the domain adaptation problem, source data may be un-
available to the target client side due to privacy or intellectual property
issues. Source-free unsupervised domain adaptation (SF-UDA) aims at
adapting a model trained on the source side to align the target distribu-
tion with only the source model and unlabeled target data. The source
model usually produces noisy and context-inconsistent pseudo-labels on
the target domain, i.e., neighbouring regions that have a similar visual
appearance are annotated with different pseudo-labels. This observation
motivates us to refine pseudo-labels with context relations. Another ob-
servation is that features of the same class tend to form a cluster despite
the domain gap, which implies context relations can be readily calculated
from feature distances. To this end, we propose a context-aware pseudo-
label refinement method for SF-UDA. Specifically, a context-similarity
learning module is developed to learn context relations. Next, pseudo-
label revision is designed utilizing the learned context relations. Further,
we propose calibrating the revised pseudo-labels to compensate for wrong
revision caused by inaccurate context relations. Additionally, we adopt
a pixel-level and class-level denoising scheme to select reliable pseudo-
labels for domain adaptation. Experiments on cross-domain fundus im-
ages indicate that our approach yields the state-of-the-art results. Code
is available at https://github.com/xmed-lab/CPR.

Keywords: Source-free domain adaptation · Context similarity · Pseudo-
label refinement · Fundus image.

1 Introduction

Accurate segmentation of the optic cup and optic disc in fundus images is essen-
tial for the cup-to-disc ratio measurement that is critical for glaucoma screen-
ing and detection [6]. Although deep neural networks have achieved great ad-
vances in medical image segmentation, they are susceptible to data with do-
main shifts, such as those caused by using different scanning devices or differ-
ent hospitals [24]. Unsupervised domain adaptation [11] is proposed to trans-
fer knowledge to the target domain with access to the source and target data
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Fig. 1. (a) Example of context-inconsistent pseudo-labels. Due to domain gap, the
pseudo-label of optic disc has irregular protuberance which is inconsistent with adjacent
predictions. (b) t-SNE visualization of target pixel features produced by source model.
Under domain shift, despite not aligning with source segmentor, target features of the
same class still form a cluster. (c) Inspired by (b), context relations can be computed
from feature distances.

while not requiring any annotation in the target domain. Recently, source-free
unsupervised domain adaptation (SF-UDA) has become a significant area of
research [5,10,14,15,19,20], where source data is inaccessible due to privacy or
intellectual property concerns.

Existing SF-UDA solutions can be categorized into four main groups: batch
normalization (BN) statistics adaptation [16,17,23], approximating source im-
ages [9,26], entropy minimization [2], and pseudo-labeling [3,25]. BN statistics
adaptation methods aim to address the discrepancy of statistics between differ-
ent domains. For example, [16,17] update low-order and high-order BN statistics
with distinct training objectives, while [23] adapts BN statistics to minimize the
entropy of the model’s prediction. Approximating source images aims to gen-
erate source-like images. For example, [26] first attains a coarse source image
by freezing the source model and training a learnable image, then refines the
image via mutual Fourier Transform. The refined source-like image provides a
representation of the source data distribution and facilitates domain alignment
during the adaptation process. For another instance, [9] learns a domain prompt
to add to a target domain image so that the sum simulates the source image. En-
tropy minimization methods aim to produce more confident model predictions.
For example, [2] minimizes output entropy with a regularizer of class-ratio. The
class-ratio is estimated by an auxiliary network that is pre-trained on the source
domain. For pseudo-labeling [12,29], erroneous pseudo-labels are either discarded
or corrected. For example, [3] identifies low-confidence pseudo-labels at both the
pixel-level and the class-level. On the other hand, [25] performs uncertainty-
weighted soft label correction by estimating the class-conditional label error
probability. However, all of these methods overlook context relations, which can
enhance adaptation performance without the need to access the source data.

We observe in our experiments (see Fig. 1 (a)) that domain gaps can result
in the source model making context-inconsistent predictions. For neighboring
patches of an image with similar visual appearance, the source model can yield
vastly different predictions. This phenomenon can be explained by the observa-
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tion in [15] that target data shifts in the feature space, causing some data points
to shift across the boundary of the source domain segmentor. The issue of context
inconsistency motivates us to utilize context relations in refining pseudo-labels.
Moreover, it is observed in our experiments (as shown in Fig. 1(b)) that target
features produced by the source model still form clusters, meaning that the fea-
tures of target data points with the same class are closely located. This discovery
led us to calculate context relations from feature distances; see Fig. 1(c).

In this paper, we present a novel context-aware pseudo-label refinement
(CPR) framework for source-free unsupervised domain adaptation. Firstly, we
develop a context-similarity learning module, where context relations are com-
puted from distances of features via a context-similarity head. This takes ad-
vantage of the intrinsic clustered feature distribution under domain shift [27,28],
where target features generated by the source encoder are close for the same
class and faraway for different classes (see Fig. 1 (b)). Secondly, context-aware
revision is designed to leverage adjacent pseudo-labels for revising bad pseudo-
labels, with aid of the learned context relations. Moreover, a calibration strategy
is proposed, aiming to mitigate the negative effect brought about by the inac-
curate learned context relations. Finally, the refined pseudo-labels are denoised
with consideration of model knowledge and feature distribution [3,13] to select
reliable pseudo-labels for domain adaptation. Experiments on cross-domain fun-
dus image segmentation demonstrate our proposed framework outperforms the
state-of-the-art source-free methods [3,25,26].

2 Method

Fig. 2 illustrates our SF-UDA framework via context-aware pseudo-label refine-
ment. In this section, we first introduce the context-similarity learning scheme.
Next, we propose the pseudo-label refinement strategy. Finally, we present the
model training with the denoised refined pseudo-labels.

2.1 Context-similarity learning

In the SF-UDA problem, a source model fs : Xs → Ys is trained using the data
{xi

s, y
i
s}

ns
i=1 from the source domain Ds = (Xs,Ys), where (xi

s, y
i
s) ∈ (Xs,Ys). f

s

is typically trained with a supervision loss of cross-entropy. Also an unlabeled
dataset {xi

t}
nt
i=1 from the target domain Dt is given, where xi

t ∈ Dt. SF-UDA
aims to learn a target model f t : Xt → Yt with only the source model fs and the
target dataset {xi

t}
nt
i=1. In our fundus segmentation problem, yi ∈ {0, 1}H×W×C ,

where C is the number of classes and C = 2 because there are two segmentation
targets, namely optic cup and optic disc.

Architecture of context-similarity head. Although the target features gen-
erated by source encoder do not align with the source segmentor, features of
the same classes tend to be in the same cluster while those of different classes
are faraway, as shown in Fig. 1 (b). This indicates the source feature encoder
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Fig. 2. Overview of the proposed context-aware pseudo-label refinement (CPR) frame-
work for SF-UDA. It consists of two stages: (a) The context-similarity head for com-
puting context relations is trained by reliable pseudo-labels. The learned context sim-
ilarities are then used to refine the pseudo-labels; (b) Only the refined pseudo-labels
with high confidence supervise the training of the segmentation network. The network
consists of a feature encoder (Enc) and a segmentor (Seg).

is useful for computing context relations. Therefore, we freeze the source en-
coder and add an additional head to the encoder for learning context semantic
relations, motivated by [1]. A side benefit of freezing the source encoder is the
training time and required memory can be reduced, as backward propagation is
not needed on the encoder. Specifically, the feature map fsim is first obtained,
where a 1× 1 convolution is applied for adaptation to the target task. Then the
semantic similarity between coordinate i and coordinate j on the feature map is
defined as

Sij = exp
{
−∥fsim(xi, yi)− fsim(xj , yj)∥1

}
. (1)

Computing similarities between every pair of coordinates in a feature map is
computationally costly. Thus, for each coordinate i, only similarities with coor-
dinates j lying within the circle of radius r are considered in our implementation.

Training of context-similarity head. Given a target image xt, initial pseudo-
labels and uncertainty mask can be obtained from the source model fs and xt,
following previous work [3] as:

pv,k =fs(xt)v, k = 1, . . . ,K,

pv = avg(pv,1, . . . , pv,K), uv = std(pv,1, . . . , pv,K),

ŷv = 1[pv ≥ γ],

(2)
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zω=

∑
v
fl,v · 1[ŷv = ω]1[uv < η] · pv,ω∑
v
1[ŷv = ω]1[uv < η] · pv,ω

, ω∈{foreground (fg), background (bg)},

dωv = ∥fl,v − zω∥2, (3)

mv = 1[uv < η](1[ŷv = 1]1[dfgv < dbgv ] + 1[ŷv = 0]1[dfgv > dbgv ]).

In Eq. 2, Monte Carlo Dropout [8] is performed with K forward passes
through the source model, thereby calculating pseudo-label ŷv and uncertainty
uv for the v-th pixel. Eq. 3 first extracts the class-wise prototypes zω from the
feature map fl,v of the layer before the last convolution, then uncertainty mask
mv is calculated by combining the distance to prototypes and uncertainty uv. A
pseudo-label for the v-th pixel is reliable if mv = 1.

Binary similarity label is then obtained. For two coordinates i and j, simi-
larity label S∗

ij is 1 if pseudo-labels ŷi = ŷj , and 0 otherwise. Note only reliable
pseudo-labels are considered to provide less noisy supervision.

The context-similarity head is trained with S∗. To address the class imbalance
issue, the loss of each type of similarity (fg-fg, bg-bg, fg-bg) is calculated and
aggregated [1] as

Lcon = −1

4
avg

ŷi=ŷj=1
mi=mj=1

(logSij)−
1

4
avg

ŷi=ŷj=0
mi=mj=1

(logSij)−
1

2
avg
ŷi ̸=ŷj

mi=mj=1

(log(1−Sij)). (4)

2.2 Context-similarity-based pseudo-label refinement

Context-aware revision. The trained context-similarity head is utilized to re-
fine the initial coarse pseudo-labels. Specifically, context-similarities Sij are com-
puted by passing the target image through the source encoder and the trained
head. Then the refined probability for the i-th coordinate is updated as the
weighted average of the probabilities in a local circle around the i-th coordinate
as

prei =
∑

d(i,j)≤r

Sij
β∑

d(i,j)≤r Sij
β
· pj (5)

where prei is the revised probability and d(·) is the Euclidean distance. β ≥ 1,
in order to highlight the prominent similarities and ignore the smaller ones. By
combining neighboring predictions based on context relations, revised probabil-
ities are more robust. Eq. 5 is performed iteratively for t rounds, since revised
probabilities can be used for further revision.

Calibration. The probability update by Eq. 5 might be hurt by inaccurate con-
text relations. We observe that for some classes (optic cup for fundus segmenta-
tion) with worse pseudo-labels, the context-similarity for “fg-bg” is not learned
well. Consequently, the probability of background incorrectly propagates to that
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of foreground, making the probability of foreground lower. To tackle this issue,
the revised probability is calibrated as

p′i =
prei

maxj(prej )
. (6)

The decreased probability is rectified by the maximum value in the image, con-
sidering the maximum probability (e.g., in the center of a region) after calibration
of a class should be close to 1.

2.3 Model adaptation with denoised pseudo labels

The refined pseudo-labels can be obtained by ŷ′v = 1[p′v ≥ γ]. However, noisy
pseudo-labels inevitably exist. The combination of model knowledge and target
feature distribution shows the best estimation of sample confidence [13]. To this
end, reliable pseudo-labels are selected at pixel-level and class-level [3] as

m′
v,p = 1(p′v < γlow or p′v > γhigh)

m′
v,c = 1(ŷ′v = 1)1(dfgv < dbgv ) + 1(ŷ′v = 0)1(dfgv > dbgv ),

(7)

in which γlow and γhigh are two thresholds for filtering out pseudo-labels without
confident probabilities. dfgv and dbgv are the distances to feature prototypes as
computed in Eq. 3. The final label selection mask is the intersection of m′

v,p and
m′

v,c, i.e., m
′
v = m′

v,p ·m′
v,c. The target model is trained under the supervision

of pseudo-labels selected by m′
v, with cross-entropy loss:

Lseg = −
∑
v

m′
v ·

[
ŷ′v · log(f t(xt)v) + (1− ŷ′v) · log(1− f t(xt)v)

]
. (8)

3 Experiments

Datasets. For a fair comparison, we follow prior work [3] to select three main-
stream datasets for fundus image segmentation, i.e., Drishti-GS [22], RIM-ONE-
r3 [7], and the validation set of REFUGE challenge [18]. These datasets are split
into 50/51, 99/60, and 320/80 for training/testing, respectively.

Implementation details and evaluation metrics. Following prior works [3,24,25],
our segmentation network is MobileNetV2-adapted [21] DeepLabv3+ [4]. The
context-similarity head comprises two branches for optic cup and optic disc, re-
spectively. Each branch includes a 1 × 1 convolution and a similarity feature
map. The threshold γ for determining pseudo-labels is set to 0.75, referring to
[24]. The radius r in Eq. 5, the β in Eq. 5 and the iteration number t are set to
4, 2 and 4 respectively. The two thresholds for filtering out unconfident refined
pseudo-labels are empirically set as γlow = 0.4 and γhigh = 0.85, respectively.
Each image is pre-processed by clipping a 512× 512 optic disc region [24]. The
same augmentations as in [3,25] are applied, including Gaussian noise, contrast
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Table 1. Comparison with state-of-the-arts on two settings. “W/o adaptation” refers
to directly evaluating the source model on the target dataset. “Upper bound” refers to
training the model on the target dataset with labels.

Methods
Dice[%]↑ ASD[pixel]↓

Optic cup Optic disc Avg Optic cup Optic disc Avg

Source: Drishti-GS; Target: RIM-ONE-r3

W/o adaptation 70.84 89.94 80.39 13.44 10.76 12.10
Upper bound 83.81 96.61 90.21 6.92 2.96 4.94

DPL [3] 71.70 92.52 82.11 12.49 7.34 9.92
FSM [26] 74.34 91.41 82.88 14.52 10.30 12.41
U-D4R [25] 73.48 93.18 83.33 10.18 6.15 8.16
CPR (ours) 75.02 95.03 85.03 9.84 4.32 7.08

Source: REFUGE; Target: Drishti-GS

W/o adaptation 79.80 93.89 86.84 13.25 6.70 9.97
Upper bound 89.63 96.80 93.22 6.65 3.55 5.10

DPL [3] 82.04 95.27 88.65 12.14 5.32 8.73
FSM [26] 79.30 94.34 86.82 13.79 5.95 9.87
U-D4R [25] 81.82 95.98 88.90 12.21 4.45 8.33
CPR (ours) 84.49 96.16 90.32 10.19 4.23 7.21

adjustment, and random erasing. The Adam optimizer is adopted with learning
rates of 3e-2 and 3e-4 in the context-similarity learning stage and the target
domain adaptation stage respectively. The momentum of the Adam optimizer
is set to 0.9 and 0.99. The batch size is set to 8. The context-similarity head is
trained for 16 epochs and the target model is trained for 10 epochs. The imple-
mentation is carried out via PyTorch on a single NVIDIA GeForce RTX 3090
GPU. For evaluation, we adopt the widely used Dice coefficient and Average
Surface Distance (ASD).

Comparison with state-of-the-arts. Table 1 shows the comparison of our
method with the state-of-the-art SF-UDA methods. Besides three SOTA meth-
ods, i.e., DPL [3], FSM [26], and U-D4R [25], we also report the adaptation
result without adaptation and the result with fully supervised learning (denoted
as “upper bound”). The results show that our approach achieves clear improve-
ments over the previous methods, owing to the proposed pseudo-label refinement
scheme which takes advantage of the feature distribution property under domain
shift to learn context relations and utilizes valuable context information to rectify
pseudo-labels. Fig. 3 (a) shows a qualitative comparison.

Ablation study on different modules. Table. 2 provides a quantitative anal-
ysis to investigate the function of each module. Each component shows its im-
portance in improving the adaptation performance. Particularly, without our
pseudo-label refinement, an obvious decrease of segmentation performance can
be witnessed, revealing its necessity. Without calibration, the segmentation per-
formance degrades significantly, which is because the probabilities without cali-
bration do not have correct absolute values. This demonstrates calibration is a
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Img GT DPL FSM U-D4R Ours Before refine After refineImg GT

(a) (b)

Fig. 3. On the Drishti-GS to RIM-ONE-r3 adaptation: (a) Qualitative comparison of
the optic cup and disc segmentation results with different methods. (b) An example of
pseudo-label change with the proposed refinement scheme.

Table 2. Quantitative ablation study on the Drishti-GS to RIM-ONE-r3 adaptation.

Pseudo-label refinement
Denoising

Dice[%]
Context-aware revision Calibration Optic cup Optic disc Avg

% % % 67.25 93.73 80.49

! % % 53.73 92.67 73.20

! % ! 69.80 94.95 82.38

! ! % 74.68 93.10 83.89

% % ! 72.34 94.13 83.23

! ! ! 75.02 95.03 85.03

necessary step after the revision. Denoising filters out unreliable pseudo-labels
by taking into account individual probabilities and feature distribution, thus
providing more correct guidance. Integrating all the components completes our
framework and yields the best result.
Ablation study on pseudo-label refinement. Ablation study is conducted to
verify the effectiveness of the pseudo-label refinement strategy. As shown in Ta-
ble. 3, after refinement, the quality of the pseudo-label is clearly promoted, lead-
ing to more accurate supervision for target domain adaptation. For the pseudo-
label of optic disc which originally has high accuracy, our refinement scheme
encouragingly achieves a boost of 3.5%, showing the robustness of our refine-
ment scheme for different quality of initial pseudo-labels. Without calibration,
the accuracy of the pseudo-label of optic cup is substantially dropped, indicating
it is an indispensable part of the overall scheme. Fig. 3 (b) visualizes an example
of the evolution of the pseudo-label. As can be seen, the context-inconsistent
region is clearly improved.

Table 3. Comparison of pseudo-label quality of the training set with different methods
on the Drishti-GS to RIM-ONE-r3 adaptation.

Methods
Dice[%]

Optic cup Optic disc

Initial pseudo-label [3] 67.66 90.01

Refined pseudo-label 72.01 93.51

Refined pseudo-label (w/o calibration) 58.34 93.40



CPR-SFUDA 9

4 Conclusion

This work presents a novel SF-UDA method for the fundus image segmenta-
tion problem. We propose to explicitly learn context semantic relations to refine
pseudo-labels. Calibration is performed to compensate for the wrong revision
caused by inaccurate context relations. The performance is further boosted via
the denoising scheme, which provides reliable guidance for adaptation. Our ex-
periments on cross-domain fundus image segmentation show that our method
outperforms the state-of-the-art SF-UDA approaches.

Acknowledgement. This work was partially supported by the Hong Kong
Innovation and Technology Fund under Project ITS/030/21, as well as by the
HKUST-BICI Exploratory Fund (HCIC-004) and Foshan HKUST Projects un-
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