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Abstract. Anterior segment optical coherence tomography (AS-OCT)
is a non-invasive imaging technique that is highly valuable for ophthalmic
diagnosis. However, speckles in AS-OCT images can often degrade the
image quality and affect clinical analysis. As a result, removing speckles
in AS-OCT images can greatly benefit automatic ophthalmology anal-
ysis. Unfortunately, challenges still exist in deploying effective AS-OCT
image denoising algorithms, including collecting sufficient paired train-
ing data and the requirement to preserve consistent content in medical
images. To address these practical issues, we propose an unsupervised
AS-OCT despeckling algorithm via Content Preserving Diffusion Model
(CPDM) with statistical knowledge. At the training stage, a Markov
chain transforms clean images to white Gaussian noise by repeatedly
adding random noise and removes the predicted noise in a reverse proce-
dure. At the inference stage, we first analyze the statistical distribution
of speckles and convert it into a Gaussian distribution, aiming to match
the fast truncated reverse diffusion process. We then explore the poste-
rior distribution of observed images as a fidelity term to ensure content
consistency in the iterative procedure. Our experimental results show
that CPDM significantly improves image quality compared to competi-
tive methods. Furthermore, we validate the benefits of CPDM for subse-
quent clinical analysis, including ciliary muscle (CM) segmentation and
scleral spur (SS) localization.
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1 Introduction

Anterior segment optical coherence tomography (AS-OCT) is a widely used
non-invasive imaging modality for ocular disease [1l[2]. It produces high-resolution
views of superficial anterior segment structures, such as the cornea, iris, and
ciliary body. However, speckle noise inherently exists in AS-OCT imaging sys-
tems [3], which can introduce uncertainty in clinical observations and increase the
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risk of misdiagnosis. AS-OCT despeckling has become an urgent pre-processing
task that can benefit clinical studies.

To suppress speckle noise in AS-OCT images, commercial scanners [4] gen-
erally average repeated scans at the same location. However, this approach can
result in artifacts due to uncontrollable movement. As a result, several post-
processing denoising approaches have been developed to reduce speckles, such as
wavelet-modified block-matching and 3D filters [5], anisotropic non-local means
filters [6], and complex wavelets combined with the K-SVD method [7]. However,
these algorithms can lead to edge distortion depending on the aggregation of
similar patches. Deep learning has recently been employed for image despeckling
tasks, with promising performance [§]. To overcome the limitations caused by
the requirement for vast supervised paired data, unsupervised algorithms explore
some promising stages to loosen the paired clinical data collection, including cy-
cle consistency loss [9], contrast learning strategies [10], simulated schemes [I1],
or the Bayesian model [I2]. Alternatively, the denoising diffusion probabilistic
model (DDPM) can use the averaged image of repeated collections to train the
model with excellent performance due to its focus on the noise pattern rather
than the signal [I3]. Given the prominent pixel-level representational ability for
low-level tasks, diffusion models have also been introduced to medical image
denoising based on the Gaussian assumption of the noise pattern [T4/T5].

Although previous studies have achieved outstanding performances, deploy-
ing AS-OCT despeckling algorithms remains challenging due to several reasons:
(1). Gathering massive paired data for supervised learning is difficult because
clinical data acquisition is time-consuming and expensive. (2). Speckle noise in
AS-OCT images strongly correlates with the real signal, making the additive
Gaussian assumption on the speckle pattern to remove noise impractically. (3).
unsupervised algorithms can easily miss inherent content, and content consis-
tency are vital for clinical scenes. (4). Existing algorithms focus on suppressing
speckles while ignoring the performance improvement of clinical analysis from
despeckling results.

To address these challenges, we propose a Content-Preserving Diffusion Model
for AS-OCT despeckling, named CPDM, which removes speckle noise in AS-
OCT images while preserving the inherent content simultaneously. Firstly, we
efficiently remove noise via a conditioned noise predictor by truncated diffusion
model [I4] in the absence of supervised data. We convert the speckle noise into an
additive Gaussian pattern by considering the statistical distribution of speckles
in AS-OCT to adapt to the reverse diffusion procedure. Secondly, we incorpo-
rate the posterior probability distribution in observed AS-OCT images into an
iterative reverse stage to avoid getting trapped in artificial artifacts and preserve
consistent content. The posterior distribution is regarded as a data fidelity term
to constrain the iterative reverse procedure for despeckling. Finally, experi-
ments on the AS-Casia and CM-Casia datasets demonstrate the effectiveness of
CPDM compared to state-of-the-art (SOTA) algorithms. Further experiments
on ciliary muscle (CM) segmentation and scleral spur (SS) localization verify
that the CPDM can benefit clinical analysis.
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Fig. 1. Distributions of Gaussian and speckle noises.

2 The statistical characteristic of speckles

Speckle noise is inherent in coherent imaging systems [3], as it results from the
destructive interference of multiple-scattered waves. As shown in Fig. [1] unlike
the additive Gaussian noise Y; = x; + N; (i = 1, ...,n), the multiplicative speckle
noise is modeled as Y; = z;N; [16], where Y denotes the noisy image, x is the
noise-free image, IV is the speckle noise, and i is the pixel index. Moreover, IV
consists of independent and identically distributed random variables with unit
mean, following a gamma probability density function py [I7]:

M
pr(n) = %n%lf"% (1)

where I'(-) is the Gamma function and M is the number of multilook [I7].
To transform the multiplicative noise into an additive one, logarithmic trans-
form [I8] is employed on both sides of Eq. [1} as: logY = loga +log N. There-
—— ~—~— =
G z w

fore, the density of the random variable W = log N is py (w) = pny(e®)e® =
MM Muw
TON°
tistical distribution of transformed one in [19120], W approximately follows a
Gaussian distribution. Besides, we can obtain the prior distribution:

e~¢"M _ According to the central limit theorem and analyzing the sta-

pal-(9]2) = pW(g — 2). (2)

3 Content Preserving Diffusion Model

Diffusion model. The diffusion model can subtly capture the semantic
knowledge of the input image and prevails in the pixel-level representation [13].
As shown in Fig. [2](a), it defines a Markov chain that transforms an image zg to
white Gaussian noise z7 ~ AN (0,1) by adding random noise in T' steps. During
inference, a random noise x7 is sampled and gradually denoised until it reaches
the desired image xo. To perfectly recover the image in the reverse sampling
procedure, a practicable constraint Dy (q(z¢—1|x¢ ,%o) ||po (x¢—1(x,)) was pro-
posed to minimize the distance between pg(zi—1|x:) and g(z¢|x¢—1)[13]. Thus
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Fig. 2. llustration of proposed CPDM algorithm. CPDM follows the training network
in block(a), and learns the regularization knowledge from the trained network for image
despeckling shown in block(b). Moreover, we adopt the truncated strategy shown in
block(c) into the despeckling process.

T;_1 can be sampled as follows:

(xtat)) + UtIa (3)

Xt—1 = ! (z¢ — Bt €
\/0715 vV 1-— O_[t
where gy is an approximator intended to predict noise € from x; and I ~ N(0,1).
Truncated diffusion model. As mentioned in the previous section, speckle
noise follows a gamma distribution and can be transformed into a Gaussian
distribution via a logarithmic function. This transformation enables matching
the Markov chain procedure in the reverse diffusion process. To speed up the
sampling process, this work introduces a truncated reverse procedure that can
directly obtain satisfying results from posterior sampling [14]. Fig. 2}(c) illus-
trates that only the last few reverse diffusion iterations calculated by parameter
estimation technique [21I] are used to obtain the desired result during despeck-
ling inference. Specifically, following [I3], a Markov chain adds Gaussian noise
to the data until it becomes pure noise and then gradually removes it by the
reverse procedure at the training stage shown in Fig. (a). At the despeckling
inference stage shown in Fig. (b), speckled images are converted into additive
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Gaussian ones by applying a logarithmic function. Then, the iteration number is
determined by estimating the noise levels [14] to achieve an efficient and effective
truncated reverse diffusion procedure. Therefore, AS-OCT despeckling can start
from noisy image distributions rather than pure noise.

CPDM integrated fidelity term. Inspired by the fact that the score-based
reverse diffusion process is a stochastic contraction mapping so that as long as
the data consistency imposing mapping is non-expansive, data consistency in-
corporated into the reverse diffusion results in a stochastic contraction to a fixed
point [22]. This work adopts the theory into the inverse AS-OCT image despeck-
ling problems, as the iteration steps which impose fidelity term can be easily cast
as non-expansive mapping. Accordingly, we can design a fidelity term to achieve
data consistency by modeling image despeckling inverse problem. Specifically,
invoking the conditional independence assumption, the prior distribution with
Eq. 2] can be rewritten as:

n

logpg- (9]2) =D logpW(ge —2z:) =C = MY _(za+e7%).  (4)
s=1

s=1

The Bayesian maximum a posteriori (MAP) formulation leads to the image
despeckling optimization with data fidelity and regularization terms.

arg mzinM Z (zs +€9°7%) + AR(2), (5)

s=1

where R() is the regularization term, and X is the regularization parameter.
The unconstrained minimization optimization problem can be defined as a con-
strained formulation by variable splitting method [23]:

(2,4) = arg minMZ (zs + €% 7%) + AR(u) s.t. z=u. (6)

s=1

Motivated by the iterative restoration methods with prior information to tackle
various tasks become mainstream, we explore the fidelity term Eq. [d] from the
posterior distribution of observed images into the iterative reverse diffusion pro-
cedure. The fidelity can guarantee data consistency with original images and
avoid falling into artificial artifacts. Moreover, we learn reasonable prior from
DDPM reverse recover procedure, which can ensure the flexibility with iterative
fidelity term incorporated into the loop of prior generation procedure. As shown
in Fig. (b)7 the recovery result obtained from the reverse sampling of DDPM
(Eq. [3)) can be considered as regularization information of the image despeckling
optimization model, and the fidelity term in Eq. [5| can ensure the consistency of
the reverse diffusion process with the original image content. Therefore, we can
achieve AS-OCT image despeckling by solving Eq. [6] with the ADMM method
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using variable splitting technique [I7]:

1
Wl = 7(zt+1 _ Lge(ztﬂ,t)) + o1, (7)

n
2l argmzinz (2L + egs_zz) + ﬁ“zt - ut_1’

s=1

2
)

(®)

where the hyperparameter u control the degree of freedom. It is worth men-
tioning that Eq. [7] is obtained with the trained CPDM model, and Eq. [§ can
be solved by the Newton method [24]. Finally, we design an AS-OCT image
despeckling scheme by adopting a fidelity term integrated statistical priors to
preserve content in the iterative reverse procedure.

4 Experiment

To evaluate the performance of the proposed CPDM for AS-OCT image de-
speckling, we conduct the comparative experiment and a ablation study in three
evaluations, including despeckling evaluation, subsequent CM segmentation or
SS localization.

Dataset preparation. A series of unsupervised methods including genera-
tive adversarial networks (GAN) and diffusion models aim at learning the noise
distribution rather than the signal. Therefore, we collect images by averaging
16 repeated B-scans as noisy-free data collected from AS-OCT, the CASIA2
(Tomey, Japan). This study obeyed the tenets of the Declaration of Helsinki
and was approved by the local ethics committee.

AS-Casia dataset contains 432 noisy image and 400 unpaired clean image
with the size of 2131 x 1600, which are views of the AS structure, including lens,
cornea, and iris. 400 noisy data and 400 clean images were used for training,
and the rest were for testing. The SS location in the noisy image is annotated
by ophthalmologists.

CM-Castia dataset consists of 184 noisy images and 184 unpaired clean data
with the size of 1065 x 1465 that show the scope of CM tissue. 160 noisy images
and 160 clean data are utilized for training network, with the remaining images
reserved for testing. Moreover, ophthalmologists annotated the CM regions on
the noisy images.

Implementation settings. The backbone of our model is a simplified ver-
sion of that in [I3]. The CPDM network was trained on an NVIDIA RTX 2080T1
48GB GPU for 500 epochs, with a batch size of 2, using Adam optimizer. The
variance schedule is set to linearly increase from 10™* to 62 in 7' = 1000 steps
and the starting learning rate is 10~* and decay by half every 5 epochs. All
training images were resized to 512 x 512 and normalized to [0,1]. In the re-
verse procedure, we analyzed the hyperparameters and set A = pu/2M = 0.2,
and the iteration number was evaluated as T = 4. The parameters of classical
blind denoising methods were tuned to reach the best performance, in which the
noise-level of NLM, ANLM, WBM3D, and WK-SVD were conducted by [21].
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Table 1. Quantitative evaluation of different methods.

Dataset AS-Casia CM-Casia
Task Despeckling Localization Despeckling Segmentation
Method CNRt ENLtT NIQE|l| EDJ] (um) |[CNRt ENL?T NIQE|| F11 IoU?t
Noisy 0.52 5.12 7.05 57.09 -6.66  2.50 11.50 | 0.579 0.424
WBM3DI5] 1.15 6.74 6.31 56.57 -3.25  3.28 6.80 | 0.602 0.447
NLM|[25] 1.76  22.94 6.54 96.85 -0.54  42.37 7.39 ]0.657 0.508
ANLMI6] 1.64 10.14 6.63 91.97 -2.18 4.18 6.52 | 0.627 0.474
WKSVDIT7] 1.05 6.70 7.94 79.60 -4.98 5.36 8.33 | 0.681 0.531
UINT[26] 2.14 6.45 9.04 121.98 -1.60  12.98 9.03 | 0.641 0.492
CUT[I0] 1.94 5.47 6.23 83.05 -4.61 5.99 6.92 | 0.553 0.404
CycleGAN[9] 1.82 5.13 5.58 65.42 -3.12 11.17 7.44 |0.667 0.516
Speckle2void[12] | 0.51 5.07 7.06 59.79 -5.47  4.71 7.86 |0.665 0.514
DRDM|[14] 1.28  21.23 5.86 37.96 -4.98 33.09 9.18 | 0.670 0.524
ODDMI15] 0.14  31.33 6.11 38.18 -7.06 91.50 9.70 |0.330 0.224
LogDM 1.63 21.16 5.27 38.04 -2.08 139.25 7.70 |0.679 0.535
CPDM 2.16 143.68 4.84 37.43 -0.53 396.35 6.42 |0.703 0.561

CycleGAN

Fig. 3. The visual comparison of image despeckling results

The recent unsupervised methods, UINT, CUT, and CycleGAN are conducted
by the unpaired dataset with the default setting. The methods based on diffusion
models only are trained on clean data while Speckle2void is implemented only
on noisy data with the default setting.

Comparison on AS-Casia dataset. We first evaluate the despeckling per-
formance by parameterless index, including contrast-to-noise ratio (CNR) [§],
the equivalent number of looks (ENL) [8], and natural image quality evaluator
(NIQE) [27]. Then we compare the despeckling results with the SOTA methods
by using the SS localization task with trained models in [28]. Concretely, we cal-
culate a euclidean distance (ED) value between the reference and the predicted
SS position with despeckled images via trained models. As shown in Table [I}
the proposed CPDM achieves promising despeckling results in terms of the best
CNR, ENL, NIQE values and the minimum ED error in the SS localization task
among all approaches. The visual comparison for denoised images with com-
peting approaches is shown in Fig. [3} the region has been enlarged to
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Fig. 4. Comparisons of CM segmented results

highlight the structure of the anterior lens capsule, which can assist in diag-
nosing congenital cataracts. It can be observed that the CUT and CycleGAN
models oversmooths structures close to flat, the UINT method results in ringing
effects while the WBM3D, ANLM and DRDM algorithms retain speckles in the
lens structure. Obviously, the proposed CPDM acquires satisfactory quality with
fine structure details and apparent grain.

Comparison on CM-Casia dataset. We conduct the experiment of image
despeckling and the following CM segmentation task to validate the clinical ben-
efit with CPDM. Specifically, we train a U-Net segmentation model [29] on the
CM-Casia dataset and then test the despeckled images of various methods. F1-
Score and intersection over union (IoU) index for segmentation were calculated
between the despeckled images and reference as reported in Table. [1L It can be
seen that the proposed CPDM achieves the superior despeckling performance by
the highest CNR, ENL, NIQE values and segmentation metrics. Moreover, the
segmented CM example of competitive methods is depicted in Fig. [] in which
the CM boundaries reference with the red line, and the line means the seg-
mented results. We can see that NLM, ANLM, CUT, and Speckle2void methods
fail to the continuous segmentation results due to insufficient speckle suppression
or excessive content loss while the CPDM captures a distinct CM boundary and
obtains the highest IoU score. Notably, as a type of smooth muscle, CM has am-
biguous boundaries, which are easily affected by speckles, resulting in difficulty
distinguishing CM from the adjacent sclera and negative CNR values. Despite
these challenges, the proposed CPDM can achieve the best segmentation owing
to the speckle reduction while preserving the inconspicuous edge content.

Ablation study. Table [I|shows the ablation study of the proposed CPDM.
We compare our method with two variants: ODDM [I5] and logDM. The ODDM
only considers removing the speckles by hijacking the reverse diffusion process
with the Gaussian assumption on speckles. Based on the ODDM, the logDM
further transforms speckles to Gaussian distribution by analyzing the statistical
characteristics of speckles. Additionally, the CPDM adopts the data fidelity term
to regulate the despeckling reverse process by integrating content consistency.
From Table [I} we can see that both the logarithmic function and data fidelity
term can improve the quality of despeckled images and benefit the subsequent



Title Suppressed Due to Excessive Length 9

clinical analysis. Consequently, a prominent unsupervised CPDM to AS-OCT
image despeckling is acquired with the proposed strategies.

5 Conclusions

Due to the impact of speckles in AS-OCT images, monitoring and analyzing
the anterior segment structure is challenging. To improve the quality of AS-OCT
images and overcome the difficulty of supervised data acquisition, we propose a
content-preserving diffusion model to achieve unsupervised AS-OCT image de-
speckling. We first analyze the statistical characteristic of speckles and transform
it into Gaussian distribution to match the reverse diffusion procedure. Then the
posterior distribution knowledge of AS-OCT image is designed as a fidelity term
and incorporated into the iterative despeckling process to guarantee data consis-
tency. Our experiments show that the proposed CPDM can efficiently suppress
the speckles and preserve content superior to the competing methods. Further-
more, we validate that the CPDM algorithm can benefit medical image analysis
based on subsequent CM segmentation and SS localization task.
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6 Appendix

6.1 The proposed CPDM Algorithm

Algorithm [I]and Algorithm [2| summarize the whole training and despeckling
procedure of CPDM.

Algorithm 1 Training
1: Repeat

Go ~ log Zo, Go ~ q(Go)

t ~ Uniform({1,...,T}),e ~ N(0,1)

Take gradient descent step on: Vy ||E —eo(v/arGo + V1 — aue, t)||2
2:Until converged

Algorithm 2 Reverse despeckling procedure

1: C71N’ ~ lOgYaZ = GN’vgest - E(GN’)at/ = Uil(Uest),N/ = t/N
2:Fort=N'-1:0do

I ~N(0,1)
wtt = \/%(ztf \/fjiatsg(zt,t))JrUtI
n
71— g 3 (2 e 4 g o —
2 s=1

3: Return x = ¢*

6.2 The iterative optimization in reverse despeckling procedure

The speckled images is generally formulated as: Y; = 2;N;, (i =1,....,n), N

M M—1

follows: py(n) = %n e~ "M By taking the logarithmic function:

logY =logz+1log N . (9)
\.\C;../ ~—— T

According the random variable transformation rule:
W =log N, (10)

MM e
wee 11

palz(g]2) = pW(g — 2). (12)

Based on the conditional independence rule:

pw(w) = pn(e”)e” =

logpg. (gl2) = Zlong(gS —z)=C— MZ (zs +€9°7%). (13)
s=1
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Based on the MAP criterion, it becomes an unconstrained optimization:

Z =argmin M Z (zs +e%°7%) + AR(2). (14)

s=1

Using the variable splitting method to create a new variable:

(2,0) = argminMZ (zs + €9 7%) + AR(u) s.t. z = u. (15)
z,u po

The quadratic proximal point to punish the constraint term:

(2,8) = argmin MY (z, + €977 + guz —u|)? + R(w). (16)
M s=1
The alternating direction method of multipliers (ADMM) algorithm to solve the

above formulation by splitting the variable: u is the medium value obtained from
the reverse sampling result with DDPM and 2! can be solved by Newton method:

1 B
v = JEmE s g O kel (17)
t — oy
2t argmzin z (21 4 egs*zﬁl) + ﬁ“ztﬂ - utH2, (18)
s=1

where the sub-problem about 2 can be solved by Newton method, in which SAT
is a hyper-parameter and denoted as A:
While 2,1 — 2z, > 0.01

1—e(gfz>+)\(z—ut)
Zk+1 = 2k — PICEEI NN

Return 2t = 2344

6.3 Experimental details

Fig. 5. Original noisy examples from AS-casia dataset with selected region of inter-
ests (ROIs) and boundaries marked. Five strong contrast signal regions (red) and one
background region ( ) are selected for calculating CNR and ENL.
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