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Abstract. The rapid accessibility of portable and affordable retinal imaging de-
vices has made early differential diagnosis easier. For example, color funduscopy
imaging is readily available in remote villages, which can help to identify dis-
eases like age-related macular degeneration (AMD), glaucoma, or pathological
myopia (PM). On the other hand, astronauts at the International Space Station
utilize this camera for identifying spaceflight-associated neuro-ocular syndrome
(SANS). However, due to the unavailability of experts in these locations, the data
has to be transferred to an urban healthcare facility (AMD and glaucoma) or a
terrestrial station (e.g, SANS) for more precise disease identification. Moreover,
due to low bandwidth limits, the imaging data has to be compressed for transfer
between these two places. Different super-resolution algorithms have been pro-
posed throughout the years to address this. Furthermore, with the advent of deep
learning, the field has advanced so much that x2 and x4 compressed images can be
decompressed to their original form without losing spatial information. In this pa-
per, we introduce a novel model called Swin-FSR that utilizes Swin Transformer
with spatial and depth-wise attention for fundus image super-resolution. Our ar-
chitecture achieves Peak signal-to-noise-ratio (PSNR) of 47.89, 49.00 and 45.32
on three public datasets, namely iChallenge-AMD, iChallenge-PM, and G1020.
Additionally, we tested the model’s effectiveness on a privately held dataset for
SANS and achieved comparable results against previous architectures.

1 Introduction

Color fundus imaging can detect and monitor various ocular diseases, including age-
related macular degeneration (AMD), glaucoma, and pathological myopia (PM)[29].
In remote and under-developed areas, color funduscopy imaging has become increas-
ingly accessible, allowing healthcare professionals to identify and manage these oc-
ular diseases before they progress to irreversible stages. However, interpreting these
images can be challenging for inexperienced or untrained personnel, necessitating the
transfer of data to urban healthcare facilities where specialists can make more accu-
rate diagnoses[3,21]. Compressing and decompressing the data without losing spatial
information can be utilized in this scenario by the super-resolution algorithm.
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Fig. 1: An overview of the proposed Swin-FSR consisting of a low-frequency feature
extraction module, improved Residual Swin-transformer BLock (iRSTB), Depth-wise
Channel Attention (DCA) Block, and High-resolution image reconstruction block. Fur-
thermore, iRSTB block consists of three parallel branches, i) Swin-Transformer with
ConvMLP block (STLc), ii) Spatial and Channel Attention (SCA) Block, and iii) an
identity mapping of the input, which is added together.

In a similar manner, color funduscopy imaging has found applications beyond the
confines of the planet. For example, astronauts onboard the International Space Sta-
tion (ISS) utilize this imaging to identify spaceflight-associated neuro-ocular syndrome
(SANS)[10]. This condition can occur due to prolonged exposure to microgravity. It
affects astronauts during long-duration spaceflight missions and can present with asym-
metric/unilateral/bilateral optic disc edema and choroidal folds, which are easily iden-
tifiable by Color fundus images[11]. With the low bandwidth communication between
ISS and terrestrial station [19], it becomes harder for experts to conduct early diagno-
sis and take preventive measures. So, super-resolution techniques can be vital in this
adverse scenario. Medical experts can visualize and analyze these changes and act ac-
cordingly [18].

Image super-resolution and compression using different upsampling filters [20,23,6],
has been a staple in image processing for a long time. Yet, those conventional ap-
proaches required manually designing convolving filters, which couldn’t adapt to learn-
ing spatial and depth features and had less artifact removal ability. With the advent of
deep learning, convolutional neural network-based super-resolution has paved the way
for fast and low-computation image reconstructions with less error [4,26,25]. A few
years back, attention-based architectures [28,27,22,17] were the state-of-the-art for any
image super-resolution tasks. However, with the introduction of shifted window-based
transformer models [8,13], the accuracy of these models superseded attention-based
ones with regard to different reconstruction metrics. Although swin-transformer-based
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models are good at extracting features of local patches, they lose the overall global spa-
tial and depth context while upsampling with window-based patch merging operations.

Our Contributions: Considering all the relevant factors, we introduce the novel
Swin-FSR architecture. It incorporates low-frequency feature extraction, deep feature
extraction, and high-quality image reconstruction modules. The low-frequency feature
extraction module employs a convolution layer to extract low-level features and is then
directly passed to the reconstruction module to preserve low-frequency information.
Our novelty is introduced in the deep feature extraction where we incorporated Depth-
wise Channel Attention block (DCA), improved Residual Swin-transformer Block -
(iRSTB), and Spatial and Channel Attention block (SCA). To validate our work, we
compare three different SR architectures for four Fundus datasets: iChallenge-AMD
[5], iChallenge-PALM [7], G1020 [1] and SANS. From Fig. 2 and Fig. 3 , it is apparent
that our architecture reconstructs images with high PSNR and SSIM.

2 Methodology

2.1 Overall Architecture

As shown in Fig. 1, SwinFSR consists of four modules: low-frequency feature ex-
traction, deep patch-level feature extraction, deep depth-wise channel attention, and
high-quality (HQ) image reconstruction modules. Given a low-resolution (LR) image
ILRϵRH×W×C . Here, H = height, W = width, c = channel of the image. For low-
frequency feature extraction, we utilize a 3×3 convolution with stride= 1 and is denoted
as HLF , and it extracts a feature FLF ϵRH×W×Cout with which illustrated in Eq. 1.

FLF = HLF (ILR) (1)

It has been reported that the convolution layer helps with better spatial feature ex-
traction and early visual processing, guiding to more steady optimization in transform-
ers [24]. Next, we have two parallel branches of outputs as denoted in Eq. 2. Here,
HDCA and HiRSTB are two new blocks that we propose in this study, and they both
take the low-feature vector as FLF input and generate two new features namely, FSF

and FPLF . We elaborate this two blocks in subsection 2.2 and 2.3

FSF = HDCA(FLF )

FPLF = HiRSTB(FLF )
(2)

Finally, we combine all three features from our previous modules, namely, FLF ,
FSF , and FPLF and apply a final high-quality (HQ) image reconstruction module to
generate a high-quality image IHQ as given in Eq. 3.

IHQ = HREC(FLF + FSF + FPLF ) (3)

where HREC is the function of the reconstruction block. Our low-frequency block ex-
tracts shallow features, whereas the two parallel depth-wise channel-attention and im-
proved residual swin-transformer blocks extract spatially and channel-wise dense fea-
tures extracting lost high-frequencies. With these three parallel residual connections,



4 Hossain et al.

SwinFSR can propagate and combine the high and low-frequency information to the
reconstruction module for better super-resolution results. It should be noted that the re-
construction module consists of a 1 × 1 convolution followed by a Pixel-shuffle layer
to upsample the features.

2.2 Depth-wise Channel Attention Block

For super-resolution architectures, channel-attention [2,15,28] is an essential robust fea-
ture extraction module that helps these architectures achieve high accuracy and more
visually realistic results. In contrast, recent shifted-window-based transformers archi-
tecture [12,13] for super-resolution do not incorporate this module. However, a recent
work [8] utilized a cross-attention module after the repetitive swin-transformer layers.
One of the most significant drawbacks of the transformer layer is it works on patch-level
tokens where the spatial dimensions are transformed into a linear feature. To retain the
spatial information intact and learning dense features effectively, we propose depth-
wise channel attention given in Eq. 4.

x = AdaptiveAvgPool(xin)

x = δ(Depthwise Conv(x))

xout = ϕ(Conv(x))

(4)

Here, δ is ReLU activation, and ϕ is Sigmoid activation functions. The regular channel-
attention utilizes a 2D Conv with 1 × 1 × C weight vector C times to create output
features 1×1×C. Given that adaptive average pooling already transforms the dimension
to 1×1, utilizing a spatial convolution is redundant and shoots up computation time. To
make it more efficient, we utilize depth-wise attention, with 1×1 weight vector applied
on each of the C features separately, and then the output is concatenated to get our final
output 1× 1× C. We use four DCA blocks in our architecture as given in Fig. 1.

2.3 Improved Residual Swin-Transformer Block

Swin Transformer [16] incorporates shifted windows self-attention (SW-MSA), which
builds hierarchical regional feature maps and has linear computation complexity com-
pared to vision transformers with quadratic computation complexity. Recently, Swin-IR
[13] adopted a modified swin-transformer block for different image enhancement tasks
such as super-resolution, JPEG compression, and denoising while achieving high PSNR
and SSIM scores. The most significant disadvantage of this block is the Multi-layer per-
ceptron module (MLP) after the post-normalization layer, which has two linear (dense)
layers. As a result, it becomes computationally more expensive than a traditional 1D
convolution layer. For example, a linear feature output from a swin-transformer layer
having depth D, and input channel, Xin and output channel, Xout will have a total
number of parameters, D × Xin × Xout. Contrastly, a 1D convolution with kernel
size, K = 1, with the same input and output will have less number of parameters,
1×Xin ×Xout. Here, we assign bias, b = 0. So, the proposed swin-transformer block
can be defined as Eq. 5 and is illustrated in Fig. 1 as STLc block.
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x1 = SW -MSA(σ(dl)) + x

x2 = ConvMLP (σ(x1)) + x1
(5)

Here, σ is Layer-normalization and ConvMLP has two 1D convolution followed by
GELU activation. To capture spatial local contexts for patch-level features we utilize a
patch-unmerging layer in parallel path and incorporate SCA (spatial and channel atten-
tion) block. The block consists of a convolution (k = 1, s = 1), a dilated convolution
(k = 3, d = 2, s = 1) and a depth-wise convolution (k = 1, s = 1) layer. Here, k=
kernel, d =dilation and s =stride. Moreover all these features are combined to get the
final ouptut. By combining repetitive SCA, STLc blocks and a identity mapping we
create our improved reisdual swin-transformer block (iRSTB) illustrated in Fig. 1. In
Swin-FSR, we incorporate four iRSTB blocks.

2.4 Loss Function

For image super resolution task, we utilize the L1 loss function given in Eq. 6. Here,
IRHQ is the reconstructed output of SwinFSR and IHQ is the original high-quality
image.

L = ∥IRHQ − IHQ∥ (6)

3 Experiments

3.1 Dataset

To assess the performance of our super-resolution models, we employ three distinct
public fundus datasets: AMD [5], G1020 [1], PALM[7,14], and one private dataset:
SANS. The datasets comprise .jpg, .tif, and .png formats with a high resolution. For
training purposes, we used Bicubic Interpolation to resize the images into (512× 512)
and converted all the images into .png format. The AMD, G1020, PALM, and SANS
datasets yield 400, 1020, 400, and 276 images, respectively. We split every dataset in
80% train and 20% test set, so we end up having 320 and 80 images for AMD, 816
and 204 images for G1020, 320 and 80 images for PALM, and 220 and 56 images for
SANS. We use 5-fold cross-validation to train our networks.
Data use declaration and acknowledgment: The AMD and PALM dataset were re-
leased as part of REFUGE Challenge, PALM Challenge. The G1020 was published as
technical report and benchmark [1]. The authors instructed to cite their work [5,7,14]
for usage. The SANS data is privately held and is provided by the National Aeronautics
and Space Administration(NASA) with Data use agreement 80NSSC20K1831.

3.2 Hyper-parameter

We utilized L1 loss for training our models for the super-resolution task. For optimizer,
we used Adam [9], with learning rate α = 0.0002, β1 = 0.9 and β2 = 0.999. The batch
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Fig. 2: Qualitative comparison of (×2) image reconstruction using different SR meth-
ods on AMD, PALM, G1020 and SANS dataset. The green rectangle is the zoomed-in
region. The rows are for the AMD, PALM and SANS datasets. Whereas, the column is
for each different models: SwinFSR, SwinIR, RCAN and ELAN.

size was b = 2, and we trained for 200 epochs for 8 hours with NVIDIA A30 GPU.
We utilize PyTorch and MONAI library monai.io for data transformation, training and
testing our model. The code repository is provided in this link.

3.3 Qualitative Evaluation

We compared our architecture with some best-performing CNN and Transformer based
SR models, including RCAN [28], ELAN [27], and SwinIR [13] as illustrated in Fig. 2
and Fig. 3. We trained and evaluated all four architectures using their publicly available
source code on the four datasets. SwinIR utilizes residual swin-transformer blocks with
identity mapping for dense feature extractions. In contrast, the RCAN utilizes repetitive
channel-attention blocks for depth-wise dense feature retrieval. Similarly, ELAN com-
bines multi-scale and long-range attention with convolution filters to extract spatial and
depth features. In Fig. 2, we illustrate ×2 reconstruction results for all four architec-
tures. By observing, we can see that our model’s vessel reconstruction is more realistic
for ×2 factor samples than other methods. Specifically for AMD and SANS, the de-
generation is noticeable. In contrast, ELAN and RCAN fail to accurately reconstruct
thinner and smaller vessels.

In the second experiment, we show results for ×4 reconstruction for all SR models
in Fig. 3. It is apparent from the figure that our model’s reconstruction is more realist
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Fig. 3: Qualitative comparison of (×4) image reconstruction using different SR meth-
ods on AMD, PALM, G1020 and SANS dataset. The green rectangle is the zoomed-in
region. The rows are for the AMD, PALM and SANS datasets. Whereas, the column is
for each different models: SwinFSR, SwinIR, RCAN and ELAN.

than other transformer and CNN-based architectures, and the vessel boundary is sharp,
containing more degeneration than SwinIR, ELAN and RCAN.. Especially for AMD ,
G1020 and PALM, the vessel edges are finer and sharper making it easily differentiable.
In contrast, ELAN and RCAN generate pseudo vessels whereas SwinIR fails to generate
some smaller ones. For SANS images, the reconstruction is much noticable for the ×4
than ×2.

3.4 Quantitative Bench-marking

For quantitative evaluation, we utilize Peak Signal-to-Noise-Ratio (PSNR) and Struc-
tural Similarity Index Metric (SSIM), which has been previously employed for mea-
suring similarity between original and reconstructed images in super-resolution tasks
[13,28,27]. We illustrate quantitative performance in Table. 1 between SwinFSR and
other state-of-the-art methods: SwinIR [13], RCAN [28], and ELAN [27]. Table. 1
shows that SwinFSR’s overall SSIM and PSNR are superior to other transformer and
CNN-based approaches. For ×2 scale reconstruction, SwinIR achieves the second-
best performance. Contrastly, for ×4 scale reconstruction, RCAN outperforms SwinIR
while scoring lower than our SwinFSR model for PSNR and SSIM.
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Table 1: Quantitative comparison on AMD[5], PALM [7,14], G1020 [1], & SANS.
Dataset AMD PALM G1020 SANS

2X
Model Year SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

SwinFSR 2023 98.70 47.89 99.11 49.00 98.65 49.11 97.93 45.32
SwinIR 2022 98.68 47.78 99.03 48.73 98.59 48.94 97.92 45.17
ELAN 2022 98.18 44.21 98.80 46.49 98.37 47.48 96.89 36.84
RCAN 2018 98.62 47.76 99.04 48.83 98.53 48.29 97.91 45.29

4X
Model Year SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

SwinFSR 2023 96.51 43.28 97.34 43.27 97.13 44.67 95.82 39.14
SwinIR 2022 96.40 42.98 97.27 43.07 97.06 44.44 95.80 39.02
ELAN 2022 94.76 39.12 97.03 42.47 97.11 44.39 95.16 35.84
RCAN 2018 96.20 42.62 97.38 43.18 97.05 44.37 95.73 38.92

3.5 Clinical Assessment

We carried out a diagnostic assessment with two expert ophthalmologists and test sam-
ples of 80 fundus images (20 fundus images per disease classes: AMD, Glaucoma,
Pathological Myopia and SANS for both original x2 and x4 images, and super-resolution
enhanced images). Half of the 20 fundus images were control patients without disease
pathologies; the other half contained disease pathologies. The clinical experts were not
provided any prior pathology information regarding the images. And each of the ex-
perts was given 10 images with equally distributed control and diseased images for
each disease category.

The accuracy and F1-score for original x4 images are as follows, 70.0% and 82.3%
(AMD), 75% and 85.7% (Glaucoma), 60.0% and 74.9% (Palm), and 55% and 70.9%
(SANS). The accuracy and F1-score for original x2 are as follows, 80.0% and 88.8%
(AMD), 80% and 88.8% (Glaucoma), 70.0% and 82.1% (Palm), and 65% and 77.4%
(SANS). The accuracy and F1-score for our model Swin-FSR’s output from x4 images
are as follows, 90.0% and 93.3% (AMD), 90.0% and 93.7% (Glaucoma), 75.0% and
82.7% (Palm), and 75% and 81.4% (SANS). The accuracy and F1-score for Swin-
FSR’s output from x2 images are as follows, 90.0% and 93.3% (AMD), 90.0% and
93.7% (Glaucoma), 80.0% and 85.7% (Palm), and 80% and 85.7% (SANS).

We also tested SWIN-IR, ELAN, and RCAN models for diagnostic assessment, out
of which SWIN-IR upsampled images got the best results. For x4 images, the model’s
accuracy and F-1 score are 80% and 87.5% (AMD), 85.0% and 90.3% (Glaucoma),
70.0% and 80.0% (Palm), and 70% and 76.9% (SANS). For x2 images, the model’s ac-
curacy and F-1 score are 80% and 87.5% (AMD), 80% and 88.8% (Glaucoma), 70.0%
and 80.0% (Palm), and 75% and 81.4% (SANS). Based on the above observations, our
model-generated images achieves the best result.
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3.6 Ablation Study

Effects of iRSTB, DCA, and SCA number: We illustrate the impacts of iRSTB, DCA,
and SCA numbers on the model’s performance in Supplementary Fig. 1 (a), (b), and (C).
We can see that the PSNR and SSIM become saturated with an increase in any of these
three hyperparameters. One drawback is that the total number of parameters grows lin-
early with each additional block. Therefore, we choose four blocks for iRSTB, DCA,
and SCA to achieve the optimum performance with low computation cost.
Presence and Absence of iRSTB, DCA, and SCA blocks: Additionally, we pro-
vide a comprehensive benchmark of our model’s performance with and without the
novel blocks incorporated in Supplementary Table. 1. Specifically, we show the perfor-
mance gains with the usage of an improved residual swin-transformer block (iRSTB)
and depth-wise channel attention (DCA). As the results illustrate, by comprising these
blocks, the PSNR and SSIM reach higher scores.

4 Conclusion

In this paper, we proposed Swin-FSR by combining novel DCA, iRSTB, and SCA
blocks which extract depth and low features, spatial information, and aggregate in im-
age reconstruction. The architecture reconstructs the precise venular structure of the
fundus image with high confidence scores for two relevant metrics. As a result, we can
efficiently employ this architecture in various ophthalmology applications emphasizing
the Space station. This model is well-suited for the analysis of retinal degenerative dis-
eases and for monitoring future prognosis. Our goal is to expand the scope of this work
to include other data modalities.
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Fig. 1: (a) & (b) Effects of the numbers of iRSTB Blocks on the PSNR and SSIM, and
(c) & (d) the numbers of DCA Blocks on the PSNR and SSIM for ×2 images.
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Table 1: Effects of DCA, iRSTB (SCA & STLc) on AMD[?], PALM [?,?], G1020 [?],
& SANS datasets for ×2 and ×4 scales.

Dataset Blocks AMD PALM G1020 SANS
Model DCA iRSTB (SCA & STLc) SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

2X
SwinFSR ✓ ✓ 98.70 47.89 99.11 49.00 98.65 49.11 97.93 45.32
SwinFSR ✓ 98.46 46.12 98.98 47.58 98.26 47.73 97.05 41.22
SwinFSR ✓ 98.34 45.03 97.35 46.31 97.54 47.25 96.69 37.23

4X
SwinFSR ✓ ✓ 96.51 43.28 97.34 43.27 97.13 44.67 95.82 39.14
SwinFSR ✓ 96.38 43.22 97.16 42.99 96.98 44.40 95.43 38.89
SwinFSR ✓ 95.66 42.75 96.83 42.73 96.64 44.22 94.69 38.43


