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Abstract. Cerebral X-ray digital subtraction angiography (DSA) is
the standard imaging technique for visualizing blood flow and guid-
ing endovascular treatments. The quality of DSA is often negatively
impacted by body motion during acquisition, leading to decreased
diagnostic value. Traditional methods address motion correction based
on non-rigid registration and employ sparse key points and non-
rigidity penalties to limit vessel distortion, which is time-consuming.
Recent methods alleviate subtraction artifacts by predicting the sub-
tracted frame from the corresponding unsubtracted frame, but do
not explicitly compensate for motion-induced misalignment between
frames. This hinders the serial evaluation of blood flow, and often
causes undesired vasculature and contrast flow alterations, leading to
impeded usability in clinical practice. To address these limitations, we
present AngioMoCo, a learning-based framework that generates motion-
compensated DSA sequences from X-ray angiography. AngioMoCo inte-
grates contrast extraction and motion correction, enabling differentia-
tion between patient motion and intensity changes caused by contrast
flow. This strategy improves registration quality while being orders of
magnitude faster than iterative elastix-based methods. We demonstrate
AngioMoCo on a large national multi-center dataset (MR CLEAN Reg-
istry) of clinically acquired angiographic images through comprehen-
sive qualitative and quantitative analyses. AngioMoCo produces high-
quality motion-compensated DSA, removing while preserving contrast
flow. Code is publicly available at https://github.com/RuishengSu/
AngioMoCo.
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1 Introduction

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging
modality in interventional radiology for blood flow visualization and therapeutic
guidance in endovascular treatments [25]. It is a 2D+T image series obtained by
subtracting an initial pre-contrast image from subsequent post-contrast frames,
leaving only the contrast-filled vessels visible. The injection of contrast medium
and the subtraction process effectively eliminate soft tissue and bone, enabling
high-resolution visualization of the vessels and the blood flow. However, this
subtraction technique assumes the absence of motion between frames during
exposure. In clinical practice, this premise is often violated. Involuntary motions,
caused by swallowing, coughing, stroke, or endovascular procedures, are nearly
inevitable. Body motion results in undesired artifacts in subtracted images, lead-
ing to decreased image quality and impaired interpretability of DSA (Fig. 1).

Over the last three decades, various motion correction techniques have been
proposed to mitigate the impact of body motion retrospectively [18]. Registra-
tion algorithms typically employ template matching with corresponding control
points or landmarks to align images [3,4,6–10,16,17,19,22,26–28]. These algo-
rithms rely on features based on vessels [8], edges [9,17,19,28], corners [30],
textures [20], temporal correspondence [3], and non-uniform grids [27]. To cap-
ture both local and global transformations, multi-resolution search [21,31], block

a). Pre-contrast frame c). Subtracted (b-a)

M
o�

on
le

ss
M

o�
on

b). Contrast frame

Fig. 1. Illustration of motion artifacts in DSA: a) the pre-contrast frame; b) a subse-
quent post-contrast frame; c) subtracted frame (b-a).
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matching [9], and iterative estimations [20,30] have been proposed. To limit
undesirable vessel distortions, sparse key points [19] and non-rigidity penal-
ties [26] have been used. Although these methods are effective in motion com-
pensation, they require time-consuming iterative computation for each frame,
limiting their clinical applicability.

Recent generative models, such as pix2pix [13], have been adapted to address
subtraction artifacts without registration [11,12,29]. These models leverage deep
learning techniques to predict a subtraction image from an input post-contrast
image by discerning foreground contrast from the body background, result-
ing in reduced artifacts. However, these models do not explicitly compensate
for motion-induced misalignment between frames. More importantly, they may
cause hallucinations or modification of contrast and vessels, and lack inter-
pretability as there is no subtraction. Consequently, these shortcomings hinder
the serial evaluation of blood flow and impede the diagnostic utility of DSA.

To overcome these limitations, we introduce AngioMoCo, a fast learning-
based motion correction method for DSA that avoids severe contrast distortion.
We employ a supervised CNN module that distinguishes between motion dis-
placement and contrast intensity change. The output contrast-removed image
and the pre-contrast image are then input to a subsequent self-supervised
learning-based registration model for deformable registration, where a defor-
mation regularization loss limits the local irregularity. By excluding contrast
enhancements from the deformation learning processing, AngioMoCo avoids
undesired distortion of the vessels. This results in trustworthy visualization of
continuous blood flow and promises to assist in automated analysis of flow-based
biomarkers relevant to endovascular treatments.

Overall, classical non-rigid registration methods use various regularization
strategies to limit vessel distortion, but are prohibitively time-consuming. Recent
learning-based methods are fast, but do not explicitly model the motion between
frames, and as a result can negatively distort the very clinical information we
aim to highlight. We build on the strengths of both directions while avoiding
their limitations. Specifically, we propose a novel learning-based strategy that is
significantly faster than traditional non-rigid registration methods. AngioMoCo
not only removes subtraction artifacts on each frame but does so by explic-
itly compensating for motion between frames, which is not available in existing
image-to-image models. We demonstrate that AngioMoCo achieves high-quality
registration while avoiding undesirable contrast reduction or vessel erasure.

2 Method

2.1 Model

Figure 2 outlines the AngioMoCo framework for motion correction and subtrac-
tion in angiographic images, comprising three main modules: contrast extraction,
deformable registration, and spatial-transformed subtraction. Let X = {xt}T

t=0

be the 2D+T DSA series of a patient, where x0 is the pre-contrast frame and
{xt}T

t=1 are the post-contrast frames.
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Fig. 2. Overview. The proposed framework takes a pre-contrast image x0 and a post-
contrast image xt as input. The contrast extraction module fθf (·) splits xt into contrast
ct and contrast-removed mt. Next, mt and x0 are registered using network rθr (·, ·),
which outputs a deformation field φt. Subsequently, φt is applied to the post-contrast
image xt to obtain the final output subtracted image yt, which corrects misalignment
between frames.

We define a contrast extraction module fθf
(xt) = ct with parameters θf that

takes as input a post-contrast frame xt. This function separates xt into a contrast
image ct and a contrast-removed image mt where mt = xt − ct. The values in ct

are within [−1, 0] as the injected contrast medium can only lead to a decrease
in pixel intensity relative to the input image with an intensity range of [0, 1].
The contrast extraction module aims to reduce contrast discrepancies between
the pre- and post-contrast frames. Such image-to-image modules can lead to
hallucination and may not fully capture distal vessels, relatively less contrasted
vessels, and vessels behind bone structures. Therefore, in AngioMoCo, we only
employ this module to enable easier registration of the frame xt to the pre-
contrast x0 using the intermediate contrast-extracted mt image.

We define a registration function rθr
(x0,mt) = φt with parameters θr to

estimate the deformation φt. We obtain the motionless subtraction angiography
yt by subtracting the pre-contrast frame x0 from the warped post-contrast frame
wt: yt = wt − x0 = xt ◦ φt − x0, where ◦ defines a spatial warp.

2.2 Training

We train the contrast extraction fθf
(·) and deformable registration rθr

(·, ·) mod-
ules separately. The contrast extraction module is trained on a motionless subset
of data with an MSE loss between the ground truth contrast, estimated via sub-
traction between post- and pre-contrast frames (xt − x0), and the predicted ct:

Lext(θr;xt) = LMSE(xt − x0, fθf
(xt)). (1)
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We train the deformable registration module on a motion subset, with the pre-
trained contrast extraction module frozen, using a loss function that combines
an MSE loss between mt and x0 and a smoothness loss Lsmooth, weighted by λ:

Lreg(θf ;x0,mt ◦ φt) = (1 − λ)LMSE(x0,mt ◦ φt) + λLsmooth(φt), (2)

where Lsmooth is the mean squared horizontal and vertical gradients of displace-
ment ut in deformation field φt, that enforces spatial smoothness of deformation:

Lsmooth(φt) = ‖∇ut‖2. (3)

2.3 Architecture

We design the contrast extraction module fθf
(·, ·) using a U-Net architecture,

which includes a contracting path (encoder) and an expanding path (decoder)
connected by skip connections. The encoder stage comprises eight convolutional
and max-pooling layers with the number of channels being 8, 16, 32, 64, 128, 256,
512, and 512 respectively. The convolutions operate with a 3 × 3 kernel size and
a stride of 2. Similarly, the decoding path employs eight upsampling, 3 × 3 con-
volution, and concatenation operations with 32 feature maps per layer to restore
the spatial dimension up to the input size. Each convolution is accompanied by
an instance normalization and a LeakyReLU activation layer. We also use three
additional 3× 3 convolutions. The final convolution employs a negative sigmoid
activation, confining the output pixel intensity to [−1, 0].

We employ a deformable registration module rθr
(·, ·) based on VoxelMorph to

learn motion correction in DSA [2]. We add instance normalization between the
convolution layers of the encoder and decoder. We utilize this deformable reg-
istration module to predict bi-directional dense deformation fields using diffeo-
morphism that allows to spatially transform either pre- or post-contrast frames.

3 Experiments

We assess AngioMoCo in terms of vessel contrast preservation, artifact removal,
and computation efficiency compared to existing approaches.

3.1 Experimental Setup

Data. We identified 272 patients with unsubtracted cerebral angiographic
images available from MR CLEAN registry [14], an ongoing prospective observa-
tional multi-center registry of patients with acute ischemic stroke who underwent
endovascular thrombectomy (EVT). This comprised 788 angiographic series,
consisting of 16,641 frames in total, acquired between attempts of thrombus
retrieval. The DSA series were acquired using various imaging systems, includ-
ing Philips, GE, and Siemens, and had a size of 1024×1024 pixels. The series had
varying lengths, ranging from 10 to 50 frames, and temporal resolutions between
0.5 and 4 frames per second (fps). We performed image resizing to 512 × 512
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pixels and min-max intensity normalization to obtain intensity values within the
range of [0, 1]. To ensure the coherency of the intensity along the series, the
maximum intensity is calculated on the series level based on the stored bits in
the DICOM header.

Based on visual assessment, we categorized the dataset into two subsets:
motionless and motion. We use the motionless subset, consisting of 107 series
(1933 frames) from 21 patients, for pre-training the contrast extraction module.
The motion subset, which contains 681 series (14708 frames) from 251 patients,
is used for overall training and evaluation. We split data on the patient level
independently on the motionless and motion subsets, with a ratio of 50%, 20%,
and 30% for training, validation, and testing, respectively.

Baselines. We compare AngioMoCo with two widely used image registration
approaches, elastix-based affine registration and VoxelMorph [1,2], and an image-
to-image approach employing a U-Net [24] architecture. We followed the imple-
mentation of [2] for VoxelMorph with deformation regularization λ = 0.01. For
the U-Net, we employed the same architecture as the contrast extraction mod-
ule fθf

(·, ·) with the same preprocessing and augmentations. We trained the
U-Net using the motionless subset and used mean squared error (MSE) as the
optimizing objective. We implemented the methods using Python 3.10.6 and
PyTorch [23].

Training Details. We use an NVIDIA 2080 Ti GPU (11 GB), the Adam opti-
mizer [15] and the ReduceLROnPlateau scheduler with an initial learning rate
of 0.001, a patience of 300 epochs, and a decay of 0.1. We set the batch size to 8
and applied early stopping with a patience of 500 epochs. We selected these opti-
mization parameters based on validation performance using a grid search. We
applied data augmentations using Albumentations [5], including HorizontalFlip,
ShiftScaleRotate, and RandomSizedCrop, each with a probability of 0.5.

Evaluation. We carry out both qualitative and quantitative analyses on the
hold-out test set of the motion subset. A key challenge is to minimize motion
and subtraction artifacts while retaining clinically important features. We use
mean squared intensity (MSI) as a proxy to quantify the preservation of contrast
intensity within vessels and the ability of motion correction outside vessels. As
ground truth deformations are not available for image sequences with motion,
we manually segment the blood vessels in post-contrast frames (Supplemental
Fig. 6), and use the resulting masks to quantify MSI inside and outside blood
vessels. We used paired t-tests for statistical significance.

3.2 Results

Quantitative Analysis. The optimal outcome is represented by the top left
corner of Fig. 3, indicating high vessel contrast preservation and complete arti-
fact removal (Supplemental Table 1). Compared to elastix affine registration,
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Fig. 3. Mean squared intensity (MSI) on the test set. Better methods will preserve
the MSI (i.e., vessel contrast) inside vessels (↑, y-axis) while minimizing the MSI (i.e.,
artifacts) outside vessels (←, x-axis), moving towards the top left of the graph.

AngioMoCo(λ = 0.001) achieves similar vessel preservation (P = 0.2), while sub-
stantially decreasing the MSI outside vessels (by about half). Compared to Vox-
elMorph, AngioMoCo demonstrates substantial improvement, with higher vessel
preservation and better (more to the left) artifact removal. While the image-
to-image U-Net yields the lowest MSI outside vessels, it sacrifices a substantial
amount (30%) of contrast inside vessels, harming the precise clinical signal we
are interested in.

Qualitative Analysis. Figure 4 presents visual comparisons of the methods
through three representative examples. The image-to-image U-Net generates
images with fewer motion artifacts than other methods, but it often fails to
capture vessel contrast behind bone structures (Row 1), distal vessels (Row 1),
and loses high-frequency spatial features, leading to blurry images (Row 2).
These errors can have substantial negative effects on downstream clinical appli-
cations. VoxelMorph operates on pre- and post-contrast images, which can cause
considerable modifications in the vessel contrast flow. For example, the motion-
corrected image of VoxelMorph in Row 3 has lighter vessel contrast than its
counterparts. In contrast, AngioMoCo overcomes these limitations of U-Net and
VoxelMorph by learning to disentangle contrast flow from motion.

Runtime. Compared to iterative registration methods, deep-learning-based reg-
istration methods, including AngioMoCo, require orders of magnitude less time.
For example, AngioMoCo takes less than a second to process a series on GPU,
while iterative registration methods are mostly implemented on CPU where they
require minutes.
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Fig. 4. Representative visual comparisons. We report MSI values inside (left) and out-
side (right) vessels in brackets. Red arrows point to undesired vessel contrast erasure
or modifications. AngioMoCo achieves better background artifact removal and vessel
enhancement than other methods. The UNet achieves excellent artifact removal, but
it comes at the cost of severe damage to the vessels of interest, making it clinically less
useful.

4 Discussion

We find that AngioMoCo achieves high-quality motion correction in DSA, while
preserving vessel details, which is of critical clinical importance. While the image-
to-image U-Net resulted in fewer artifacts, it substantially degrades the vessel
contrast, harming its usability in clinical usefulness.

These results suggest that AngioMoCo is clinically relevant for endovascular
applications, enhancing the utility of DSA in diagnosis and treatment planning.
The tool can extract contrast flow while outputting smooth bi-directional defor-
mation fields that provide interpretability. Unlike image-to-image models, the
contrast flow visualization is driven by motion-compensation of the post-contrast
frames to the pre-contrast image, and hence avoids undesirable hallucinations
and modifications of vessel contrast.

We also examined the end-to-end training strategy of AngioMoCo, which did
not yield superior results to VoxelMorph or the modularly trained AngioMoCo
(Supplemental Fig. 5). To further enhance registration accuracy, future research
may explore the integration of 3D spatio-temporal CNN and the utilization of
vessel masks as auxiliary supervision.
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5 Conclusion

We have presented AngioMoCo, a deep learning-based strategy towards motion-
free digital subtraction angiography. The approach leverages a contrast extrac-
tion module to disentangle contrast flow from body motion and a deformable
registration module to concentrate on motion-induced deformations. The exper-
imental results on a large clinical dataset demonstrate that AngioMoCo out-
performs iterative affine registration, learning-based VoxelMorph, and image-
to-image U-Net. Overall, AngioMoCo achieves high registration accuracy while
preserving vascular features, improving the quality and clinical utility of DSA
for diagnosis and treatment planning in endovascular procedures.
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Fund of the Royal Netherlands Academy of Arts & Sciences (KNAW).

References

1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsuper-
vised learning model for deformable medical image registration. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260
(2018)

2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019)

3. Bentoutou, Y., Taleb, N.: A 3-D space-time motion detection for an invariant image
registration approach in digital subtraction angiography. Comput. Vis. Image
Underst. 97(1), 30–50 (2005)

4. Bentoutou, Y., Taleb, N., El Mezouar, M.C., Taleb, M., Jetto, L.: An invariant
approach for image registration in digital subtraction angiography. Pattern Recogn.
35(12), 2853–2865 (2002)

5. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin,
A.A.: Albumentations: fast and flexible image augmentations. Information 11(2),
125 (2020)

6. Buzug, T.M., Weese, J.: Image registration for DSA quality enhancement. Comput.
Med. Imaging Graph. 22(2), 103–113 (1998)

7. Buzug, T.M., Weese, J., Fassnacht, C., Lorenz, C.: Using an entropy similarity
measure to enhance the quality of DSA images with an algorithm based on tem-
plate matching. In: Höhne, K.H., Kikinis, R. (eds.) Visualization in Biomedical
Computing: 4th International Conference, VBC 1996 Hamburg, Germamy, 22–25
September 1996, Proceedings, pp. 235–240. Springer, Cham (2006). https://doi.
org/10.1007/BFb0046959

8. Cao, Z., Liu, X., Peng, B., Moon, Y.S.: DSA image registration based on multiscale
Gabor filters and mutual information. In: 2005 IEEE International Conference on
Information Acquisition, pp. 6-pp. IEEE (2005)

9. Chu, Y., Bai, N., Ji, Z., Chen, S., Mou, X.: Registration for DSA image using trian-
gle grid and spatial transformation based on stretching. In: 2006 8th international
Conference on Signal Processing, vol. 2. IEEE (2006)

https://doi.org/10.1007/BFb0046959
https://doi.org/10.1007/BFb0046959


AngioMoCo: Learning-Based Motion Correction in DSA 779

10. Cox, G.S., de Jager, G.: Automatic registration of temporal image pairs for digital
subtraction angiography. In: Medical Imaging 1994: Image Processing, vol. 2167,
pp. 188–199. SPIE (1994)

11. Crabb, B.T., et al.: Deep learning subtraction angiography: improved generaliz-
ability with transfer learning. J. Vasc. Intervent. Radiol. 34, 409-419.e2 (2022)

12. Gao, Y., et al.: Deep learning-based digital subtraction angiography image gener-
ation. Int. J. Comput. Assist. Radiol. Surg. 14, 1775–1784 (2019)

13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

14. Jansen, I.G., Mulder, M.J., Goldhoorn, R.J.B.: Endovascular treatment for acute
ischaemic stroke in routine clinical practice: prospective, observational cohort study
(MR CLEAN Registry). BMJ 360, k949 (2018)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Liu, B., Zhao, Q., Dong, J., Jia, X., Yue, Z.: A stretching transform-based auto-
matic nonrigid registration system for cerebrovascular digital subtraction angiog-
raphy images. Int. J. Imaging Syst. Technol. 23(2), 171–187 (2013)

17. Meijering, E.H., et al.: Reduction of patient motion artifacts in digital subtraction
angiography: evaluation of a fast and fully automatic technique. Radiology 219(1),
288–293 (2001)

18. Meijering, E.H., Niessen, W.J., Viegever, M.: Retrospective motion correction in
digital subtraction angiography: a review. IEEE Trans. Med. Imaging 18(1), 2–21
(1999)

19. Meijering, E.H., Zuiderveld, K.J., Viergever, M.A.: Image registration for digital
subtraction angiography. Int. J. Comput. Vision 31, 227–246 (1999)

20. Nejati, M., Amirfattahi, R., Sadri, S.: A fast image registration algorithm for digital
subtraction angiography. In: 2010 17th Iranian Conference of Biomedical Engineer-
ing (ICBME), pp. 1–4. IEEE (2010)

21. Nejati, M., Pourghassem, H.: Multiresolution image registration in digital X-ray
angiography with intensity variation modeling. J. Med. Syst. 38, 1–10 (2014)

22. Nejati, M., Sadri, S., Amirfattahi, R.: Nonrigid image registration in digital sub-
traction angiography using multilevel B-spline. BioMed Res. Int. 2013, 236315
(2013)

23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8026–8037
(2019)

24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4_28

25. Shaban, S., et al.: Digital subtraction angiography in cerebrovascular disease: cur-
rent practice and perspectives on diagnosis, acute treatment and prognosis. Acta
Neurologica Belgica 122(3), 763–780 (2021)

26. Staring, M., Klein, S., Pluim, J.P.: A rigidity penalty term for nonrigid registration.
Med. Phys. 34(11), 4098–4108 (2007)

27. Sundarapandian, M., Kalpathi, R., Manason, V.D.: DSA image registration using
non-uniform MRF model and pivotal control points. Comput. Med. Imaging
Graph. 37(4), 323–336 (2013)

28. Taleb, N., Jetto, L.: Image registration for applications in digital subtraction
angiography. Control. Eng. Pract. 6(2), 227–238 (1998)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-24574-4_28


780 R. Su et al.

29. Ueda, D., et al.: Deep learning-based angiogram generation model for cerebral
angiography without misregistration artifacts. Radiology 299(3), 675–681 (2021)

30. Wang, J., Zhang, J.: An iterative refinement DSA image registration algorithm
using structural image quality measure. In: 2009 Fifth International Conference
on Intelligent Information Hiding and Multimedia Signal Processing, pp. 973–976.
IEEE (2009)

31. Yang, J., Wang, Y., Tang, S., Zhou, S., Liu, Y., Chen, W.: Multiresolution elastic
registration of X-ray angiography images using thin-plate spline. IEEE Trans. Nucl.
Sci. 54(1), 152–166 (2007)


	AngioMoCo: Learning-Based Motion Correction in Cerebral Digital Subtraction Angiography
	1 Introduction
	2 Method
	2.1 Model
	2.2 Training
	2.3 Architecture

	3 Experiments
	3.1 Experimental Setup
	3.2 Results

	4 Discussion
	5 Conclusion
	References




