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Abstract. Diffusion MRI tractography parcellation classifies stream-
lines into anatomical fiber tracts to enable quantification and visualiza-
tion for clinical and scientific applications. Current tractography parcel-
lation methods rely heavily on registration, but registration inaccura-
cies can affect parcellation and the computational cost of registration
is high for large-scale datasets. Recently, deep-learning-based methods
have been proposed for tractography parcellation using various types
of representations for streamlines. However, these methods only focus
on the information from a single streamline, ignoring geometric rela-
tionships between the streamlines in the brain. We propose TractCloud,
a registration-free framework that performs whole-brain tractography
parcellation directly in individual subject space. We propose a novel,
learnable, local-global streamline representation that leverages informa-
tion from neighboring and whole-brain streamlines to describe the lo-
cal anatomy and global pose of the brain. We train our framework
on a large-scale labeled tractography dataset, which we augment by
applying synthetic transforms including rotation, scaling, and transla-
tions. We test our framework on five independently acquired datasets
across populations and health conditions. TractCloud significantly out-
performs several state-of-the-art methods on all testing datasets. Tract-
Cloud achieves efficient and consistent whole-brain white matter par-
cellation across the lifespan (from neonates to elderly subjects, includ-
ing brain tumor patients) without the need for registration. The ro-
bustness and high inference speed of TractCloud make it suitable for
large-scale tractography data analysis. Our project page is available at
https://tractcloud.github.io/.

Keywords: Diffusion MRI · Tractography · Registration-free white mat-
ter parcellation · Deep learning · Point cloud.
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1 Introduction

Diffusion MRI (dMRI) tractography is the only non-invasive method capable
of mapping the complex white matter (WM) connections within the brain [2].
Tractography parcellation [42,12,28] classifies the vast numbers of streamlines
resulting from whole-brain tractography to enable visualization and quantifica-
tion of the brain’s WM connections. (Here a streamline is defined as a set of
ordered points in 3D space resulting from tractography [45]). In recent years,
deep-learning-based methods have been proposed for tractography parcellation
[14,37,44,7,39,15,34,20,33,17,5,36], of which many methods are designed to clas-
sify streamlines [37,44,16,7,15,17,39]. However, multiple challenges exist when
using streamline data as deep network input. One well-known challenge is that
streamlines can be equivalently represented in forward or reverse order [11,39],
complicating their direct representation as vectors [7] or images [44]. Another
challenge is that the geometric relationships between the streamlines in the brain
have previously been ignored: existing parcellation methods [37,44,16,7,15,39,17]
train and classify each streamline independently. Finally, computational cost can
pose a challenge for the parcellation of large tractography datasets that can in-
clude thousands of subjects with millions of streamlines per subject.

In this work, we propose a novel point-cloud-based strategy that leverages
neighboring and whole-brain streamline information to learn local-global stream-
line representations. Point clouds have been shown to be efficient and effective
representations for streamlines [1,4,15,39,6,18] in applications such as tractogra-
phy filtering [1], clustering [7], and parcellation [38,15,39,18]. One benefit of using
point clouds is that streamlines with equivalent forward and reverse point orders
(e.g., from cortex to brainstem or vice versa) can be represented equally. How-
ever, these existing methods focus on a single streamline (one point cloud) and
ignore other streamlines (other point clouds) in the same brain that may provide
important complementary information useful for tractography parcellation. In
computer vision, point clouds are commonly used to describe scenes and objects
(e.g., cars, tables, airplanes, etc.). However, point cloud segmentation methods
from computer vision, which assign labels to points, cannot translate directly to
the tractography field, where the task of interest is to label entire streamlines.
Computer vision studies [26,32,40,35,46,41,21] have shown that point interac-
tions within one point cloud can yield more effective features for downstream
tasks. However, in tractography parcellation we are interested in the relationship
between multiple point clouds (streamlines) in the brain. These other streamlines
can provide detailed information about the local WM geometry surrounding the
streamline to be classified, as well as global information about the location and
pose of the brain that can reduce the need for image registration.

Affine or even nonrigid registration is needed for current tractography par-
cellation methods [13,42,28]. Recently, registration-free techniques have been
proposed for tractography parcellation to handle computational challenges re-
sulting from large inter-subject variability and to increase robustness to image
registration inaccuracies [19,29]. Avoiding image registration can also reduce
computational time and cost when processing very large tractography datasets
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Fig. 1. TractCloud framework overview: (a) tractography with synthetic transforma-
tions, (b) module for learning local-global representation, (c) training on labeled data
with synthetic transformations, (d) testing on unregistered tractography from real data.

with thousands of subjects. While other registration-free tractography parcella-
tion techniques require Freesurfer input [29] or work with rigidly MNI-aligned
Human Connectome Project data [19], our method can directly parcellate trac-
tography in individual subject space.

In this study, we propose TractCloud, a registration-free tractography parcel-
lation framework, as illustrated in Fig. 1. This paper has three main contribu-
tions. First, we propose a novel, learnable, local-global streamline representation
that leverages information from neighboring and whole-brain streamlines to de-
scribe the local anatomy and global pose of the brain. Second, we leverage a
training strategy using synthetic transformations of labeled tractography data
to enable registration-free parcellation at the inference stage. Third, we imple-
ment our framework using two compared point cloud networks and demonstrate
fast, registration-free, whole-brain tractography parcellation across the lifespan.

2 Methods

2.1 Training and Testing Datasets

We utilized a high-quality and large-scale dataset of 1 million labeled stream-
lines for model training and validation. The dataset was obtained from a WM
tractography atlas [42] that was curated and annotated by a neuroanatomist.
The atlas was derived from 100 registered tractography of young healthy adults
in the Human Connectome Project (HCP) [30]. The training data includes 43
tract classes: 42 anatomically meaningful tracts from the whole brain and one
tract category of “other streamlines,” including, most importantly, anatomically
implausible outlier streamlines. On average, the 42 anatomical tracts have 2539
streamlines with a standard deviation of 2693 streamlines.
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For evaluation, we used a total of 120 subjects from four public datasets and
one private dataset. These five datasets were independently acquired with dif-
ferent imaging protocols across ages and health conditions. (1) developing HCP
(dHCP) [9]: 20 neonates (1 to 27 days); (2) Adolescent Brain Cognitive Devel-
opment (ABCD) dataset [31]: 25 adolescents (9 to 11 years); (3) HCP dataset
[30]: 25 young healthy adults (22 to 35 years, subjects not part of the train-
ing atlas); (4) Parkinson’s Progression Markers Initiative (PPMI) dataset [23]:
25 older adults (51 to 75 years), including Parkinson’s disease (PD) patients
and healthy individuals; (5) Brain Tumor Patient (BTP) dataset: dMRI data
from 25 brain tumor patients (28 to 70 years) were acquired at Brigham and
Women’s Hospital. dMRI acquisition parameters of datasets are shown in Sup-
plementary Table S1. The two-tensor Unscented Kalman Filter (UKF) [22,27,25]
method, which is consistent across ages, health conditions, and image acquisi-
tions [42], was utilized to create whole-brain tractography for all subjects across
the datasets mentioned above.

2.2 TractCloud Framework

Synthetic Transform Data Augmentation. To enable tractography par-
cellation without registration, we augmented the training data by applying syn-
thetic transform-based augmentation (STA) including rotation, scaling, and trans-
lations. These transformations have been used in voxel-based WM segmentation
[34], but no study has applied these transformations to study tractography, to
our knowledge. In detail, we applied 30 random transformations to each subject
tractography in the training dataset to obtain 3000 transformed subjects and 30
million streamlines. Transformations included: rotation from -45 to 45 degrees
along the left-right axis, from -10 to 10 degrees along the anterior-posterior axis,
and from -10 to 10 degrees along the superior-inferior axis; translation from -50
to 50 mm along all three axes; scaling from -45% to 5% along all three axes.
These transformations were selected based on typical differences between sub-
jects due to variability in brain anatomy and volume, head position, and image
acquisition protocol. Many methods are capable of tractography parcellation af-
ter affine registration [12,42]; therefore, with STA applied to the training dataset,
our framework has the potential for registration-free parcellation.

Module for Local-global Streamline Representation Learning. We pro-
pose a module (Fig. 2) to learn the proposed local-global representation, which
benefits from information about the anatomy of the neighboring WM and the
overall pose of the brain. We construct the input for the learning module by con-
catenating the coordinates of the original streamline (the one to be classified),
its local neighbor streamlines, and global whole-brain streamlines. In detail, as-
sume a brain has n streamlines, denoted by S = {s1, s2, . . . , sn}, si ∈ Rm×3,
where 3 is the dimensionality of the point coordinates and m is the number
of points for each streamline (m=15 as in [42,44]). For streamline si, we ob-
tain a set of k nearest streamlines, local(si) = {sj1, sj2, . . . , sjk}, using a pair-
wise streamline distance [11]. From the whole brain, we also randomly select
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Fig. 2. The proposed module for learning local-global representation.

a set of w streamlines, global(si) = {sq1, sq2, . . . , sqw}. Then si, local(si), and
global(si) are concatenated as shown in Fig. 2 to obtain the input of the module,
ti ∈ Rm×6×(k+w). The proposed module begins with a shared fully connected
(FC) layer with ReLU activation function (hΘ): fi = hΘ(ti), fi ∈ Rm×h×(k+w),
where h is the output dimension of hΘ (h=64 [3,26,32]). Finally, the local-global
representation ri is obtained through max-pooling ri = pool(fi) ∈ Rm×h. The
network is trained in an end-to-end fashion where the local-global representa-
tion ri is learned during training of the overall point-cloud-based classification
network.

Network Structure for Streamline Classification. The local-global repre-
sentation learning module can replace the first layer or module of typical point-
cloud-based networks [3,26,32,46]. Here, we explore two widely used networks:
PointNet [3] and Dynamic Graph Convolutional Neural Network (DGCNN) [32].
PointNet (see Fig. S1 for network details) encodes point-wise features individu-
ally, but DGCNN (see Fig. S2 for network details) encodes point-wise features
by interacting with other points on a streamline. Both PointNet and DGCNN
then aggregate features of all points through pooling to get a single streamline
descriptor, which is input into fully connected layers for classification.

2.3 Implementation Details

To learn ri, we used 20 local streamlines (selected from 10, 20, 50, 100) and
500 global streamlines (selected from 100, 300, 500, 1000). Our framework was
trained with the Adam optimizer with a learning rate of 0.001 using cross-entropy
loss. The epoch was 20, and the batch size was 1024. Training of our registration-
free framework (TractCloudreg-free) with the large STA dataset took about 22
hours and 10.9 GB GPU memory with Pytorch (v1.13) on an NVIDIA RTX
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Table 1. Results on the labeled training dataset with and without synthetic transfor-
mations. Bold and italic text indicates the best-performing method and the second-
best-performing method, respectively. Abbreviations: Orig - Original, Acc - Accuracy.

Feature Single Streamline Local Local + Global
SOTA

Methods
Point Cloud
Networks

TractCloud
Effectiveness StudyData

&
Metric Deep

WMA DCNN++ PointNet DGCNN PointNet
+loc

DGCNN
+loc

PointNet
+loc+glo

DGCNN
+loc+glo

Acc 90.29 91.26 91.36 91.85 91.51 91.91 92.28 91.99Orig
data F1 88.12 89.14 89.12 89.78 89.25 90.03 90.36 90.10

Acc 82.35 84.14 81.83 83.70 86.56 87.14 91.57 91.69STA
data F1 76.55 79.16 75.89 78.55 82.08 82.95 89.40 89.65

A5000 GPU machine. For training and inference using TractCloudreg-free , trac-
tography was centered at the mass center of the training atlas. TractCloudreg-free
directly annotates tract labels at the inference stage without requiring the reg-
istration of an atlas.

3 Experiments and Results

3.1 Performance on the Labeled Atlas Dataset

We evaluated our method on the original labeled training dataset (registered and
aligned) and its synthetic transform augmented (STA) data (unregistered and
unaligned). We divided both the original and STA data into train/validation/test
sets with the distribution of 70%/10%/20% by subjects (such that all streamlines
from an individual subject were placed into only one set, either train or valida-
tion or test). For experimental comparison, we included two deep-learning-based
state-of-the-art (SOTA) tractography parcellation methods: DCNN++ [37] and
DeepWMA [44]. They were both designed to perform deep WM parcellation
using CNNs, with streamline spatial coordinate features as input. We trained
the networks based on the recommended settings in their papers and code. Two
widely used point-cloud-based networks (PointNet [3] and DGCNN [32]), with
a single streamline as input, were included as baseline methods. To evaluate
the effectiveness of the local-global representation in TractCloud, we performed
experiments using only local neighbor features (PointNet+loc and DGCNN+loc)
and both local neighbor and whole-brain global features (PointNet+loc+glo and
DGCNN+loc+glo). For all methods, we report two metrics (accuracy and macro
F1) that are widely used for tractography parcellation [24,19,37,44,39]. The ac-
curacy is reported as the overall accuracy of streamline classification, and the
macro F1 score is reported as the mean across 43 tract classes (Table 1).

Table 1 shows that the TractCloud framework achieves the best performance
on data with and without synthetic transformations (STA). Especially on STA
data, TractCloud yields a large improvement in accuracy (up to 9.9%) and F1
(up to 13.8%), compared to PointNet and DGCNN baselines as well as SOTA
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methods. In addition, including local (PointNet+loc and DGCNN+loc) and global
(PointNet+loc+glo and DGCNN+loc+glo) features both improve the performance
compared to baselines (PointNet and DGCNN) with a single streamline as input.
This demonstrates the effectiveness of our local-global representation.

3.2 Performance on the Independently Acquired Testing Datasets

We performed experiments on five independently acquired, unlabeled testing
datasets (dHCP, ABCD, HCP, PPMI, BTP) to evaluate the robustness and
generalization ability of our TractCloudreg-free framework on unseen and un-
registered data. All compared SOTA methods (DeepWMA, DCNN++) and
TractCloudregist were tested on registered tractography, and only TractCloudreg-free
was tested on unregistered tractography. Tractography was registered to the
space of the training atlas using an affine transform produced by registering the
baseline (b=0) image of each subject to the atlas population mean T2 image
using 3D Slicer [10]. For each method, we quantified the tract identification rate
(TIR) and calculated the tract-to-atlas distance (TAD), and statistical signifi-
cance tests were performed for results of TIR and TAD (Table 2). TIR measures
if the tract is identified successfully when labels are not available [42,44,7]. Here,
we chose 50 as the minimum number of streamlines for a tract to be consid-
ered as identified (The threshold of 50 is more strict than 10 or 20 in [42,44,7]).
As a complementary metric for TIR, TDA measures the geometric similarity be-
tween identified tracts and corresponding tracts from the training atlas. For each
testing subject’s tract, we calculated the streamline-specific minimum average
direct-flip distance [11,42,7] to the atlas tract and then computed the average
across subjects and tracts to obtain TDA. We also recorded the computation
time for tractography parcellation for every method (Table 2). The computa-
tion time was tested on a Linux workstation with an NVIDIA RTX A4000
GPU using tractography (0.28 million streamlines) from a randomly selected
subject. To evaluate if differences in result values between our registration-free
method (TractCloudreg-free) and other methods are significant, we implemented
a repeated measure ANOVA test for all methods across subjects, and then we
performed multiple paired Student’s t-tests between TractCloudreg-free method
and each compared method. In addition, in order to evaluate how well our frame-
work can perform without registration, we converted identified tracts into volume
space and calculated the spatial overlap (weighted Dice) [8,43] between results of
TractCloudregist and TractCloudreg-free (Table 3). Furthermore, we also provide
a visualization of identified tracts in an example individual subject for every
dataset across methods (Fig. 2).

As shown in Table 2, all methods achieve high TIRs on all datasets, and the
TIR metric does not have significant differences across methods. This demon-
strates that most tracts can be identified by all methods robustly. However, our
registration-free framework (TractCloudreg-free) obtains significantly lower TDA
values (better quality of identified tracts) than all compared methods on ABCD,
HCP, and PPMI datasets, where ages of test subjects are from 9 to 75 years old.
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Table 2. Results of tract identification rate (TIR) and tract distance to atlas (TDA) on
five independently acquired testing datasets as well as computation time on a randomly
selected subject. TIR results show no significant differences across methods (ANOVA
p > 0.05), while TDA results do (ANOVA p < 1 × 10−10). Asterisks show that the
difference between TractCloudreg-free and other methods is significant using a paired
Student’s t-test. (∗p < 0.05, ∗ ∗ p < 0.001). Abbreviations: TC - TractCloud.

Method TIR (%) ↑ TDA (mm) ↓ Run
TimedHCP ABCD HCP PPMI BTP dHCP ABCD HCP PPMI BTP

DeepWMA 98.8
±1.4 100 100 100 99.9

±0.5
6.81∗

±1.1
5.66∗∗

±0.9
5.09∗∗

±0.7
5.94∗∗

±1.0
6.24∗

±1.2 113s

DCNN++ 98.7
±1.9 100 100 100 99.8

±0.9
6.90∗

±1.4
5.69∗∗

±0.9
5.08∗∗

±0.7
5.95∗∗

±0.9
6.43∗∗

±1.8 102s

TCregist
99.2
±1.6 100 100 100 99.9

±0.5
6.53∗

±1.1
5.60∗∗

±0.9
5.06∗∗

±0.7
5.87∗

±1.0
6.09
±1.1

97s

TCreg-free
97.7
±3.1 100 100 100 99.9

±0.5
6.71
±1.3

5.52
±0.8

5.02
±0.6

5.85
±0.9

6.11
±1.0 58s

On the very challenging dHCP (baby brain) dataset, TractCloudreg-free still sig-
nificantly outperforms two SOTA methods. Note that TractCloudreg-free directly
works on unregistered tractography from neonate brains (much smaller than
adult brains). In the challenging BTP (tumor patients) dataset, TractCloudreg-free
obtains significantly lower TDA values than SOTA methods and comparable per-
formance to TractCloudregist . As shown in Table 2, our registration-free frame-
work is much faster than other compared methods.

Fig. 3. Visualization of example tracts (corticospinal tract and corpus callosum IV)
from each method, in the subject with the median TDA for each testing dataset.
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Table 3. Tract spatial overlap (wDice) between TractCloudregist and TractCloudreg-free

dHCP ABCD HCP PPMI BTP
TSO 0.932±0.14 0.965±0.04 0.980±0.02 0.977±0.03 0.970±0.05

The tract spatial overlap (wDice) is over 0.965 on all datasets, except for
the challenging dHCP (wDice is 0.932) (Table 3). Overall, our registration-free
framework is comparable to (or better than) our framework with registration.

Fig. 3 shows visualization results of example tracts. All methods can suc-
cessfully identify these tracts across datasets. It is visually apparent that the
TractCloudreg-free framework obtains results with fewer outlier streamlines, es-
pecially on the challenging dHCP dataset.

4 Discussion and Conclusion

We have demonstrated TractCloud, a registration-free tractography parcellation
framework with a novel, learnable, local-global representation of streamlines.
Experimental results show that TractCloud can achieve efficient and consistent
tractography parcellation results across populations and dMRI acquisitions, with
and without registration. The fast inference speed and robust ability to parcel-
late data in original subject space will allow TractCloud to be useful for analy-
sis of large-scale tractography datasets. Future work can investigate additional
data augmentation using local deformations to potentially increase robustness to
pathology. Overall, TractCloud demonstrates the feasibility of registration-free
tractography parcellation across the lifespan.
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Table S1. dMRI acquisition parameters for five independently acquired testing
datasets.

Dataset dMRI acquisition parameters

dHCP

b = 400/1000/2600 s/mm2;
20 volumes with b = 0 s/mm2 , 64 volumes with b = 400 s/mm2,
88 volumes with b = 1000 s/mm2, 128 volumes with b = 2600 s/mm2;
TE/TR = 90/3800 ms;
resolution = 1.5x1.5x1.5 mm3

ABCD

b = 3000 s/mm2;
1 volume with b = 0 s/mm2, 60 volumes with b = 3000 s/mm2;
TE/TR = 88/4100 ms;
resolution = 1.7x1.7x1.7 mm3

HCP

b = 3000 s/mm2;
18 volumes with b = 0 s/mm2, 90 volumes with b = 3000 s/mm2;
TE/TR = 89/5520 ms;
resolution = 1.25x1.25x1.25 mm3

PPMI

b = 1000 s/mm2;
1 volume with b = 0 s/mm2, 64 volumes with b = 1000 s/mm2;
TE/TR = 88/7600 ms;
resolution = 2x2x2 mm3

BTP

b = 2000 s/mm2;
1 volume with b = 0 s/mm2, 30 volumes with b = 2000 s/mm2;
TE/TR = 98/12700 ms;
resolution = 2.2x2.2x2.3 mm3
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Fig. S1. The point-cloud-based network architecture of TractCloud using PointNet
in our study. m is the number of points on a streamline. Abbreviations: FC, fully
connected; BN, batch normalization; ReLU, rectified linear unit.

Fig. S2. The point-cloud-based network architecture of TractCloud using DGCNN in
our study. m is the number of points on a streamline. Abbreviations: knn, k-nearest
neighbors; FC, fully connected; BN, batch normalization; ReLU, rectified linear unit;
Avg, average.
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